簡易檢索 / 詳目顯示

研究生: 錢奕帆
Chien, I-Fan
論文名稱: 飛秒摻鉺光纖雷射之脈衝整形及其於兆赫光譜術之研究
A Study of Pulse-Shaped Erbium-Doped Fiber Laser and Applications to THz Spectroscopy
指導教授: 潘犀靈
Pan, Ci-Ling
口試委員: 吳小華
Wu, Hsiao-Hua
嚴大任
Yen, Ta-Jen
張存續
Chang, Tsun-Hsu
楊尚樺
Yang, Shang-Hua
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 96
中文關鍵詞: 兆赫波脈衝整形光導天線時域頻譜光纖雷射
外文關鍵詞: Terahertz, Pulse shaping, Photoconductive antenna, Time-domain spectroscopy, Fiber laser
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文的研究主題是針對使用中心波長1550 nm的摻鉺光纖飛秒脈衝雷射系統的多種應用,以透過光空間調製器整形脈衝回饋調控方法達成在應用端獲得轉換極限脈衝或優化兆赫波訊號。首先,我們提出以三點測量值替代相位掃描之改進式相位凍結演算法於脈衝整形,可較原相位凍結演算法加速演算時間理論值26.6倍實驗值20.5倍,並同時提升相位解析度達8倍。演算前後之光強度自相關干涉圖形顯示當雷射脈寬半高寬自712.3 fs縮短至233.2 fs,與時間-頻寬乘積所估算之變換極限脈寬230.39 fs誤差僅1.2 %,可有效消除脈衝色散。
    我們又進一步探討雷射脈衝特性對於基於低溫砷化銦鎵光導天線之時域兆赫波光譜量測之影響。實驗上分別嘗試以帶有色散值 -0.1 ps2 至 0.1 ps2 之脈衝雷射產生兆赫波脈衝,以及使用兩種版本之相位凍結演算法回饋調整兆赫波脈衝振幅,發現最佳激發及探測脈衝為近於轉換極限者,這與800 nm光脈衝激發低溫砷化鎵光導天線者不同。
    經由量測樣品如乳糖及玻璃之兆赫波時域光譜,我們得以驗證基於脈衝整形之飛秒摻鉺光纖雷射用於各種材料之兆赫光譜特性量測之可行性。


    The aim of this thesis is to achieve transform limited pulses (TLP) at application site or to optimize terahertz (THz) wave signals generated by using an erbium-doped fiber laser system (l ~ 1550 nm) and adaptive pulse shaping with a spatial light modulator (SLM). A 3-point sampling technique is proposed to replace the phase scanning approach in the algorithm for adaptive control. The present approach is theoretically 26.6 times and experimentally 20.5 times faster than the conventional freezing phase algorithm (FPA). Meanwhile, the phase resolution achieved is enhanced by eight times. From intensity autocorrelation measurement, the full-width at half maximum of an optical pulse was adaptively narrowed from 712.3 fs to 233.2 fs. Comparing to the FWHM width of 230.39 fs for a transform limited pulse (TLP), the error is 1.2 %.
    In this work, we also examine the optimized pulse characteristics for a THz time-domain spectrometer (THz-TDS) based on LT-InGaAs photoconductive antenna (PCA). The dependence of THz pulse amplitudes on the dispersion of the optical pulse is studied by applying group delay dispersion of -0.1 ps2 to 0.1 ps2 to the pumping pulse. The adaptive control invokes two versions of FPA with THz peak amplitude as the feedback signal for shaping the THz pulses. We found that the best excitation and detection pulse is close to transform limited. This is different from results of previous studies on THz pulses generated from LT-GaAs PCA excited by femtosecond optical pulse (l ~ 800 nm).
    Through the THz TDS measurements of lactose and glass, we are able to verify the feasibility and potential of sample characterization by a THz-TDS using pulse-shaped femtosecond erbium-doped fiber laser. 

    摘要 I Abstract II 致謝 IV Table of Contents V List of Figures VIII List of Tables XVI List of Abbreviations 1 Chapter 1 Introduction 2 1.1 Terahertz Technology 2 1.2 Pulse Shaping Technique 3 1.3 Motivation and Organization 3 Chapter 2 Theoretical Background 5 2.1 Erbium-Doped Fiber Laser System 7 2.1.1 Erbium-Doped Fiber Laser Oscillator 8 2.1.2 Erbium-Doped Fiber Amplifier 11 2.2 Interferometric Autocorrelation 13 2.2.1 Operation Principle 13 2.2.2 Pulse Characterization 19 2.3 Optical Pulse Shaping 20 2.3.1 4-f system 21 2.3.2 Spatial Light Modulator 23 2.3.3 Freezing Phase Algorithm (FPA) 25 2.3.4 Step-Reduced Freezing Phase Algorithm (sFPA) 28 2.3.5 Improved Freezing Phase Algorithm (IFPA) 30 2.4 Terahertz Generation and Detection 34 2.4.1 Photoconductive Antenna 34 2.4.2 Terahertz Time-Domain Spectroscopy (TDS) 35 2.5 Terahertz Chirp Dependence and Adaptive Control 35 Chapter 3 Simulation Result 37 3.1 Correctness of Phase Definition and Influence of Noise 37 3.2 Chirp Dependence on Frequency Resolution 40 3.3 Limitation and Operation 43 3.4 Difference between Freezing Phase Algorithms 45 Chapter 4 Experimental Result 49 4.1 Experimental Setup 49 4.1.1 Improved Freezing Phase Algorithm (IFPA) 49 4.1.2 Terahertz Chirp Dependence and Adaptive Control 55 4.1.3 Polarization stability measurement 56 4.2 Improved Freezing Phase Algorithm (IFPA) 57 4.2.1 Frequency Resolution Dependence of Improved Freezing Phase Algorithm (IFPA) 58 4.2.2 Comparison between Freezing Phase Algorithm (FPA) and Improved Freezing Algorithm (IFPA) 61 4.2.3 Chirp Elimination with Improved Freezing Algorithm (IFPA) 63 4.3 Terahertz Chirp Dependence 67 4.4 Terahertz Adaptive Control 69 4.4.1 Experiment analysis 69 4.4.2 Comparison with previous results 74 4.5 Sample Measurements 78 Chapter 5 Conclusion and Future Work 85 5.1 Conclusion 85 5.2 Future Work 86 5.2.1 Independent Chirp Dependence Measurement 86 5.2.2 LT-InGaAs Photoconductive Antenna Pumping Frequency Dependence 87 Appendix 88 A. Low-Temperature Grown GaAs 88 a. System Setup 89 b. System Characteristic 91 Reference 94

    [1] M. Tonouchi, "Cutting-edge terahertz technology," Nature photonics, vol. 1, pp. 97-105, 2007.
    [2] Y.-S. Lee, Principles of terahertz science and technology vol. 170: Springer Science & Business Media, 2009.
    [3] J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, "Quantum Cascade Laser," Science, vol. 264, pp. 553-556, 1994.
    [4] H. Hafez, X. Chai, A. Ibrahim, S. Mondal, D. Férachou, X. Ropagnol, et al., "Intense terahertz radiation and their applications," Journal of Optics, vol. 18, p. 093004, 2016.
    [5] V. Apostolopoulos and M. Barnes, "THz emitters based on the photo-Dember effect," Journal of Physics D: Applied Physics, vol. 47, p. 374002, 2014.
    [6] A. Roggenbuck, H. Schmitz, A. Deninger, I. C. Mayorga, J. Hemberger, R. Güsten, et al., "Coherent broadband continuous-wave terahertz spectroscopy on solid-state samples," New Journal of Physics, vol. 12, p. 043017, 2010.
    [7] T. Ishibashi, Y. Muramoto, T. Yoshimatsu, and H. Ito, "Unitraveling-carrier photodiodes for terahertz applications," IEEE Journal of Selected Topics in Quantum Electronics, vol. 20, pp. 79-88, 2014.
    [8] J.-W. Shi, F.-M. Kuo, H. J. Tsai, Y.-M. Hsin, N.-W. Chen, H.-C. Chiang, et al., "20-Gb/s on-off-keying wireless data transmission by using bias modulation of NBUTC-PD based w-band photonic transmitter-mixer," in Microwave Photonics (MWP), 2010 IEEE Topical Meeting on, 2010, pp. 46-49.
    [9] J. Heritage, A. Weiner, and R. Thurston, "Picosecond pulse shaping by spectral phase and amplitude manipulation," Optics Letters, vol. 10, pp. 609-611, 1985.
    [10] D. Yelin, D. Meshulach, and Y. Silberberg, "Adaptive femtosecond pulse compression," Optics letters, vol. 22, pp. 1793-1795, 1997.
    [11] D. Zeidler, S. Frey, K.-L. Kompa, and M. Motzkus, "Evolutionary algorithms and their application to optimal control studies," Physical Review A, vol. 64, p. 023420, 2001.
    [12] F. G. Omenetto, B. P. Luce, and A. J. Taylor, "Genetic algorithm pulse shaping for optimum femtosecond propagation in optical fibers," JOSA B, vol. 16, pp. 2005-2009, 1999.
    [13] A. Rundquist, A. Efimov, and D. H. Reitze, "Pulse shaping with the Gerchberg–Saxton algorithm," JOSA B, vol. 19, pp. 2468-2478, 2002.
    [14] M. C. Chen, J. Y. Huang, Q. Yang, C. Pan, and J.-I. Chyi, "Freezing phase scheme for fast adaptive control and its application to characterization of femtosecond coherent optical pulses reflected from semiconductor saturable absorber mirrors," JOSA B, vol. 22, pp. 1134-1142, 2005.
    [15] B. Sartorius, H. Roehle, H. Künzel, J. Böttcher, M. Schlak, D. Stanze, et al., "All-fiber terahertz time-domain spectrometer operating at 1.5 µm telecom wavelengths," Optics Express, vol. 16, pp. 9565-9570, 2008.
    [16] C.-K. Lee, Y.-Y. Lin, G.-R. Lin, C.-L. Wu, T.-H. Wu, C.-J. Chuang, et al., "Pre-Chirped pulse excitation enhanced terahertz radiation," IEEE Transactions on Terahertz Science and Technology, vol. 6, pp. 253-261, 2016.
    [17] C.-K. Lee, Y.-Y. Lin, S.-H. Lin, G.-R. Lin, and C.-L. Pan, "Chirped-pulse manipulated carrier dynamics in low-temperature molecular-beam-epitaxy grown GaAs," Applied Physics Letters, vol. 104, p. 172105, 2014.
    [18] H.-T. Wu, "Adaptive Control Enhanced Terahertz Radiation with LT-InGaAs Photoconductive Antennas," Master, National Tsing Hua University, Taiwan, 2016.
    [19] J.-L. Peng, H. Ahn, R.-H. Shu, H.-C. Chui, and J. Nicholson, "Highly stable, frequency-controlled mode-locked erbium fiber laser comb," Applied Physics B, vol. 86, pp. 49-53, 2007.
    [20] CMS/ITIR, OFC-ER1xx,2xx,3xx mode-locked fiber laser / Optical Frquency Comb User's Manual., 2009.
    [21] K. Tsujikawa, K. Tajima, and J. Zhou, "Intrinsic loss of optical fibers," Optical Fiber Technology, vol. 11, pp. 319-331, 2005.
    [22] B. Wybourne, "Analysis of the Solid‐State Spectra of Trivalent Neodymium and Erbium," The Journal of Chemical Physics, vol. 32, pp. 639-642, 1960.
    [23] P. Urquhart, "Review of rare earth doped fibre lasers and amplifiers," IEE Proceedings J (Optoelectronics), vol. 135, pp. 385-407, 1988.
    [24] E. Snitzer and R. Woodcock, "Yb3+–Er3+ GLASS LASER," Applied Physics Letters, vol. 6, pp. 45-46, 1965.
    [25] R. I. Laming, S. B. Poole, and E. Tarbox, "Pump excited-state absorption in erbium-doped fibers," Optics Letters, vol. 13, pp. 1084-1086, 1988.
    [26] R. Stolen, J. Botineau, and A. Ashkin, "Intensity discrimination of optical pulses with birefringent fibers," Optics Letters, vol. 7, pp. 512-514, 1982.
    [27] H. Haus, K. Tamura, L. Nelson, and E. Ippen, "Stretched-pulse additive pulse mode-locking in fiber ring lasers: theory and experiment," IEEE Journal of quantum electronics, vol. 31, pp. 591-598, 1995.
    [28] K. Tamura, H. Haus, and E. Ippen, "Self-starting additive pulse mode-locked erbium fibre ring laser," Electronics Letters, vol. 28, pp. 2226-2228, 1992.
    [29] M. Hofer, M. Ober, F. Haberl, and M. Fermann, "Characterization of ultrashort pulse formation in passively mode-locked fiber lasers," IEEE journal of quantum electronics, vol. 28, pp. 720-728, 1992.
    [30] J. Chen, J. W. Sickler, E. P. Ippen, and F. X. Kärtner, "High repetition rate, low jitter, low intensity noise, fundamentally mode-locked 167 fs soliton Er-fiber laser," Optics letters, vol. 32, pp. 1566-1568, 2007.
    [31] A. Weiner, Ultrafast optics: John Wiley & Sons, 2009.
    [32] T. Kurita, H. Yoshida, H. Furuse, T. Kawashima, and N. Miyanaga, "Dispersion compensation in an Yb-doped fiber oscillator for generating transform-limited, wing-free pulses," Optics express, vol. 19, pp. 25199-25205, 2011.
    [33] X. Zhou, D. Yoshitomi, Y. Kobayashi, and K. Torizuka, "Generation of 28-fs pulses from a mode-locked ytterbium fiber oscillator," Optics express, vol. 16, pp. 7055-7059, 2008.
    [34] R. H. Stolen, E. Ippen, and A. Tynes, "Raman oscillation in glass optical waveguide," Applied Physics Letters, vol. 20, pp. 62-64, 1972.
    [35] S. Planas, N. P. Mansur, C. B. Cruz, and H. Fragnito, "Spectral narrowing in the propagation of chirped pulses in single-mode fibers," Optics letters, vol. 18, pp. 699-701, 1993.
    [36] H.-W. Chen, J. Lim, S.-W. Huang, D. N. Schimpf, F. X. Kärtner, and G. Chang, "Optimization of femtosecond Yb-doped fiber amplifiers for high-quality pulse compression," Optics express, vol. 20, pp. 28672-28682, 2012.
    [37] K. Iizuka, Engineering optics, 3 ed. vol. 35: Springer Science & Business Media, 2009.
    [38] M. A. Roelens, S. Frisken, J. A. Bolger, D. Abakoumov, G. Baxter, S. Poole, et al., "Dispersion trimming in a reconfigurable wavelength selective switch," Journal of Lightwave Technology, vol. 26, pp. 73-78, 2008.
    [39] C. Pulikkaseril, L. A. Stewart, M. A. Roelens, G. W. Baxter, S. Poole, and S. Frisken, "Spectral modeling of channel band shapes in wavelength selective switches," Optics express, vol. 19, pp. 8458-8470, 2011.
    [40] G. Baxter, S. Frisken, D. Abakoumov, H. Zhou, I. Clarke, A. Bartos, et al., "Highly programmable wavelength selective switch based on liquid crystal on silicon switching elements," in Optical Fiber Communication Conference, 2006 and the 2006 National Fiber Optic Engineers Conference. OFC 2006, 2006, p. 3 pp.
    [41] "Spec sheet from POFC. Available from: http://www.meworks.net/userfile/45043/23_Fiber_Erbiumdopedfiber_EN_0.3.pdf."
    [42] E. Brown, J. Bjarnason, A. Fedor, and T. Korter, "On the strong and narrow absorption signature in lactose at 0.53 THz," Applied Physics Letters, vol. 90, p. 061908, 2007.
    [43] M. Dohi, W. Momose, K. Yamashita, T. Hakomori, S. Sato, S. Noguchi, et al., "Application of terahertz attenuated total reflection spectroscopy to detect changes in the physical properties of lactose during the lubrication process required for drug formulation," Chemical and Pharmaceutical Bulletin, vol. 65, pp. 186-193, 2017.
    [44] D. Grischkowsky, S. Keiding, M. Van Exter, and C. Fattinger, "Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors," JOSA B, vol. 7, pp. 2006-2015, 1990.

    QR CODE