研究生: |
林子閔 Lin, Zi-Min |
---|---|
論文名稱: |
函數體上橢圓曲線之有理扭點的計算 Computation on Rational Torsions of Elliptic Curves over Function Fields |
指導教授: |
魏福村
Wei, Fu-Tsun |
口試委員: |
張介玉
Chang, Chieh-Yu 洪斌哲 Hung, Pin-Chi |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 數學系 Department of Mathematics |
論文出版年: | 2022 |
畢業學年度: | 110 |
語文別: | 英文 |
論文頁數: | 29 |
中文關鍵詞: | 數論 、代數幾何 、橢圓曲線 、函數體 、複分析 |
外文關鍵詞: | Number theory, Algebraic geometry, Elliptic curve, Function field, Complex analysis |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本篇論文中,首先討論了函數體上橢圓曲線有理扭點的整數性。之後加入了類似於Mazur-Ogg的上界,我們整合出計算在函數體上橢圓曲線有理扭點的演算法。
In this thesis, we first discuss about the integrality of the rational torsion points of elliptic curves over function fields. Together with an analogue of the Mazur-Ogg's bound, we derive an algorithm to compute the rational torsion points of elliptic curves over function fields.
[1]B.Mazur.Modular curves and the Eisenstein idealInst. Hautes Etudes Sci. Publ. Math. 47, 33–186(1978/1977)
[2] B. Mazur.Rational isogenies of prime degree (with an appendix by D. Goldfeld)Invent. Math. 44(2),129–162 (1978)
[3] Kenneth, H. Rosen, Ph.D.Elliptic Curve Number Theory and Cryptography Second Edition, 2008.
[4] Joseph H. Silverman John T. TateRational Points on Elliptic Curves Second Edition
[5] Joseph H. SilvermanThe Arithmetic of Elliptic Curves Second Edition
[6] David A. Cox, Walter R. ParryTorsion in Elliptic Curve overk(t), Compositio Mathematica Vol. 41Fasc. 3 (1980) 337-354
[7] Andreas Schweizer.On thepe-Torsion of Elliptic Curves and Elliptic Surfaces in Characteristicp,Transactions of the American Mathematical Society. Vol. 357 No. 3 1047–1059
[8] J. F. VolochExplicitp-Descent for Elliptic Curves in Characteristicp, Compositio Mathematica tome74 No. 3 (1990) 247-258[9] [9] H. HasseBeweis des Analogons der Riemannschen Vermutung für die, Artinschen und F.K.Schmidtschen Kongruenzzetafunktionen in gewissen elliptischen Fallen. Nachr. Ges. Wiss. Göttingen,Math.-Phys. K. 253–262 (1933)
[10] A. WeilSur les courbes algébriques et les variétés qui s’en déduisent.Actualités Sci. Ind., no. 1041 =Publ. Inst. Math. Univ. Strasbourg 7(1945). Hermann et Cie., Paris, 1948
[11] https://math.mit.edu/classes/18.783/2015/LectureNotes5
[12] https://math.mit.edu/classes/18.783/2015/LectureNotes6