研究生: |
容健華 Jung, Chien-Hua |
---|---|
論文名稱: |
應用於植入式深層腦部刺激微系統之高速低功耗射頻收發器 A High-Speed Low-Power RF Transceiver for Implantable Deep Brain Stimulation Microsystem |
指導教授: |
鄭桂忠
Tang, Kea-Tiong |
口試委員: |
陳筱青
Chen, Hsiao-Chin 陳新 Chen, Hsin 謝秉璇 Hsieh, Ping-Hsuan |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 73 |
中文關鍵詞: | 植入式系統 、深層腦部刺激(DBS) 、射頻收發器 、開關式調變(OOK modulation) 、Super-regenerative receiver (SRR) |
外文關鍵詞: | Implantable microsystem, Deep brain stimulation (DBS), RF transceiver, On-off keying (OOK) modulation, Super-regenerative receiver (SRR) |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文中使用了台積電0.18微米CMOS製程設計了一組體內發信器和體外接收器,以應用於作為神經訊號擷取與刺激研究平台的無線植入式深層腦部刺激(DBS)微系統。植入端置於老鼠體內,並使用1 V的供電電壓,體外端擬放置在老鼠的飼養箱之外,與發信器的最長距離約為20公分。
由於在植入端有嚴格的功耗和離散元件使用限制,本論文使用開關式調變(OOK modulation),選用ISM 2.4-GHz頻段(Industrial, scientific, and medical band)做為載波,並以10 Mb/s的速度收發植入式系統所擷取到的神經訊號。植入端使用Direct-modulation scheme的發信器以達到省電的目的。體外端使用了一個Super-regenerative receiver(SRR)進行接收,並且在新版的設計中加入了一個鎖相迴路(Phase-locked loop, PLL)的架構以達到Synchronized解調,以增進其效能。
發信器和接收器均有新舊兩版的設計,而新版的目的為解決在舊版中出現的問題並改良運作表現。在新版設計的TT-corner post-simulation中,發信器在消耗為1.132 mW的情況下達到–5.76 dBm的輸出功率,而接收器在功耗為2.105 mW時達到Sensitivity為–98 dBm,兩者的FOM分別為0.50 nJ/bit/mW和224.8,在相關文獻中為具有競爭力的結果。
本論文在第一章簡介研究背景;在第二章對系統面的考量和設計進行說明,並且回顧過去相關文獻;第三章和第四章分別介紹發信器和接收器的電路設計、呈現模擬與量測結果、進行討論,並且說明新版電路的設計;第五章則以結論和未來工作為全文作結。
In this thesis, a wireless data telemetry uplink for implantable biomedical microsystem studying the mechanisms of deep brain stimulation (DBS) in rat models is proposed. The transceiver operating in the 2.4-GHz Industrial, Scientific and Medical (ISM) band at the data rate up to 10 Mb/s is able to cover the non-line-of-sight (non-LOS) transmission distance for more than 20 cm. While the implanted on-off keying (OOK) transmitter is designed compact to achieve low-power operation, the external super-regenerative receiver features synchronous demodulation by incorporating a phase-locked loop architecture to improve the throughput and frequency selectivity. Designed with the standard 0.18-$\mu$m CMOS technology and with 1-V supply, the direct-modulation transmitter with the output power of –5.76 dBm and the super-regenerative receiver with the sensitivity of –98 dBm consume average power of 1.132 and 2.105 mW, respectively.
[1] E. R. Kandel, J. H. Schwartz, T. M. Jessell, S. A. Siegelbaum, and A. J. Hud-
speth, Eds., Principles of neural science. New York: McGraw-Hill Medical,
2013.
[2] R. S. Sanders and M. T. Lee, “Implantable pacemakers,” Proc. IEEE, vol. 84,
no. 3, pp. 480–486, Mar 1996.
[3] F. A. Spelman, “The past, present, and future of cochlear prostheses,” IEEE
Eng. Med. Biol. Mag., vol. 18, no. 3, pp. 27–33, May 1999.
[4] W. Liu, K. Vichienchom, M. Clements, S. C. DeMarco, C. Hughes,
E. McGucken, M. S. Humayun, E. D. Juan, J. D. Weiland, and R. Greenberg,
“A neuro-stimulus chip with telemetry unit for retinal prosthetic device,”
IEEE J. Solid-State Circuits, vol. 35, no. 10, pp. 1487–1497, Oct 2000.
[5] G. J. Suaning and N. H. Lovell, “CMOS neurostimulation ASIC with 100
channels, scaleable output, and bidirectional radio-frequency telemetry,”
IEEE Trans. Biomed. Eng, vol. 48, no. 2, pp. 248–260, Feb 2001.
[6] K. Chen, Y. K. Lo, and W. Liu, “A 37.6mm2 1024-channel high-compliance-
voltage SoC for epiretinal prostheses,” in IEEE Int. Solid-State Cir. Conf.
Dig. Tech. Papers (ISSCC), Feb 2013, pp. 294–295.
[7] M. L. Kringelbach, N. Jenkinson, S. L. Owen, and T. Z. Aziz, “Translational
principles of deep brain stimulation,” Nature Reviews Neuroscience, vol. 8,
no. 8, pp. 623–635, Aug 2007.
[8] K. D. Wise, A. M. Sodagar, Y. Yao, M. N. Gulari, G. E. Perlin, and K. Najafi,
“Microelectrodes, microelectronics, and implantable neural microsystems,”
Proc. IEEE, vol. 96, no. 7, pp. 1184–1202, July 2008.
[9] W. M. Chen, H. Chiueh, T. J. Chen, C. L. Ho, C. Jeng, M. D. Ker, C. Y. Lin,
Y. C. Huang, C. W. Chou, T. Y. Fan, M. S. Cheng, Y. L. Hsin, S. F. Liang,
Y. L. Wang, F. Z. Shaw, Y. H. Huang, C. H. Yang, and C. Y. Wu, “A fully
integrated 8-channel closed-loop neural-prosthetic CMOS SoC for real-time
epileptic seizure control,” IEEE J. Solid-State Circuits, vol. 49, no. 1, pp.
232–247, Jan 2014.
[10] H. G. Rhew, J. Jeong, J. A. Fredenburg, S. Dodani, P. G. Patil, and M. P.
Flynn, “A fully self-contained logarithmic closed-loop deep brain stimulation
SoC with wireless telemetry and wireless power management,” IEEE J. Solid-
State Circuits, vol. 49, no. 10, pp. 2213–2227, Oct 2014.
[11] H. W. Chiu, M. L. Lin, C. W. Lin, I. H. Ho, W. T. Lin, P. H. Fang, Y. C.
Li, Y. R. Wen, and S. S. Lu, “Pain control on demand based on pulsed
radio-frequency stimulation of the dorsal root ganglion using a batteryless
implantable CMOS SoC,” IEEE Trans. Biomed. Circuits Syst., vol. 4, no. 6,
pp. 350–359, Dec 2010.
[12] J. L. Collinger, B. Wodlinger, J. E. Downey, W. Wang, E. C. Tyler-Kabara,
D. J. Weber, A. J. C. McMorland, M. Velliste, M. L. Boninger, and A. B.
Schwartz, “High-performance neuroprosthetic control by an individual with
tetraplegia,” Lancet, vol. 381, pp. 557–567, Feb 2013.
[13] Y. T. Li, J. J. J. Chen, L. T. Chen, W. S. Lin, and C. H. Chu, “Wireless
implantable biomicrosystem for bladder pressure monitoring and nerve stim-
ulation,” in IEEE Biomed. Circuits Syst. Conf. (BioCAS), Nov 2012, pp.
296–299.
[14] S. B. Lee, H. M. Lee, M. Kiani, U. M. Jow, and M. Ghovanloo, “An induc-
tively powered scalable 32-channel wireless neural recording system-on-a-chipfor neuroscience applications,” IEEE Trans. Biomed. Circuits Syst., vol. 4,
no. 6, pp. 360–371, Dec 2010.
[15] Y. P. Lin, C. Y. Yeh, P. Y. Huang, Z. Y. Wang, H. H. Cheng, Y. T. Li,
C. F. Chuang, P. C. Huang, K. T. Tang, H. P. Ma, Y. C. Chang, S. R.
Yeh, and H. Chen, “A battery-less, implantable neuro-electronic interface for
studying the mechanisms of deep brain stimulation in rat models,” IEEE
Trans. Biomed. Circuits Syst., vol. 10, no. 1, pp. 98–112, Feb 2016.
[16] M. Loy,
rangeR. Karingattil,
deviceregulatoryand L. Williams. ISM-band and short
complianceoverview.[Online].Available:
http://www.ti.com/lit/an/swra048/swra048.pdf
[17] Medical Device Radiocommunications Service (MedRadio). [Online]. Avail-
able:https://www.fcc.gov/general/medical-device-radiocommunications-
service-medradio
[18] J. Jung, S. Zhu, P. Liu, Y. J. E. Chen, and D. Heo, “22-pj/bit energy-efficient
2.4-GHz implantable OOK transmitter for wireless biotelemetry systems: in
vitro experiments using rat skin-mimic,” IEEE Trans. Microw. Theory Tech.,
vol. 58, no. 12, pp. 4102–4111, Dec 2010.
[19] Y. P. Lin and K. T. Tang, “An inductive power and data telemetry subsystem
with fast transient low dropout regulator for biomedical implants,” IEEE
Trans. Biomed. Circuits Syst., vol. 10, no. 2, pp. 435–444, April 2016.
[20] J. Tan, W. S. Liew, C. H. Heng, and Y. Lian, “A 2.4 GHz ULP reconfigurable
asymmetric transceiver for single-chip wireless neural recording IC,” IEEE
Trans. Biomed. Circuits Syst., vol. 8, no. 4, pp. 497–509, Aug 2014.
[21] M. Vidojkovic, X. Huang, P. Harpe, S. Rampu, C. Zhou, L. Huang, J. van de
Molengraft, K. Imamura, B. Busze, F. Bouwens, M. Konijnenburg, J. San-tana, A. Breeschoten, J. Huisken, K. Philips, G. Dolmans, and H. de Groot,
“A 2.4 GHz ULP OOK single-chip transceiver for healthcare applications,”
IEEE Trans. Biomed. Circuits Syst., vol. 5, no. 6, pp. 523–534, Dec 2011.
[22] R. R. Harrison, P. T. Watkins, R. J. Kier, R. O. Lovejoy, D. J. Black,
B. Greger, and F. Solzbacher, “A low-power integrated circuit for a wireless
100-electrode neural recording system,” IEEE J. Solid-State Circuits, vol. 42,
no. 1, pp. 123–133, Jan 2007.
[23] H. C. Chen, M. Y. Yen, Q. X. Wu, K. J. Chang, and L. M. Wang, “Batteryless
transceiver prototype for medical implant in 0.18-µm CMOS technology,”
IEEE Trans. Microw. Theory Tech., vol. 62, no. 1, pp. 137–147, Jan 2014.
[24] B. Razavi, RF Microelectronics, 2nd ed.Upper Saddle River, NJ, USA:
Prentice Hall Press, 2011.
[25] ——, “Design considerations for direct-conversion receivers,” IEEE Trans.
Circuits Syst. II, Analog Digit. Signal Process., vol. 44, no. 6, pp. 428–435,
Jun 1997.
[26] E. H. Armstrong, “Some recent developments of regenerative circuits,” Proc.
Inst. Radio Eng., vol. 10, no. 4, pp. 244–260, Aug 1922.
[27] F. X. Moncunill-Geniz, P. Pala-Schonwalder, and O. Mas-Casals, “A generic
approach to the theory of superregenerative reception,” IEEE Trans. Circuits
Syst. I, Reg. Papers, vol. 52, no. 1, pp. 54–70, Jan 2005.
[28] J. L. Bohorquez, A. P. Chandrakasan, and J. L. Dawson, “Frequency-domain
analysis of super-regenerative amplifiers,” IEEE Trans. Microw. Theory Tech.,
vol. 57, no. 12, pp. 2882–2894, Dec 2009.
[29] F. X. Moncunill-Geniz, P. Pala-Schonwalder, C. Dehollain, N. Joehl, and
M. Declercq, “An 11-Mb/s 2.1-mW synchronous superregenerative receiver
at 2.4 GHz,” IEEE Trans. Microw. Theory Tech., vol. 55, no. 6, pp. 1355–
1362, June 2007.
[30] J. Y. Chen, M. P. Flynn, and J. P. Hayes, “A fully integrated auto-calibrated
super-regenerative receiver in 0.13-µm cmos,” IEEE J. Solid-State Circuits,
vol. 42, no. 9, pp. 1976–1985, Sept 2007.
[31] C. Ma, C. Hu, J. Cheng, L. Xia, and P. Y. Chiang, “A near-threshold, 0.16
nJ/b OOK-transmitter with 0.18 nJ/b noise-cancelling super-regenerative re-
ceiver for the medical implant communications service,” IEEE Trans. Biomed.
Circuits Syst., vol. 7, no. 6, pp. 841–850, Dec 2013.
[32] V. D. Rezaei, S. J. Shellhammer, M. Elkholy, and K. Entesari, “A fully
integrated 320 pJ/b OOK super-regenerative receiver with –87 dBm sensitiv-
ity and self-calibration,” in Proc. IEEE Radio Frequency Integrated Circuits
Symp. (RFIC), May 2016, pp. 222–225.
[33] C. P. Yue and S. S. Wong, “On-chip spiral inductors with patterned ground
shields for Si-based RF ICs,” IEEE J. Solid-State Circuits, vol. 33, no. 5, pp.
743–752, May 1998.
[34] S.-J. Yun, S.-B. Shin, H.-C. Choi, and S.-G. Lee, “A 1mW current-reuse
CMOS differential LC-VCO with low phase noise,” in IEEE Int. Solid-State
Cir. Conf. Dig. Tech. Papers (ISSCC), Feb 2005, pp. 540–616 Vol. 1.
[35] J. Ryu, M. Kim, J. Lee, B. S. Kim, M. Q. Lee, and S. Nam, “Low power ook
transmitter for wireless capsule endoscope,” in IEEE MTT-S Int. Microw.
Symp. Dig., June 2007, pp. 855–858.
[36] M. R. Basar, F. Malek, K. M. Juni, M. I. M. Saleh, and M. S. Idris, “A low
power 2.4-GHz current reuse VCO for low power miniaturized transceiver
system,” in IEEE Int. Conf. on Electronics Design, Systems and Applications
(ICEDSA), Nov 2012, pp. 230–233.
[37] S. A. Mirbozorgi, H. Bahrami, M. Sawan, L. A. Rusch, and B. Gosselin,
“A single-chip full-duplex high speed transceiver for multi-site stimulating
and recording neural implants,” IEEE Trans. Biomed. Circuits Syst., vol. 10,
no. 3, pp. 643–653, June 2016.
[38] D. K. Shaeffer and T. H. Lee, “A 1.5-V, 1.5-GHz CMOS low noise amplifier,”
IEEE J. Solid-State Circuits, vol. 32, no. 5, pp. 745–759, May 1997.
[39] R. Sarpeshkar, Ultra low power bioelectronics: fundamentals, biomedical ap-
plications, and bio-inspired systems.Cambridge: Cambridge Univ. Press,
2010.
[40] A. Vouilloz, C. Dehollain, and M. Declerq, “Modelisation and simulation of
integrated super-regenerative receivers,” in Proc. IEEE Int. Conf. Electronics,
Circuits and Systems (ICECS), vol. 1, 1999, pp. 521–524 vol.1.
[41] M. Bucher, C. Lallement, and C. C. Enz, “An efficient parameter extraction
methodology for the EKV MOST model,” in Proc. IEEE Int. Conf. Micro-
electronic Test Structures (ICMTS), Mar 1996, pp. 145–150.
[42] B. Razavi, Design of Monolithic Phase-Locked Loops and Clock Recovery
Circuits —A Tutorial.Wiley-IEEE Press, 1996, pp. 1–39.
[43] D. Fischette. Practical phase-locked loop design. [Online]. Available:
http://ece.wpi.edu/analog/resources/PLLTutorialISSCC2004.pdf
[44] 劉深淵 • 楊清淵, 鎖相迴路. 臺灣臺中市: 滄海書局, 2006.
[45] J. L. Bohorquez, A. P. Chandrakasan, and J. L. Dawson, “A 350 µW CMOS
MSK transmitter and 400 µW OOK super-regenerative receiver for medical
implant communications,” IEEE J. Solid-State Circuits, vol. 44, no. 4, pp.
1248–1259, April 2009.