簡易檢索 / 詳目顯示

研究生: 鍾喬登
Chung,Chiao Teng
論文名稱: 應用於偵測貝塔波能量之閉迴路系統研發
The Development a Closed-loop System for Detecting Beta-Band Energy
指導教授: 陳新
Chen,Hsin
口試委員: 謝秉璇
Hsieh,Ping Hsuan
彭盛裕
Peng,Sheng Yu
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2016
畢業學年度: 105
語文別: 中文
論文頁數: 128
中文關鍵詞: 貝塔波轉導電容式濾波器放大器低功耗寬輸入線性範圍
外文關鍵詞: Betawave, Gm-C, filter, LNA, low power, wide input linear range
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,隨著CMOS積體電路技術的發展與製程技術的不斷精進,產生了許多積體電路在生物醫學中的應用;例如利用植入式腦機介面應用於治療帕金森氏症、癲癇等疾病的醫療技術,越來越廣泛地受到關注與研究。本論文旨在研究用於深腦電刺激療法,在進行刺激過程的β波偵測電路的開發,以提供更有效的帕金森氏症治療。因為連續型刺激裝置會抑制病人正常的生理活動,因此偵測型的閉迴路系統有其發展的重要性。另一方面,運用丘腦下核所產生的腦波訊號來分析病症發作是在醫學上長久以來就有的證據;其包含了在電性偵測上所發現的訊號變化或是在頻譜分析上能量的改變。而本研究是對於腦波訊號中β頻段上所產生的能量變化進行偵測並判斷是否有病症發作。其中運用的架構,包含透過前端的低雜訊放大器及運用次臨界區工作之帶通濾波器來擷取20~40 Hz頻段的訊號,並透過運用平方電路算出平均能量的演算法來達成。
    使用TSMC 0.18um 1P6M製程,不包含電壓緩衝器及比較器功耗可以小於10uW,(轉導電容式帶通濾波器1.8uW乘法器 0.428uW 積分器 0.45uW)此外輸入線性範圍可以達到 400mV,整個晶片面積大小為200um*950um.,此研究的重點,將包括演算法探討、模組電路的功能驗證、及積體電路的設計實現、以及晶片整合雛型系統的效能驗證。此研究將有助於閉迴路與自適性的刺激裝置於植入式腦機介面的應用。


    In recent years, with the development of CMOS technology and the improvement of process, a number of integrated circuits have been used in biomedical applications. For instance, implantable brain-machine interfaces for treating Parkinson’s disease, epilepsy, and other diseases have attracted more and more attentions and research resources.
    This thesis aims to design the β wave detecting system during the stimulation for studying the mechanism of deep brain stimulation (DBS) and the therapy for the Parkinson’s disease. The continuous, periodic DBS not only inhibits abnormal neuron activities but also suppresses some normal physiological activities. Therefore, the closed-loop system is proposed. On the other hand, to analyze the brain wave from the STN and Motor Cortex is medical evidence related to this disease. In this research, the spectrum and different energy algorithm were used to detect the energy difference between the stimulation and without stimulation.
    Firstly we implemented the system through the frontend of the low noise amplifier and the Gm-C based band-pass filter to capture Beta band signal. Besides, the research also used the square and integrator circuit to calculate the average energy of the Beta band. In addition, to achieve low power consumption, all transistors in this system were designed in the subthreshold region. The system chip was fabricated and verified by using TSMC 018um 1P6M CMOS process.The total power of the system without buffer is less than10uw (Gm-C band-pass filter 1.8uW multiplier 0.428uW integrator 0.45uW)and input linear range can be reached 400mV.The chip total area is 200um*950um.
    The focus of the research includes discussion of the algorithm, functional verification of the module circuit, design implementation of integrated circuits, and chip verification for integration prototype system performance. This study will be helpful for designing a closed-loop and adaptive stimulation device in the implanted brain machine interface.

    誌謝 I Abstract II 圖目錄 VII 表目錄 XIII 第一章緒論 1 1.1研究背景 1 1.1.1醫學背景介紹 2 1.1.2 深腦刺激器的發展與現況 4 1.2腦機介面系統簡介 5 1.3閉迴路系統的起源 6 1.4研究動機與目的 7 1.5研究流程與章節架構說明 8 第二章 演算法探討及比較 11 2.1閉迴路系統偵測方法 11 2.2 移動平均(running average) 12 2.3短時距傅立葉轉換(Short time Discrete Fourier Transform) 18 2.4小波轉換(wavelet transform) 26 2.5比較結果 30 2.5.1比較不同濾波器階數結果 31 2.5.2比較多組資料結果 32 第三章 文獻回顧 34 3.1 哈利森團隊(Reid R. Harrison) 34 3.2 劉氏系統 37 3.3清大團隊系統 40 第四章 二階帶通轉導電容式濾波器設計流程 48 4.1前言 48 4.2 元件替換 49 4.3 運算轉導放大器 52 4.3.1電路操作在弱反轉區的優缺點 53 4.3.2源極放大器的退化(Source degeneration) 54 4.3.3 電晶體基體極輸入 55 4.3.4 閘極退化 55 4.3.5 凸起電路(bump circuit) 57 4.4 運算轉導濾波器設計 59 4.4.1 轉導運算放大器模擬結果 61 4.5轉導電容濾波器模擬結果 66 4.5.1頻率響應 66 4.5.2中心頻率與品質因子 68 4.5.3暫態分析與線性度模擬 71 4.6與電源無關偏壓電路設計 73 4.6.1設計概念 74 4.6.2 模擬電源對偏壓電路的影響 74 第五章 演算法電路設計 76 5.1乘法器設計模擬 83 5.2積分器設計概念 88 5.2.1軌對軌運算放大器概念 89 5.3 不同時間常數的影響 92 第六章 晶片量測結果與討論 99 6.1 第一版晶片量測步驟與考量 99 6.1.1 二階帶通濾波器量測結果 101 6.1.2電路系統量測結果 108 6.2 第二版晶片量測步驟與考量 112 第七章 結論與未來研究方向 117 7.1結論 117 7.2未來研究方向 119 參考文獻 125

    [1] 江心怡,”腦子裡的開關巴金森讓你停下腳步”人醫心傳期刊pp.38-47, April 2004.
    [2] 李佳蓁藥師,”「顫」停一下,淺談帕金森氏症藥物治療”,亞東紀念醫院亞東院訊, http://www.femh.org.tw/epaperadmin/viewarticle.aspx?ID=4126.
    [3] Tatum,William O,”Ellen R. Grass Lecture: Extraordinary EEG.”,Neurodiagnostic Journal 54.1: pp.3–21. (2014).
    [4] Konstantinos P. Michmizos,Polytimi Frangou, Pantelis Stathis,Damianos Sakas, and Konstantina S. Nikita, Senior Member,”Beta-Band Frequency Peaks Inside the Subthalamic Nucleus as a Biomarker for Motor Improvement After Deep Brain Stimulation in Parkinson’s Disease”,IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. 19, NO. 1, JANUARY 2015
    [5] Claire Delaville, AnaV. Cruz, Alex J. McCoy, Elena Brazhnik, Irene Avila, Nikolay Novikov, Judith R. Walters,” Oscillatory activity in basal ganglia and motor cortex in an awake behaving rodent del of Parkinson’s disease”,Basal Ganglia 3 (2014) 221–227
    [6] 胡佩姍,”探討視丘下核的腦深層刺激術對正常大鼠與巴金森氏模式鼠之腦區活化的影響” ,清華大學分子醫學所碩士論文,2012
    [7] Shannon R. Blume and Kuei Y. Tseng,”Leading Toward a Unified Cortico-basal Ganglia Functional Model, Chap1.pp.3-4 2009”
    [8] 戴春暉,”臺大醫院神經部主治醫師深腦刺激 Deep Brain Stimulation
    左多巴後的新希望”,Taiwan Parkinsonian 2013/7
    [9] Medtronic, http://www.medtronic.com/us-en/index.html
    [10] Bostonscientific,https://www.bostonscientific.com/en-US/Home.html
    [11] Preeya Khanna , Scott Stanslaski , Yizi Xiao , Terry Ahrens , Duane Bourget , Nicole Swann , Philip Starr , Jose M. Carmena , and Timothy Denison,”Enabling Closed-Loop Neurostimulation Research with Downloadable Firmware Upgrades”Biomedical Circuits and Systems Conference(BioCAS),2015IEEE
    [12] Simon Little,MA,MBBS,”Adaptive Deep Brain Stimulation in Advanced Parkinson Disease”
    [13] Dr. Asoka Selvarajah,”Moving Averages in Theory and Practice”,http://www.educatedanalyst.com/moving-averages-in-theory-and-practice/,2010
    [14] 楊雯雯,”診斷檢驗工具之效能與應用財團法人醫藥品查驗中心醫藥科技評估組”, 2009
    [15] Shouyan Wang, Alex Green, John Stein, Tipu Aziz, Xuguang Liu, ”Identifying Rhythms of Subthalamic Neural Oscillations in Time-Frequency Domain” , 30th Annual International IEEE EMBS Conference Vancouver, British Columbia, Canada, August 20-24, 2008
    [16] A.M. Ardi Handojoseno, James M. Shine, Tuan N. Nguyen, Yvonne Tran, Simon J.G. Lewis, Hung T. Nguyen, ”The detection of Freezing of Gait in Parkinson’s disease patients using EEG signals based on Wavelet Decomposition” 34th Annual International Conference of the IEEE EMBS San Diego, California USA, 28 August - 1 September, 2012
    [17] Reid R. Harrison, “The design of integrated circuits to observe brain activity,” Proceedings of the IEEE, Vol.96, No. 7, pp.1203-1216, July 2008.
    [18] Xilin Liu, Milin Zhang, Andrew G. Richardson, Timothy H. Lucas, and Jan Van der Spiegel, ”A 12-Channel Bidirectional Neural Interface Chip with Integrated Channel-level Feature Extraction and PID Controller for Closed-loop Operation “
    [19] Yu-Po Lin, Student Member, IEEE, Chun-Yi Yeh, Pin-Yang Huang, Zong-Ye Wang, Hsiang-Hui Cheng, Yi-Ting Li, Chi-Fen Chuang, Po-Chiun Huang, Member, IEEE, Kea-Tiong Tang, Senior Member, IEEE, Hsi-Pin Ma, Member, IEEE, Yen-Chung Chang, Shih-Rung Yeh, and Hsin Chen, Member, IEEE”A Battery-Less, Implantable Neuro-Electronic Interface for Studying the Mechanisms of Deep Brain Stimulation in Rat Models” IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS, VOL. 10, NO. 1, FEBRUARY 2016
    [20] 王宗曄”可記錄多通道神經訊號之低雜訊低功耗放大器設計”
    [21] Fan Zhang, Apurva Mishra, Andrew G. Richardson, Stavros Zanos, and Brian P. Otis,”A Low-Power Multi-band ECoG/EEG Interface IC” ,Custom Integrated Circuits Conference (CICC), 2010 IEEE
    [22] 王光輝”應用於 ECG 訊號擷取之自我校正超低功率帶通濾波器”,中正大學電機工程學系碩士論文, 2010.
    [23] RAHUL SARPESHKAR,RICHARD F. LYON,AND CARVER MEADA ”Low-Power Wide-Linear-Range Transconductance Amplifier” Analog Integrated Circuits and Signal Processing, 13, 123–151 (1997)
    [24] Alberto Pesauento, Christof Koch,”A WIDE LINEAR RANGE FOUR QUADRANT MULTIPLIER IN SUBTHRESHOLD CMOS”
    [25] Furth, Paul M. , “Low-voltage highly-linear transconductor design in subthreshold CMOS”, Circuits and Systems, 1997.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE