簡易檢索 / 詳目顯示

研究生: 王威邦
Wang, Wei-Bang.
論文名稱: 具有不可信次級用戶的感知無線電網路中的保密能源效率
Secrecy Energy Efficiency in Cognitive Radio Networks with Untrusted Secondary Users
指導教授: 祁忠勇
Chi, Chong-Yung
口試委員: 吳卓諭
Wu, Jwo-Yuh
蔡尚澕
Tsai, Shang-Ho
高榮俊
Kao, Jung-Chun
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 通訊工程研究所
Communications Engineering
論文出版年: 2021
畢業學年度: 110
語文別: 英文
論文頁數: 46
中文關鍵詞: 保密能源效率感知無線電分數規劃連續凸近似
外文關鍵詞: Secrecy energy efficiency, cognitive radio, fractional programming, successive convex approximation
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在認知無線電(CR)網絡中的信息安全性和能效已經得到了廣泛的研究。然而,到目前為止,在底層頻譜共享機制下的CR網絡中,具有多個不可信的次級用戶(SU)的情況尚未被研究;因此本文研究了這種場景中多輸入單輸出CR網絡的下行鏈路保密節能協調波束成形設計。本文的目標為滿足主要用戶(PU)和SU的傳輸速率要求,以及對主要發射機(PTx)和次級發射機(STx)功率預算的約束下,最大化全局保密能效(GSEE),其定義為所有PU的保密率總和與總功耗的比率。為了解決非凸GSEE最大化(GSEEM)問題,我們提出了一種基於Dinkelbach方法和successive convex approximation(SCA)算法來聯合優化PTx和STx的波束形成向量;並且分析了所提出的GSEEM算法的收斂行為和計算複雜度,接著探討了與保密率最大化設計和功率最小化(PM)設計下GSEE的關聯。鑑於所提出的GSEEM算法的計算複雜度明顯高於PM設計,因此進一步設計了一種兩步驟搜索方案,以基於PM設計和黃金搜索方法,有效地搜GSEEM問題的近似解。仿真結果證明了所提出的GSEEM算法和搜索方案的有效性,並顯示空間自由度(主要由PTx和STx的天線數量決定)是所提出的GSEEM算法性能的關鍵因素。


    The information security and energy efficiency in cognitive radio (CR) networks have been extensively studied. However, the practical scenario involving multiple untrusted secondary users (SUs) in CR networks under the underlay spectrum sharing mechanism has not been studied so far. This thesis considers the downlink secrecy energy efficient coordinated beamforming design for multiple inputs single output CR networks under this scenario. Our goal is to maximize the global secrecy energy efficiency (GSEE), defined as the ratio of the sum of secrecy rates of all the primary users (PUs) to the total power consumption, under requirements on transmission rate of PUs and SUs as well as constraints on power budget at the primary transmitter (PTx) and the secondary transmitter (STx). To tackle the non-convex GSEE maximization (GSEEM) problem, an algorithm is proposed based on Dinkelbach method and successive convex approximation to jointly optimize beamforming vectors of the PTx and the STx. The convergence behavior and the computational complexity of the proposed GSEEM algorithm are analyzed, followed by the connection with the secrecy rate maximization design and the power minimization (PM) design in terms of GSEE. In view of significantly higher computational complexity of the proposed GSEEM algorithm than that of the PM design, a 2-step searching scheme is further designed to efficiently search for an approximate solution to the considered GSEEM problem based on the PM design and the golden search method. Simulation results demonstrate the efficacy of the proposed GSEEM algorithm and the searching scheme, and show that the spatial degrees of freedom (primarily determined by the antenna numbers of PTx and STx) is the key factor to the performance of the proposed GSEEM algorithm.

    中文摘要 ii Abstract iii 致謝 v Table of Contents vi List of Figures viii List of Notations x Chapter 1 Introduction 1 Chapter 2 Signal Model and Problem Statement 6 Chapter 3 The Proposed GSEEM Algorithm 11 3.1 Algorithm Design 11 3.2 Computational Complexity Analysis 18 3.3 Performance Analysis 18 Chapter 4 The PMBSS Algorithm 21 Chapter 5 Simulation Results 24 5.1 Simulation Results for i.i.d. Channels 24 5.2 Simulation Results for Spatially Correlated Channels 35 Chapter 6 Conclusions 37 Appendix A Proof of Proposition 1 39 Bibliography 43

    [1] L. Belkhir and A. Elmeligi, “Assessing ICT global emissions footprint: Trends to 2040 & recommendations,” J. Clean. Prod., vol. 177, pp. 448–463, Mar. 2018.
    [2] S. Buzzi, C. I, T. E. Klein, H. V. Poor, C. Yang, and A. Zappone, “A survey of energy-efficient techniques for 5G networks and challenges ahead,” IEEE J. Sel. Areas Commun., vol. 34, no. 4, pp. 697–709, Apr. 2016.
    [3] J. Ren, Y. Zhang, N. Zhang, D. Zhang, and X. Shen, “Dynamic channel access to improve energy efficiency in cognitive radio sensor networks,” IEEE Trans. Wireless Commun., vol. 15, no. 5, pp. 3143–3156, Jan. 2016.
    [4] L. Sboui, Z. Rezki, and M. Alouini, “Energy-efficient power allocation for underlay cognitive radio systems,” IEEE Trans. Cogn. Commun. Netw., vol. 1, no. 3, pp. 273–283, Oct. 2015.
    [5] Z. Bai, L. Ma, Y. Dong, P. Ma, and Y. Ma, “Energy-efficient resource allocation for secure cognitive radio network with delay QoS guarantee,” IEEE Syst. J., vol. 13, no. 3, pp. 2795–2805, Oct. 2019.
    [6] Cisco, Visual Networking Index: Forecast and Trends 2017-2022. San Jose, CA, USA, Feb. 2019.
    [7] J. Mitola and G. Q. Maguire, “Cognitive radio: Making software radios more personal,” IEEE Pers. Commun., vol. 6, no. 4, pp. 13–18, Aug. 1999.
    [8] B. Wang and K. J. R. Liu, “Advances in cognitive radio networks: A survey,” IEEE J. Sel. Topics Signal Process., vol. 5, no. 1, pp. 5–23, Feb. 2011.
    [9] T. Yucek and H. Arslan, “A survey of spectrum sensing algorithms for cognitive radio applications,” IEEE Commun. Surveys Tuts., vol. 11, no. 1, pp. 116–130, 1st, Quart., 2009.
    [10] Y.-C. Liang, Y. Zeng, E. C. Y. Peh, and A. T. Hoang, “Sensing-throughput tradeoff for cognitive radio networks,” IEEE Trans. Wireless Commun., vol. 7, no. 4, pp. 1326–1337, Apr. 2008.
    [11] S. K. Sharma, T. E. Bogale, S. Chatzinotas, B. Ottersten, L. B. Le, and X. Wang, “Cognitive radio techniques under practical imperfections: A survey,” IEEE Commun. Surveys Tuts., vol. 17, no. 4, pp. 1858–1884, 4th Quart., 2015.
    [12] D. Li, J. Cheng, and V. C. M. Leung, “Adaptive spectrum sharing for halfduplex and full-duplex cognitive radios: From the energy efficiency perspective,” IEEE Trans. Commun., vol. 66, no. 11, pp. 5067–5080, Nov. 2018.
    [13] M. C. Filippou, D. Gesbert, and G. A. Ropokis, “A comparative performance analysis of interweave and underlay multi-antenna cognitive radio networks,” IEEE Trans. Wireless Commun., vol. 14, no. 5, pp. 2911–2925, Jan. 2015.
    [14] J. Xiong, D. Ma, K. Wong, and J. Wei, “Robust masked beamforming for MISO cognitive radio networks with unknown eavesdroppers,” IEEE Trans. Veh. Technol., vol. 65, no. 2, pp. 744–755, Feb. 2016.
    [15] A. G. Fragkiadakis, E. Z. Tragos, and I. G. Askoxylakis, “A survey on security threats and detection techniques in cognitive radio networks,” IEEE Commun. Surveys Tuts., vol. 15, no. 1, pp. 428–445, 1st Quart., 2013.
    [16] T. Jiang, T. Li, and J. Ren, “Toward secure cognitive communications in wireless networks,” IEEE Wireless Commun., vol. 19, no. 4, pp. 82–88, Aug. 2012.
    [17] Y. Zou, X. Wang, and W. Shen, “Physical-layer security with multiuser scheduling in cognitive radio networks,” IEEE Trans. Commun., vol. 61, no. 12, pp. 5103–5113, Dec. 2013.
    [18] X. Chen, D. W. K. Ng, W. H. Gerstacker, and H. Chen, “A survey on multiple-antenna techniques for physical layer security,” IEEE Commun. Surveys Tuts., vol. 19, no. 2, pp. 1027–1053, 2nd Quart., 2017.
    [19] H. Mu and J. K. Tugnait, “Secure degrees of freedom in MIMO cognitive radio systems,” in Proc. IEEE GLOBECOM, 2014, pp. 1011–1016.
    [20] Y. Pei, Y. Liang, L. Zhang, K. C. Teh, and K. H. Li, “Achieving cognitive and secure transmissions using multiple antennas,” in Proc. IEEE PIMRC, 2009, pp. 1–5.
    [21] ——, “Secure communication over MISO cognitive radio channels,” IEEE Trans. Wireless Commun., vol. 9, no. 4, pp. 1494–1502, Apr. 2010.
    [22] Y. Pei, Y. Liang, K. C. Teh, and K. H. Li, “Secure communication in multiantenna cognitive radio networks with imperfect channel state information,” IEEE Trans. Signal Process., vol. 59, no. 4, pp. 1683–1693, Feb. 2011.
    [23] P. Chen, J. Ouyang, W. Zhu, and M. Lin, “Energy efficient beamforming for multi-user transmission in cognitive radio networks with secrecy constraints,” IEEE Access, vol. 6, pp. 74 485–74 493, 2018.
    [24] J. Ouyang, M. Lin, Y. Zou, W. Zhu, and D. Massicotte, “Secrecy energy efficiency maximization in cognitive radio networks,” IEEE Access, vol. 5, pp. 2641–2650, Feb. 2017.
    [25] J. Ouyang, M. Lin, W. Zhu, D. Massicotte, and A. L. Swindlehurst, “Energy efficient beamforming for secure communication in cognitive radio networks,” in Proc. IEEE ICASSP, 2016, pp. 3496–3500.
    [26] F. Zhou, Y. Wang, D. Qin, Y. Wang, and Y. Wu, “Secure EE maximisation in green CR: Guaranteed SC,” IET Commun., vol. 11, no. 16, pp. 2507–2513, 2017.
    [27] Y. Jiang, Y. Zou, J. Ouyang, and J. Zhu, “Secrecy energy efficiency optimization for artificial noise aided physical-layer security in OFDM-based cognitive radio networks,” IEEE Trans. Veh. Technol., vol. 67, no. 12, pp. 11 858–11 872, Oct. 2018.
    [28] L. Ni, X. Da, H. Hu, M. Zhang, and K. Cumanan, “Outage constrained robust secrecy energy efficiency maximization for EH cognitive radio networks,” IEEE Wireless Commun. Lett., vol. 9, no. 3, pp. 363–366, Aug. 2020.
    [29] M. Gastpar, “On capacity under receive and spatial spectrum-sharing constraints,” IEEE Trans. Inf. Theory, vol. 53, no. 2, pp. 471–487, Feb. 2007.
    [30] F. Gabry, A. Zappone, R. Thobaben, E. A. Jorswieck, and M. Skoglund, “Energy efficiency analysis of cooperative jamming in cognitive radio networks with secrecy constraints,” IEEE Wireless Commun. Lett., vol. 4, no. 4, pp. 437–440, May 2015.
    [31] W. Dinkelbach, “On nonlinear fractional programming,” Manage. Sci., vol. 13, no. 7, pp. 492–498, Mar. 1967.
    [32] B. Marks and G. P. Wright, “A general inner approximation algorithm for nonconvex mathematical programs,” Oper. Res., vol. 26, no. 4, pp. 681–683, 1978.
    [33] C.-Y. Chi, W.-C. Li, and C.-H. Lin, Convex Optimization for Signal Processing and Communications: From Fundamentals to Applications. Boca Raton, FL, USA: CRC Press, 2017.
    [34] H. Song, H. Wen, L. Hu, Y. Chen, and R. Liao, “Optimal power allocation for secrecy rate maximization in broadcast wiretap channels,” IEEE Wireless Commun. Lett., vol. 7, no. 4, pp. 514–517, Aug. 2018.
    [35] D. N. Nguyen and M. Krunz, “Power minimization in MIMO cognitive networks using beamforming games,” IEEE J. Sel. Areas Commun., vol. 31, no. 5, pp. 916–925, May 2013.
    [36] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. Flannery, “Golden section search in one dimension,” in Numerical Recipes: The Art of Scientific Computing, 3rd ed. New York, NY, USA: Cambridge Univ. Press, 2007, ch. 10.2.
    [37] W.-B. Wang, L. Yang, and C.-Y. Chi, “Secrecy energy efficiency in cognitive radio networks with untrusted secondary users,” IEEE Trans. Green Commun. and Netw., vol. 5, no. 1, pp. 216–230, Mar. 2021.
    [38] M. Zhang and Y. Liu, “Secure beamforming for untrusted MISO cognitive radio networks,” IEEE Trans. Wireless Commun., vol. 17, no. 7, pp. 4861–4872, Jul. 2018.
    [39] Y. Lu, K. Xiong, P. Fan, Z. Ding, Z. Zhong, and K. B. Letaief, “Global energy efficiency in secure MISO SWIPT systems with non-linear power-splitting EH model,” IEEE J. Sel. Areas Commun., vol. 37, no. 1, pp. 216–232, Jan. 2019.
    [40] Y. Wen, T. Jing, Y. Huo, Z. Li, and Q. Gao, “Secrecy energy efficiency optimization for cooperative jamming in cognitive radio networks,” in Proc. IEEE ICNC, 2018, pp. 795–799.
    [41] A. Zappone, E. Bj¨ornson, L. Sanguinetti, and E. Jorswieck, “Globally optimal energy-efficient power control and receiver design in wireless networks,” IEEE Trans. Signal Process., vol. 65, no. 11, pp. 2844–2859, Jun. 2017.
    [42] A. Ben-Tal and A. Nemirovski, Lectures on Modern Convex Optimization: Analysis, Algorithms, and Engineering Applications. Philadelphia, PA, USA: SIAM, 2001.
    [43] K. Wang, A. M. So, T. Chang, W. Ma, and C. Chi, “Outage constrained robust transmit optimization for multiuser MISO downlinks: Tractable approximations by conic optimization,” IEEE Trans. Signal Process., vol. 62, no. 21, pp. 5690–5705, Sep. 2014.
    [44] M. Grant, S. Boyd, and Y. Ye. (Apr. 2011). CVX: MATLAB Software for Disciplined Convex Programming, Version 1.21. [Online]. Available: http://cvxr.com/cvx/.
    [45] J. F. Sturm, “Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones,” Optim. Method Softw., vol. 11-12, pp. 625–653, 1999.

    QR CODE