簡易檢索 / 詳目顯示

研究生: 翁睿宏
Weng, Jui Hung
論文名稱: FHA結構域蛋白質之結構及功能研究
Structural and Functional Study of FHA Domain Proteins
指導教授: 蔡明道
Tsai, Ming Daw
余靖
Yu, Chin
口試委員: 何孟樵
Ho, Meng-Chiao
陳俊榮
Chen, Chun Jung
鄭有舜
Jeng, U Ser
學位類別: 博士
Doctor
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2015
畢業學年度: 104
語文別: 中文
論文頁數: 96
中文關鍵詞: FHA 結構域
外文關鍵詞: FHA domian, TIFA, Rad53
相關次數: 點閱:60下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • FHA結構域是唯一具專一性識別磷酸蘇氨酸的結構域。許多參與調控信號複合體和連接信號傳導途徑的多結構域蛋白質包含了FHA結構域。FHA結構域具有多種功能並且在廣泛的生化反應中扮演重要的角色。本篇論文主要著重在兩個FHA結構域蛋白:Rad53和TIFA 。(一) Rad53是人類細胞週期檢查點激酶 Chk2在芽殖酵母裡的同源蛋白。Rad53 參與了第一間期,第二間期和合成期的細胞週期檢查點。 Rad53的自磷酸化調控Rad53的激酶活性,而二聚化調節了Rad53的自磷酸化。利用X射線晶體學,我們解析了Rad532-466 (包含了SCD1、FHA1和激酶結構域:Rad53SFK)的結構並發現了打開和關閉兩種激酶結構域的形式。這兩種形式的不同在於激酶結構域N瓣相對於Cα螺旋的移動和旋轉。在關閉的形式中,Cα螺旋比較靠近3β鏈,在Cα螺旋上的穀胺酸244和β3鏈上的離胺酸227形成鹽橋。而這個離胺酸227對於和三磷酸腺苷的結合與穩定相當重要。此外X射線小角散射實驗發現了Rad53SFK在溶液中有多種結構。磷酸化Rad53SFK的FHA結構域和激酶結構域則相當靠近以及穩定。此研究結果對於Rad53的自磷酸化機制以及磷酸結合所誘導的二聚化調節提供了重要的見解。並顯示了二聚化驅動含濃度誘導機制的不同。 (二) TIFA參與細胞內核因子活化B細胞κ輕鏈增強子(NF-κB)的活化。 當細胞受到刺激時,TIFA的蘇氨酸9會被磷酸化,而磷酸化的TIFA會聚合。聚合的TIFA會促進腫瘤壞死因子受體相關因子6(TRAF6)聚合和泛素化(ubiquitination),進而激活NF-κB。本實驗所解析的TIFA FHA結構域結構和TIFA 與 磷酸化蘇氨酸9的TIFA N端胜肽1-15 ( pThr9 - TIFA1-15 )複合物結構,展示了TIFA 獨特的 FHA結構域結構和新的FHA結構域結合模式,以及TIFA二聚體不同的二聚體界面。由所解析的結構可推論,TIFA磷酸化蘇氨酸和FHA結構域的交互作用是發生於不同的二聚體之間,不是發生於二聚體內。此研究讓我們了解TIFA二聚體結構以及聚合發生的分子機制。


    Forkhead-associated (FHA) domain is the only signaling domain that recognizes phosphothreonine (pThr) specifically. The FHA domain is often part of the multi-domain domain proteins that facilitates the assembling of signaling complex and connecting of the signaling pathway. It has diverse functions in a protein and plays major roles in jodyad53 and TIFA.
    (i) Rad53: The budding yeast homolog of Checkpoint kinase 2. Rad53 controls the S-phase checkpoint as well as the G1 and G2 DNA damage checkpoints. The kinase activity of Rad53 is dependent on its autophosphorylation, which is supported by dimerization. The open and closed intermediate conformations of Rad53 kinase domain were revealed through X-ray crystallography using Rad532-466 (consist of SCD1, FHA1 and Kinase domain: Rad53SFK). The open and closed forms of Rad53SFK differ in the relative rotation and movement of αC helix in the N-lobe. In the open form, the αC helix is further away from the β3 strand. In the closed form, the αC helix is closer to the β3 strand and the E244 on the αC helix forms the conserved salt bridge with K227 on the β3 strand, which has been shown to be crucial for the stable binding with ATP. In addition, the SAXS analyses of Rad53SFK and phospho-Rad53SFK showed that the Rad53SFK has various conformations in solution while the FHA domains and kinase domain of phospho-Rad53SFK are in close proximity in solution. The results provided important insights into how the autophosphorylation mechanism of Rad53 is regulated by phospho-priming induced dimerization, and why proximity driven by dimerization is distinct from that induced by concentration.
    (ii) TIFA: TRAF-interacting protein with a FHA domain. TIFA is involved in the activation of NF-κB. Upon stimulation, TIFA is phosphorylated at Thr9, which triggers TIFA oligomerization. The oligomeric form of TIFA could promote TRAF6 oligomerization and ubiquitination, which activates NF-κB. The structural information of TIFA (tTIFA1-150) and its complex with TIFA N-terminal phosphorylated Thr9 peptide 1-15 (pThr9-TIFA1-15) showed the unique structure and the novel binding mode of TIFA FHA domain. The intrinsic TIFA dimer has a distinct dimer interface, and its structural features revealed that pThr9-FHA domain binding is between inter-dimers rather than intra-dimers. The structural information helped us gained insight into the TIFA dimer, and uncovered the molecular mechanism for the functionally important oligomerization of TIFA.

    Chapter 1: General Introduction 1 1-1: The FHA domain 1 1-1-1: The function of FHA domain. 1 1-1-2: Structure of FHA domains. 2 1-1-3: The interaction between FHA domain and its ligand. 5 1-2: NF-kB signaling 8 1-3: Cell cycle checkpoint kinases 12 1-4: TIFA 15 1-5: Rad53 16 1-6: TIFAB 18 Chapter 2: Structural study of Rad53 19 2-1: Introduction 19 2-2: Materials and Methods 21 2-2-1: Purification of Rad53. 21 2-2-2: Preparation of phosphorylated Rad53SFK. 21 2-2-3: Crystallization and structural determination. 22 2-2-4: SAXS measurements, analyses, and modeling. 23 2-3: Results 25 2-3-1: Crystallization and data collection. 25 2-3-2: The crystal structure of unprimed Rad53SFK captures both the open and closed conformations of the kinase domain. 26 2-3-3: Phospho-priming not only induces dimerization but also regulates the conformation of the dimer. 29 Chapter 3: Structural and functional study of TIFA 35 3-1: Introduction 35 3-2: Materials and methods 37 3-2-1: Cloning, protein expression and purification. 37 3-2-2: Crystallization and data collection. 38 3-2-3: Structure determination and refinement. 39 3-2-4: Isothermal titration calorimetry (ITC) analysis. 40 3-2-5: Size exclusion chromatography-multi-angle light scattering (SEC-MALS). 40 3-2-6: Analytical ultracentrifugation (AUC). 41 3-2-7: Biolayer Interferometry by the Octet Systems. 41 3-2-8: Cell culture and co-immunoprecipitation analysis. 41 3-2-9: SAXS measurements, analyses, and modeling. 42 3-3: Results 44 3-3-1: Screening for the suitable construct for expression and purification. 44 3-3-2: Crystallization of full length TIFA and soaking. 48 3-3-3: Crystallization of tTIFA1-150 and tTIFA1-150-pThr9-TIFA1-15. 52 3-3-4: Data collection strategies and structure determination with direct phase selection method. 54 3-3-5: Structure of TIFA, tTIFA1-150 and tTIFA1-150-pThr9-TIFA1-15. 62 3-3-6: Structure of TIFA complex with pThr9-TIFA1-15 indicates novel mode of ligand binding. 64 3-3-7: The FHA-ligand interaction of TIFA. 66 3-3-8: The dimer interface of TIFA is extensive and separated from the pThr binding site. 69 3-3-9: The dimer of TIFA FHA is unique among FHA domains. 74 3-3-10: Structural basis for the important function of TIFA oligomerization. 75 3-3-11: Solution structure of TIFA and tTIFA. 77 3-3-12: Interaction between TIFA and TRAF6. 79 Chapter 4: Structural and functional study of TIFAB 84 4-1: Introduction 84 4-2: Materials and methods 85 4-2-1: Cloning of TIFAB. 85 4-2-2: Expressions and purifications of TIFAB. 86 4-3: Results 87 Reaference 90

    1. Hofmann, K. and P. Bucher, The FHA domain: a putative nuclear signalling domain found in protein kinases and transcription factors. Trends Biochem Sci, 1995. 20(9): p. 347-9.
    2. Liao, H., I.J. Byeon, and M.D. Tsai, Structure and function of a new phosphopeptide-binding domain containing the FHA2 of Rad53. J Mol Biol, 1999. 294(4): p. 1041-9.
    3. Durocher, D., et al., The molecular basis of FHA domain:phosphopeptide binding specificity and implications for phospho-dependent signaling mechanisms. Mol Cell, 2000. 6(5): p. 1169-82.
    4. Durocher, D., et al., The FHA domain is a modular phosphopeptide recognition motif. Mol Cell, 1999. 4(3): p. 387-94.
    5. Liao, H., et al., Structure of the FHA1 domain of yeast Rad53 and identification of binding sites for both FHA1 and its target protein Rad9. J Mol Biol, 2000. 304(5): p. 941-51.
    6. Mahajan, A., et al., Structure and Function of the Phosphothreonine-Specific FHA Domain. Science Signaling, 2008. 1(51).
    7. Durocher, D. and S.P. Jackson, The FHA domain. FEBS Lett, 2002. 513(1): p. 58-66.
    8. Coquelle, N. and J.N. Glover, FHA domain pThr binding specificity: it's all about me. Structure, 2010. 18(12): p. 1549-50.
    9. Raasch, K., et al., Interaction of 2-oxoglutarate dehydrogenase OdhA with its inhibitor OdhI in Corynebacterium glutamicum: Mutants and a model. J Biotechnol, 2014. 191: p. 99-105.
    10. Luo, S., et al., Dimerization mediated by a divergent FHA domain is essential for the DNA damage and spindle functions of fission yeast Mdb1. J Biol Chem, 2015: p. e-published.
    11. Hammet, A., et al., FHA domains as phospho-threonine binding modules in cell signaling. IUBMB Life, 2003. 55(1): p. 23-7.
    12. Barthe, P., et al., Dynamic and structural characterization of a bacterial FHA protein reveals a new autoinhibition mechanism. Structure, 2009. 17(4): p. 568-78.
    13. Liu, J., et al., Structural mechanism of the phosphorylation-dependent dimerization of the MDC1 forkhead-associated domain. Nucleic Acids Res, 2012. 40(9): p. 3898-912.
    14. Jungmichel, S., et al., The molecular basis of ATM-dependent dimerization of the Mdc1 DNA damage checkpoint mediator. Nucleic Acids Res, 2012. 40(9): p. 3913-28.
    15. Wu, H.H., et al., Structural delineation of MDC1-FHA domain binding with CHK2-pThr68. Biochemistry, 2012. 51(2): p. 575-7.
    16. Cai, Z., N.H. Chehab, and N.P. Pavletich, Structure and activation mechanism of the CHK2 DNA damage checkpoint kinase. Mol Cell, 2009. 35(6): p. 818-29.
    17. Xu, Q., et al., Structural insights into the recognition of phosphopeptide by the FHA domain of kanadaptin. PLoS One, 2014. 9(9): p. e107309.
    18. Pennell, S., et al., Structural and functional analysis of phosphothreonine-dependent FHA domain interactions. Structure, 2010. 18(12): p. 1587-95.
    19. Weng, J.H., et al., Uncovering the Mechanism of Forkhead-Associated Domain-Mediated TIFA Oligomerization That Plays a Central Role in Immune Responses. Biochemistry, 2015. 54(40): p. 6219-29.
    20. Alderwick, L.J., et al., Molecular structure of EmbR, a response element of Ser/Thr kinase signaling in Mycobacterium tuberculosis. Proc Natl Acad Sci U S A, 2006. 103(8): p. 2558-63.
    21. Williams, R.S., et al., Nbs1 flexibly tethers Ctp1 and Mre11-Rad50 to coordinate DNA double-strand break processing and repair. Cell, 2009. 139(1): p. 87-99.
    22. Ali, A.A., et al., Specific recognition of a multiply phosphorylated motif in the DNA repair scaffold XRCC1 by the FHA domain of human PNK. Nucleic Acids Res, 2009. 37(5): p. 1701-12.
    23. Huen, M.S., et al., RNF8 transduces the DNA-damage signal via histone ubiquitylation and checkpoint protein assembly. Cell, 2007. 131(5): p. 901-14.
    24. Wang, P., et al., II. Structure and specificity of the interaction between the FHA2 domain of Rad53 and phosphotyrosyl peptides. J Mol Biol, 2000. 302(4): p. 927-40.
    25. Lin, C.C., et al., Pellino proteins contain a cryptic FHA domain that mediates interaction with phosphorylated IRAK1. Structure, 2008. 16(12): p. 1806-16.
    26. Lee, H., et al., Diphosphothreonine-specific interaction between an SQ/TQ cluster and an FHA domain in the Rad53-Dun1 kinase cascade. Mol Cell, 2008. 30(6): p. 767-78.
    27. Li, H., et al., Structure of Human Ki67 FHA Domain and its Binding to a Phosphoprotein Fragment from hNIFK Reveal Unique Recognition Sites and New Views to the Structural Basis of FHA Domain Functions. Journal of Molecular Biology, 2004. 335(1): p. 371-381.
    28. Huxford, T. and G. Ghosh, A structural guide to proteins of the NF-kappaB signaling module. Cold Spring Harb Perspect Biol, 2009. 1(3): p. a000075.
    29. Hoesel, B. and J.A. Schmid, The complexity of NF-kappaB signaling in inflammation and cancer. Mol Cancer, 2013. 12: p. 86.
    30. Hayden, M.S. and S. Ghosh, Shared principles in NF-kappaB signaling. Cell, 2008. 132(3): p. 344-62.
    31. Vallabhapurapu, S. and M. Karin, Regulation and function of NF-kappaB transcription factors in the immune system. Annu Rev Immunol, 2009. 27: p. 693-733.
    32. Sun, S.C., Non-canonical NF-kappaB signaling pathway. Cell Res, 2011. 21(1): p. 71-85.
    33. Skaug, B., X. Jiang, and Z.J. Chen, The role of ubiquitin in NF-kappaB regulatory pathways. Annu Rev Biochem, 2009. 78: p. 769-96.
    34. Schmid, J.A. and A. Birbach, IkappaB kinase beta (IKKbeta/IKK2/IKBKB)--a key molecule in signaling to the transcription factor NF-kappaB. Cytokine Growth Factor Rev, 2008. 19(2): p. 157-65.
    35. Xia, Z.P., et al., Direct activation of protein kinases by unanchored polyubiquitin chains. Nature, 2009. 461(7260): p. 114-9.
    36. Bertrand, M.J., et al., cIAP1/2 are direct E3 ligases conjugating diverse types of ubiquitin chains to receptor interacting proteins kinases 1 to 4 (RIP1-4). PLoS One, 2011. 6(9): p. e22356.
    37. Gardam, S., et al., TRAF2 and TRAF3 signal adapters act cooperatively to control the maturation and survival signals delivered to B cells by the BAFF receptor. Immunity, 2008. 28(3): p. 391-401.
    38. Demchenko, Y.N., et al., Classical and/or alternative NF-kappaB pathway activation in multiple myeloma. Blood, 2010. 115(17): p. 3541-52.
    39. Wang, G., et al., K63-linked ubiquitination in kinase activation and cancer. Front Oncol, 2012. 2: p. 5.
    40. Grivennikov, S.I. and M. Karin, Dangerous liaisons: STAT3 and NF-kappaB collaboration and crosstalk in cancer. Cytokine Growth Factor Rev, 2010. 21(1): p. 11-9.
    41. Perkins, N.D., The diverse and complex roles of NF-kappaB subunits in cancer. Nat Rev Cancer, 2012. 12(2): p. 121-32.
    42. Ma, X., et al., MicroRNAs in NF-kappaB signaling. J Mol Cell Biol, 2011. 3(3): p. 159-66.
    43. Iliopoulos, D., H.A. Hirsch, and K. Struhl, An epigenetic switch involving NF-kappaB, Lin28, Let-7 MicroRNA, and IL6 links inflammation to cell transformation. Cell, 2009. 139(4): p. 693-706.
    44. Fabre, C., et al., Dual inhibition of canonical and noncanonical NF-kappaB pathways demonstrates significant antitumor activities in multiple myeloma. Clin Cancer Res, 2012. 18(17): p. 4669-81.
    45. Fuchs, O., Transcription factor NF-kappaB inhibitors as single therapeutic agents or in combination with classical chemotherapeutic agents for the treatment of hematologic malignancies. Curr Mol Pharmacol, 2010. 3(3): p. 98-122.
    46. Boundless. “Regulation of the Cell Cycle at Internal Checkpoints.” Boundless Biology. Boundless, 21 Jul. 2015. Retrieved 26 Oct. 2015 from https://www.boundless.com/biology/textbooks/boundless-biology-textbook/cell-reproduction-10/control-of-the-cell-cycle-89/regulation-of-the-cell-cycle-at-internal-checkpoints-398-11625/.
    47. Nyberg, K.A., et al., Toward maintaining the genome: DNA damage and replication checkpoints. Annu Rev Genet, 2002. 36: p. 617-56.
    48. Matsuoka, S., et al., ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science, 2007. 316(5828): p. 1160-6.
    49. Stokes, M.P., et al., Profiling of UV-induced ATM/ATR signaling pathways. Proc Natl Acad Sci U S A, 2007. 104(50): p. 19855-60.
    50. Liao, H., et al., Structure of the FHA1 Domain of Yeast Rad53 and Identification of Binding Sites for both FHA1 and its Target Protein Rad9. Journal of Molecular Biology, 2000. 304(5): p. 941-951.
    51. Traven, A. and J. Heierhorst, SQ/TQ cluster domains: concentrated ATM/ATR kinase phosphorylation site regions in DNA-damage-response proteins. Bioessays, 2005. 27(4): p. 397-407.
    52. Matsuoka, S., M. Huang, and S.J. Elledge, Linkage of ATM to cell cycle regulation by the Chk2 protein kinase. Science, 1998. 282(5395): p. 1893-7.
    53. Krupa, A., G. Preethi, and N. Srinivasan, Structural modes of stabilization of permissive phosphorylation sites in protein kinases: distinct strategies in Ser/Thr and Tyr kinases. J Mol Biol, 2004. 339(5): p. 1025-39.
    54. Nolen, B., S. Taylor, and G. Ghosh, Regulation of protein kinases; controlling activity through activation segment conformation. Mol Cell, 2004. 15(5): p. 661-75.
    55. Oliver, A.W., S. Knapp, and L.H. Pearl, Activation segment exchange: a common mechanism of kinase autophosphorylation? Trends Biochem Sci, 2007. 32(8): p. 351-6.
    56. Pike, A.C., et al., Activation segment dimerization: a mechanism for kinase autophosphorylation of non-consensus sites. EMBO J, 2008. 27(4): p. 704-14.
    57. Ferrao, R., et al., IRAK4 dimerization and trans-autophosphorylation are induced by Myddosome assembly. Mol Cell, 2014. 55(6): p. 891-903.
    58. Kanamori, M., et al., T2BP, a novel TRAF2 binding protein, can activate NF-kappaB and AP-1 without TNF stimulation. Biochem Biophys Res Commun, 2002. 290(3): p. 1108-13.
    59. Takatsuna, H., et al., Identification of TIFA as an adapter protein that links tumor necrosis factor receptor-associated factor 6 (TRAF6) to interleukin-1 (IL-1) receptor-associated kinase-1 (IRAK-1) in IL-1 receptor signaling. J Biol Chem, 2003. 278(14): p. 12144-50.
    60. Ding, N., et al., TIFA upregulation after hypoxia-reoxygenation is TLR4- and MyD88-dependent and associated with HMGB1 upregulation and release. Free Radic Biol Med, 2013. 63: p. 361-7.
    61. Gaudet, R.G., et al., Cytosolic detection of the bacterial metabolite HBP activates TIFA-dependent innate immunity. Science, 2015. 348(6240): p. 1251-5.
    62. Huang, C.C., et al., Intermolecular binding between TIFA-FHA and TIFA-pT mediates tumor necrosis factor alpha stimulation and NF-kappaB activation. Mol Cell Biol, 2012. 32(14): p. 2664-73.
    63. Ea, C.K., et al., TIFA activates IkappaB kinase (IKK) by promoting oligomerization and ubiquitination of TRAF6. Proc Natl Acad Sci U S A, 2004. 101(43): p. 15318-23.
    64. Pike, B.L., et al., Diverse but Overlapping Functions of the Two Forkhead-associated (FHA) Domains in Rad53 Checkpoint Kinase Activation. J. Biol. Chem., 2003. 278(33): p. 30421-30424.
    65. Matsumura, T., et al., TIFAB inhibits TIFA, TRAF-interacting protein with a forkhead-associated domain. Biochem Biophys Res Commun, 2004. 317(1): p. 230-4.
    66. Varney, M.E., et al., Loss of Tifab, a del(5q) MDS gene, alters hematopoiesis through derepression of Toll-like receptor-TRAF6 signaling. J Exp Med, 2015. 212(11): p. 1967-85.
    67. Matsumura, T., et al., TRAF-interacting protein with a forkhead-associated domain B (TIFAB) is a negative regulator of the TRAF6-induced cellular functions. J Biochem, 2009. 146(3): p. 375-81.
    68. Oliver, A.W., et al., Trans-activation of the DNA-damage signalling protein kinase Chk2 by T-loop exchange. EMBO J, 2006. 25(13): p. 3179-90.
    69. Minor, Z.O.a.W., Processing of X-ray Diffraction Data Collected in Oscillation Mode. Methods in Enzymology, 1997. 276: p. p.307-326.
    70. Adams, P.D., et al., PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr, 2010. 66(Pt 2): p. 213-21.
    71. Langer, G., et al., Automated macromolecular model building for X-ray crystallography using ARP/wARP version 7. Nat Protoc, 2008. 3(7): p. 1171-9.
    72. Murshudov, G.N., et al., REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr D Biol Crystallogr, 2011. 67(Pt 4): p. 355-67.
    73. Emsley, P. and K. Cowtan, Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr, 2004. 60(Pt 12 Pt 1): p. 2126-32.
    74. The PyMOL Molecular Graphics System, Version 1.7.4 Schrödinger, LLC.
    75. Petoukhov, M.V., et al., New developments in the program package for small-angle scattering data analysis. J Appl Crystallogr, 2012. 45(Pt 2): p. 342-350.
    76. Bernado, P., et al., Structural characterization of flexible proteins using small-angle X-ray scattering. J Am Chem Soc, 2007. 129(17): p. 5656-64.
    77. Tria, G., et al., Advanced ensemble modelling of flexible macromolecules using X-ray solution scattering. IUCrJ, 2015. 2(Pt 2): p. 207-17.
    78. Schneidman-Duhovny, D., et al., Accurate SAXS profile computation and its assessment by contrast variation experiments. Biophys J, 2013. 105(4): p. 962-74.
    79. Schneidman-Duhovny, D., M. Hammel, and A. Sali, FoXS: a web server for rapid computation and fitting of SAXS profiles. Nucleic Acids Res, 2010. 38(Web Server issue): p. W540-4.
    80. Wybenga-Groot, L.E., et al., Structural basis of Rad53 kinase activation by dimerization and activation segment exchange. Cell Signal, 2014. 26(9): p. 1825-36.
    81. Li, J., et al., Chk2 oligomerization studied by phosphopeptide ligation: implications for regulation and phosphodependent interactions. J Biol Chem, 2008. 283(51): p. 36019-30.
    82. Sheldrick, G.M., Experimental phasing with SHELXC/D/E: combining chain tracing with density modification. Acta Crystallogr D Biol Crystallogr, 2010. 66(Pt 4): p. 479-85.
    83. McCoy, A.J., et al., Phaser crystallographic software. J Appl Crystallogr, 2007. 40(Pt 4): p. 658-674.
    84. Cowtan, K.D. and K.Y. Zhang, Density modification for macromolecular phase improvement. Prog Biophys Mol Biol, 1999. 72(3): p. 245-70.
    85. Chen, C.D., et al., Direct phase selection of initial phases from single-wavelength anomalous dispersion (SAD) for the improvement of electron density and ab initio structure determination. Acta Crystallogr D Biol Crystallogr, 2014. 70(Pt 9): p. 2331-43.
    86. Cowtan, K., The Buccaneer software for automated model building. 1. Tracing protein chains. Acta Crystallogr D Biol Crystallogr, 2006. 62(Pt 9): p. 1002-11.
    87. Collaborative Computational Project, N., The CCP4 suite: programs for protein crystallography. Acta Crystallogr D Biol Crystallogr, 1994. 50(Pt 5): p. 760-3.
    88. Pasternak, O., et al., MAD phasing using the (Ta6Br12)2+ cluster: a retrospective study. Acta Crystallogr D Biol Crystallogr, 2008. 64(Pt 5): p. 595-606.
    89. Beck, T., et al., A magic triangle for experimental phasing of macromolecules. Acta Crystallogr D Biol Crystallogr, 2008. 64(Pt 11): p. 1179-82.
    90. Beck, T., C.E. da Cunha, and G.M. Sheldrick, How to get the magic triangle and the MAD triangle into your protein crystal. Acta Crystallogr Sect F Struct Biol Cryst Commun, 2009. 65(Pt 10): p. 1068-70.
    91. Inoue, J., et al., Identification and characterization of Xenopus laevis homologs of mammalian TRAF6 and its binding protein TIFA. Gene, 2005. 358: p. 53-9.
    92. Minoda, Y., et al., A novel Zinc finger protein, ZCCHC11, interacts with TIFA and modulates TLR signaling. Biochem Biophys Res Commun, 2006. 344(3): p. 1023-30.
    93. Yin, Q., et al., E2 interaction and dimerization in the crystal structure of TRAF6. Nat Struct Mol Biol, 2009. 16(6): p. 658-66.
    94. Ye, H., et al., Distinct molecular mechanism for initiating TRAF6 signalling. Nature, 2002. 418(6896): p. 443-7.
    95. Shi, Z., et al., Structural Insights into Mitochondrial Antiviral Signaling Protein (MAVS)-Tumor Necrosis Factor Receptor-associated Factor 6 (TRAF6) Signaling. J Biol Chem, 2015. 290(44): p. 26811-20.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE