簡易檢索 / 詳目顯示

研究生: 謝尚祐
Shang-Yu Hsieh
論文名稱: 合成金奈米粒子與應用於電子束阻劑中修飾的研究
Study of synthesis gold/PMMA hybride nanoparticles and application for electron beam lithography resists
指導教授: 朱鐵吉
Tieh-Chi Chu
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 110
中文關鍵詞: 奈米, 電子束微影
外文關鍵詞: nanoparticle, electron beam lithography
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研究是以發展有機聚合物分子poly(methylmethacrylate) (PMMA, Mw~15000)用來穩定所製造的金奈米粒子,利用PMMA包覆在金奈米粒子外圍,因為PMMA是長碳鏈疏水性,使得金與金之間不會因為太靠近而聚集,在本實驗中我們使用NaBH4當作還原劑,將Au3+還原為Au。並探討不同合成條件及配方來製造不同粒徑分佈的金奈米粒子。藉由控制PMMA的量可以穩定的合成不同粒徑的奈米粒子,且不需加熱即可在室溫下製備,具備了4個優點:1.大小一致性、2.分佈均勻性、3.製備過程便利性、4.可製備不同大小粒徑的奈米粒子,可製備的金奈米粒子粒徑大小約3-15nm。
    論文的另一部分為摻雜不同金奈米粒子於電子束阻劑中對阻劑的影響,在加入金奈米粒子於電子束阻劑後,除了明顯的提升阻劑靈敏度及製程窗口之外,電子束阻劑的兩大問題:1.電子束電荷效應、2.阻劑抗蝕刻能力皆獲得很大的提升,減少將近10%的電荷效應及提升10%的阻劑抗蝕刻率。同時因為加入金奈米粒子於電子束阻劑,可以降低阻劑的玻態轉化溫度,使原本Tg為145℃的DSE-1010阻劑,在加入金奈米粒子後Tg降低為125℃,將此特性應用於熱流製程可以降低阻劑熱流的溫度,使阻劑在添加金奈米粒子後可以在較低溫作阻劑熱流製程。


    In this study, we demonstrate a novel gold/PMMA hybridizing spherical nano ball and nano network structures. The linear polymer, poly (methyl methacrylate)(PMMA, MW = 15,000 g/mol) not only represents the stabilizer of gold nanoparticles, but also represents the bridge of neighbors gold nanoparticles during the synthesis procedures. The Fourier Transfer Infrared (FTIR) analysis data and Transition Electron Microscopy (TEM) image reveal that the core shell structure of gold/PMMA nanocomposite has been synthesized. With increasing the salt concentration via the increasing of ion-strength in the synthetic media, the core-shell structures would be fluctuation in the form of “dung worm”. After drying treatment, the TEM image reveals that the network structures of PMMA capped gold nanoparticles have been formed. With specific amount of PMMA presence in synthesis media, a single population of gold/PMMA hybridizing spherical nanoball was synthesized.
    We synthesize gold nanoparticle, which was gold/PMMA hybridizing spherical nanoparticle. The linear polymer, poly (methyl methacrylate)(PMMA, MW = 15,000 g/mol) not only represents the stabilizer of gold nanoparticle, but also represents the bridge of neighbors gold nanoparticles during the synthesis procedures. It can also control gold nanoparticle size by different amount of PMMA. We put different size gold nanoparticle into electron beam resist. It can reduce charging effect by adding gold nanoparticle into electron beam resist.

    摘要……………………………………………………………………….I 謝誌…………………………………………………………………...…II 目錄……………………………………………………………………..III 表目錄…..………………………………………………...……………VII 圖目錄………………………...………………………………………VIII 第一章 緒論…..…………………………………………………………1 1.1 緒言……………………...……………………………..…………1 1.2 論文架構………………..………………………………………...3 第二章 文獻回顧..………………………………………………...…….4 2.1 合成不同粒徑金奈米粒子……………………………………….4 2.1.1 前言…………………………………………...……………...4 2.1.2 奈米材料簡介………………………………………………..4 2.1.3 奈米粒子製備………………………………………………..5 2.1.4 奈米材料應用………………………………………………..6 2.2 摻雜不同金奈米粒子於電子束阻劑中對阻劑的影響…..……...7 2.2.1 微影製程各步驟目的簡要說明………………………..……7 2.2.1.1 塗底…………………………………...............................7 2.2.1.2 上阻劑…………………………………….………….….7 2.2.1.3 軟烤……………………………………….………….….8 2.2.1.4 對準及曝光……………………………….……………..8 2.2.1.5 曝光後烘烤……………………………….……………..9 2.2.1.6 顯影……………………………………………………..10 2.2.1.7 硬烤……………………………………………………..10 2.2.2 阻劑熱流特性研究…………………….......….……………10 2.2.2.1 玻璃轉化現象………………………………………….10 2.2.2.2 差式掃描熱量測定法………….………………………11 2.2.2.3 晶圓曲率量測法……………………………………….14 2.2.3 電子束微影系統……………………………………………15 2.2.3.1 電子束微影系統簡介………………...………………..15 2.2.3.2 電子束微影系統的問題………………...……………..15 2.2.3.2.1 電子散射效應…………………….…...…….……...16 2.2.3.2.2 電荷累積效應……………………….….……..……17 2.2.3.2.3 加熱效應…………………………..………………..18 2.2.3.3 熱流製程……………………………………………….18 第三章 合成不同粒徑金奈米粒子……………………………………26 3.1 研究動機與目的…………………………….…………..………26 3.2 實驗藥品與設備…………………………………………...……26 3.2.1 實驗藥品…………………………………………………....26 3.2.2 實驗設備……………………………………………………28 3.3 實驗步驟………………………………………………………...29 3.3.1在水溶液中合成金奈米粒子……………………………….29 3.3.1.1 不同的PMMA濃度對金奈米粒子的影響…………...29 3.3.1.2 離子強度對金奈米粒子的影響……………………….29 3.3.1.3 烘烤對金奈米粒子的影響…………………………….29 3.3.1.3.1 改變對金奈米粒子烘烤時間的影響……………..29 3.3.1.3.2 改變對金奈米粒子烘烤溫度的影響……………..30 3.3.2 在有機溶液中合成…………………………………………30 3.3.2.1 改變不同的PMMA濃度對金奈米粒子的影響………30 3.3.3 奈米粒子的FT-IR觀測…….………………………………30 3.3.4 金奈米粒子的玻態轉移溫度…………..…………………..31 3.3.5 金奈米粒子的成分分析……………………..……………..31 3.4 結果與討論……………………………………………………...32 3.4.1在水溶液中合成金奈米粒子………………………………..32 3.4.1.1 不同的PMMA濃度對金奈米粒子的影響…………...32 3.4.1.2 離子強度對金奈米粒子的影響……………………….33 3.4.1.3 烘烤對金奈米粒子的影響…………………………….33 3.4.1.3.1 改變對金奈米粒子烘烤時間的影響……………..33 3.4.1.3.2 改變對金奈米粒子烘烤溫度的影響……………..34 3.4.2 在有機溶液中合成…………………………………………34 3.4.2.1 改變不同的PMMA濃度對金奈米粒子的影響………34 3.4.3 奈米粒子的FT-IR觀測…….………………………………35 3.4.4 金奈米粒子的玻態轉移溫度…………..…………………..35 3.4.5 金奈米粒子的成分分析……………………..……………..35 第四章 摻雜不同金奈米粒子於電子束阻劑中對阻劑的影響……....49 4.1 研究動機與目的……………………………………………...…49 4.2 實驗藥品與設備……………………………………………..….51 4.2.1 實驗藥品……………………………………………………51 4.2.2 實驗設備……………………………………………………51 4.3 實驗步驟………………………………………………………...54 4.3.1 厚度量測…………………………………………………....55 4.3.2 敏感度及對比度……………………………………............55 4.3.3 製程窗口實驗……………………………………………....55 4.3.4 阻劑熱流製程測試…………………………………………56 4.3.4.1 阻劑相轉移溫度量測………………………….………56 4.3.4.1.1 晶圓曲率量測……………………………………..56 4.3.4.2 比較不同熱流烘烤溫度對厚度變化情形…………….56 4.3.4.3 比較不同熱流烘烤溫度的洞寬變化情形…………….57 4.3.4.4 比較不同熱流烘烤時間的洞寬變化情形…………….57 4.3.5 阻劑蝕刻製程測試…………………………………………58 4.3.6 電荷效應實驗………………………………………………58 4.3.6.1 電荷效應實驗(一) ……………………….……………58 4.3.6.2 電荷效應實驗(二) ………………………….…………59 4.3.7 阻劑中金奈米粒子殘留實驗………………………………59 4.4 結果與討論……………………………..…………………….......60 4.4.1 厚度量測…………………………………….………….......60 4.4.2 敏感度及對比度……………………………………............61 4.4.3 製程窗口實驗……………………………………………....61 4.4.4 阻劑熱流製程測試…………………………………………64 4.4.4.1 阻劑相轉移溫度量測………………………….………64 4.4.4.2 比較不同熱流烘烤溫度對厚度變化情形…………….64 4.4.4.3 比較不同熱流烘烤溫度的洞寬變化情形…………….64 4.4.4.4 比較不同熱流烘烤時間的洞寬變化情形及熱流微縮量………………………………………………………..65 4.4.5 阻劑蝕刻製程測試…………………………………………66 4.4.6 電荷效應實驗………………………………………………66 4.4.6.1 電荷效應實驗(一) ……………………….……………66 4.4.6.2 電荷效應實驗(二) ………………………….…………67 4.4.7 阻劑中金奈米粒子殘留實驗………………………………67 第五章 結論............................................................................................87 5.1 實驗結論………………………………………………………...87 5.1.1 合成不同粒徑金奈米粒子…………………………………87 5.1.2 摻雜不同金奈米粒子於電子束阻劑中對阻劑的影響……87 5.2 未來工作與建議………………………………………………...88 5.2.1 合成不同粒徑金奈米粒子…………………………………88 5.2.2 摻雜不同金奈米粒子於電子束阻劑中對阻劑的影響……88 參考文獻………...………………………………………………….......89 表目錄 頁次 第三章 表3.1 在水溶液中不同的PMMA濃度的製備……………………….37 表3.2 不同離子強度的製備...................................................................37 表3.3 改變對金奈米粒子烘烤時間,固定烘烤溫度時的製備……...37 表3.4 改變對金奈米粒子烘烤溫度,固定烘烤時間時的製備.……..38 表3.5 有機溶液中改變不同的PMMA濃度對金奈米粒子的影響.....38 第四章 表4.1 製程流程比較………………………………………….………..68 表4.2 活性離子蝕刻(RIE)系統製程參數表…………………………..69 表4.3 電荷效應實驗(一)的結果………………………………………70 圖目錄 頁次 第二章 圖2.1 微影製程步驟流程圖…………………………………..............20 圖2.2 DSC的樣品固定器和高溫爐的簡圖……………………..…….21 圖2.3 熱流DSC槽的示意圖………………………………………….21 圖2.4 典型熱儀器的聚乙烯對苯二酸酯之差式掃描卡計輸出圖…..22 圖2.5 晶圓曲率量測(WCM)原理。沈積膜呈現出張應力………….22 圖2.6 由三種聚合物的應力-溫度曲線圖解其Tg................................23 圖2.7 分別由WCM與DSC所量測得的Tg比較……………………23 圖2.8 半導體工業協會(SIA)於2001年所提出的國際半導體技術藍圖(ITRS)……………………………………………………….24 圖2.9 電子束之散射效應示意圖……………………………………..24 圖2.10 不同的照射區域之下,升溫幅度與電子束照射時間關係圖.25 圖2.11 阻劑熱流法微縮示意圖,藉由簡單的阻劑熱流烘烤即可達到微縮的效果…………………………………………………..25 第三章 圖3.1 在水溶液中不同的PMMA濃度的UV圖……………………….39 圖3.2 在水溶液中不同的PMMA濃度的TEM圖……………………..39 圖3.3 在水溶液中不同PMMA濃度製備的金奈米粒子的粒徑分佈與標準偏差………………………………………………………..40 圖3.4 金奈米粒子及包覆在外圍的PMMA圖….……………..…….41 圖3.5 離子強度對金奈米粒子的影響的UV圖…..………….………42 圖3.6 離子強度對金奈米粒子的影響的TEM圖...………….………42 圖3.7 改變對金奈米粒子烘烤時間的TEM圖………………………43 圖3.8 改變對金奈米粒子烘烤溫度的TEM圖……………………….43 圖3.9 在有機溶液中改變不同的PMMA濃度的UV圖……………….44 圖3.10 在有機溶液中改變不同的PMMA濃度的TEM圖……....……45 圖3.12 金奈米粒子及PMMA的FT-IR圖譜……………….……..……46 圖3.13 金奈米粒子及PMMA之差式掃描熱量測定法(DSC)量測相轉移溫度圖(a)金奈米粒子、(b)PMMA……………………….47 圖3.14 金奈米粒子的EDS圖…………………………………………..48 第四章 圖4.1 金奈米粒子混合在阻劑中的示意圖…………………………...71 圖4.2 熱流製程(Thermal Flow Process)的流程圖……………………72 圖4.3 電荷效應實驗(一)的設計圖……………………………………73 圖4.4 不同奈米粒子對阻劑厚度的關係圖…………………………...73 圖4.5 (a)DSE-1010的敏感度曲線,(b)添加不同金奈米粒子的敏感度曲線……………………………………………………………..74 圖4.6 DSE-1010 0.14□m密集線及孤立線…………………………….75 圖4.7 添加金奈米粒子0.14□m密集線及孤立線…………………….75 圖4.8 DSE-1010 0.18□m密集線及孤立線…………………………….76 圖4.9 添加金奈米粒子0.18□m密集線及孤立線…………………….76 圖4.10 添加不同金奈米粒子之晶圓曲率量測法(WCM)量測相轉移溫度圖……………………………………..…………………78 圖4.11 不同熱流溫度所對應的厚度…………………………..……..79 圖4.12 (a)添加金奈米粒子後不同熱流烘烤溫度對洞寬熱流關鍵尺寸(After Flow Bake Critical Dimension,AFCD),(b)添加金奈米粒子後不同熱流烘烤溫度對洞寬的熱流微縮率(Shinkage Ratio)…………………………..………………………………..80 圖4.13 (a)添加金奈米粒子後不同熱流烘烤時間對洞寬熱流關鍵尺寸(After Flow Bake Critical Dimension,AFCD),(b)添加金奈米粒子後不同熱流烘烤時間對洞寬的熱流微縮率(Shinkage Ratio)………………………….……………………………….81 圖4.14 (a)DSE1010及添加金奈米粒子後不同熱流烘烤時間對洞寬熱流關鍵尺寸(After Flow Bake Critical Dimension,AFCD),(b) DSE1010及添加金奈米粒子後不同熱流烘烤時間對洞寬的熱流微縮率(Shinkage Ratio).………………………................…82 圖4.15 左排DSE1010及右排添加金奈米粒子後烘烤溫度分別為 145及125℃時,200nm獨立洞所分別對應的In-line SEM 俯圖………………………………………………..……..………83 圖4.16 阻劑在活性離子蝕刻儀系統(RIE)的蝕刻率…………………84 圖4.17 電荷效應(二)的結果(a)100nm線、(b) 200nm線……………85 圖4.18 清洗晶圓阻劑後的ESCA圖譜…………………….................86

    1. T. Hyeon, S. S. Lee, J. Park, Y. Chung, H. B. Na, “Synthesis of Highly Crystalline and Monodisperse Maghemite
    Nanocrystallites without a Size-Selection Process”, J. Am. Chem. Soc. 123, pp.12798-12801(2001).
    2. Y. Zhang, Nathan W. Franklin, Robert J. Chen, Hongjie Dai, ”Metal coating on suspended carbon nanotubes and its implication to metal-tube interaction”, Chem. Phys. Lett. 331, pp.35-41(2000).
    3. C. Sangregorio, M. Galeotti, U. Bardi, P. Baglioni, “Synthesis of Cu3Au Nanocluster Alloy in Reverse Micelles”, Langmuir. 12(24), pp.5800-5802(1996).
    4. M. T. Reetz, W. Helbig, “Cyanide poisoning: an analog to the binuclear site of oxidized cyanide-inhibited cytochrome c oxidase”, J. Am. Chem. Soc. 116, 7, pp.401(1994).
    5. A. Henglein, “Physicochemical Properties of Small Metal Particles in Solution: “Microelectrode” Reactions, Chemisorption, Composite Metal Particles, and the Atom-to-Metal Transition”, J. Phys. Chem. 97, pp.5457-5471(1993).
    6. J. Rockenberger, E.C. Scher, A. P. Alivisatos, “A New Nonhydrolytic Single-Precursor Approach to Surfactant-Capped Nanocrystals of Transition Metal Oxides” J. Am. Chem. Soc. 121, 11595-11596(1999).
    7. William D. Callister, Jr., Materials Science and Engineering an Introduction, 4th ed. pp.474.
    8. D. A. Skoog, F. J. Holler and T. A. Nieman, Principles of Instrumental Analysis, Fifth Edition, Saunders College Publishing, pp.805(1998).
    9. A. Schiltz and P. J. Paniez, “In-situ determination of photoresist glass transition temperature by wafer curvature measurement techniques”, Microelectronic Engineering. 27, pp.413-416(1995).
    10. The International Technology Roadmap for Semiconductor (NTRS), Semiconductor Industry Association (SIA), Santa Clara, CA,(2001).
    11. L. F. Thompson, C. G. Willson and M. J. Bowden, Introduction to Microlithography, Chapter 2, American Chemical Society, Washington(1994).
    12. 邱燦賓、施敏,"電子束微影技術",科學發展月刊,第28卷第6期,(2000).
    13. 許兼貴,深紫外光光罩抗反射技術及次100奈米世代電子束直寫阻劑特性研究,國立清華大學碩士論文,(2001).
    14. P. J. Paniez, S. Gally, B. Mortini, C. Rosilio, P. O. Sassoulas, R. Dammel, M. Padmanaban, A. Klauck-Jacobs and J. Oberlander, "Thermal Phenomena in Acrylic 193 nm Resists", SPIE Vol. 3678, pp.1352-1363(1999)
    15. H. S. Chung, J. H. Jung, Y. S. Kim, K. S. Choi, N. H. You, S. W. Yoon and J. E. Park, "New Development of Cost-effective Sub-0.18μm Lithography with I-line", SPIE Vol. 3999, pp.499-504(2000)
    16. J. S. Kim, C. W. Koh, G. Lee, J. C. Jung and K. S. Shin, "Novel Routes toward Sub-70 nm Contact Windows by Using New KrF Photoresist", SPIE Vol. 4345, pp.232-240(2001)
    17. H. L. Chen, C. K. Hsu, B. C. Chen, F. H. Ko, J. Y. Yang, T. Y. Huang and T. C. Chu, "Studies of Chemically Amplified Deep UV Resists for Electron Beam Lithography Applications", SPIE Vol. 4343, pp.781-788(2001)
    18. M. A. Carnahan, M. W. Grinstaff, “Synthesis and Characterization of Polyether-ester Dendrimers from Glycerol and Lactic Acid”, J. Am. Chem. Soc. 123, pp.2905-2906(2001).
    19. M. E. Garcia, L. A. Baker, R. M. Crooks, “Preparation and Characterization of Dendrimer- Gold Colloid Nanocomposities”, Anal. Chem. 71, pp.256-258(1999).
    20. F. Grohn, G. Kim, B. J. Bauer, E. J. Amis, “Nanoparticle Formation within Dendrimer-Containing Polymer Network: Route to New Organic-Inorganic Hybrid Materials”, Macromolecules. 34, pp.2179-2185(2001)
    21. N. R. Jana, L. Gearheart, C. J. Murphy, “Seeding Growth for Size Control of 5-40nm Diameter Gold Nanoparticles”, Langmuir. 17, pp.6782-6786(2001)
    22. H. Tokuhisa, M. Zhao, L. A. Baker, V. Y. Phan, D. L. Dermody, M. E. Gracia, R. F. Peez, R. M. Crooks, T. M. Mayer, “Preparation and Characterization of Dendrimer Monolayers and Dendrimer-Alkanethiol Mixed Monolayers Adsorbed to Gold”, J. Am. Chem. Soc. 120, pp.4492-4501(1998).
    23. A. B. R. Mayer, J. B. Mark, “Colloidal Gold Nanoparticles Protected by Water-Soluble Homopolymers and Random Copolymers”, Eur. Polym. J. 34, pp.103-108(1998).
    24. A. Mayer, M. Antonietti, “Investigation of Polymer- Protected Noble Metal Nanoparticles by Transmission Electron Microscopy:Control of Particle Morphology and Shape”, Colloid Polym Sci. 276, pp.769-779(1998).
    25. F. K. Liu, S. Y. Hsieh, F. H. Ko, T. C. Chu, B. T. Dai, “Synthesis of Nanometer-Sized Poly(methyl methacrylate) Polymer Network by Gold Nanoparticle Template”, Jpn. J. Appl. Phys. (Accepted on December 20, 2002)
    26. T. Teranishi, I. Kiyokawa, M. Miyake, “Synthesis of Monodisperse Nanoparticles Using Linears Polymers as Protective Agents”, Adv. Mater. 10, pp.596-599(1998).
    27. J. A. Forrest, K. Dalnoki-Veress, J .R. Stevens, J. R. Dutcher, “Effect of Free Surfaces on the Glass Transition Temperature of Thin Polymer Films”, Physical. Review. Letters. 77, pp.2002-2005(1996).
    28. S. K. Kim, Y. S. Kim, J. S. Kim, C. K. Bok, Y. M. Ham and K. H. Baik, “Comparison Study for Sub-0.13μm Lithography between ArF and KrF Lithography”, Proc. SPIE 4000, pp.435-442(2000)
    29. J. Finders, J. Schoot, P. Vanoppen, “KrF lithography for 130 nm”, Proc. SPIE 4000, pp.192-205(2000).
    30. S. M. Kim, S. J. Kim, C. J. Bang, Y. M. Ham, and K. H. Baik, ”Optimization of Dipole Off-Axis Illumination by 1st-Order Efficiency Method for Sub 120 nm Nod with KrF Lithography”, Jpn. J. Appl. Phys. Vol.39, pp.6777-6780(2000).
    31. J. S. Kim, C. I. Choi, M. S. Kim, C.-K. Bok, H.-S. Kim, and K.-H. Baik, “Implementation of Sub-150 nm Contact Hole Pattern by Resist Flow Process”, Jpn. J. Appl. Phys. Vol.37, pp.6863-6868(1998).
    32. J. H. Chung, S. H. Choi, Y. Kang, S. G. Woo, and J. T. Moon, “A Novel Resist Material for sub-100nm Contact Hole Pattern”, Proc. SPIE 3999, pp.305-312(2000).
    33. J. S. Kim, C. W. Koh, G. Lee, J. C. Jung, and K. S. Shin, “Novel Routes toward Sub-70nm Contact Windows by Using New KrF Photoresist”, Proc. SPIE 4345, pp.232-240(2001).
    34. T. Yamauchi, T. Matsui, J. Kanamori, Y. Miyakawa, and K. Shimoyama, “0.2μm Hole Pattern Generation by Critical Dimension Biassing Using Resin Overcoat”, Jpn. J. Appl. Phys. Vol. 34, pp.6615-6621(1995).
    35. T. Kanda, H. Tanaka, and Y. Kinoshita, “Advanced Microlithography Process with Chemical Shrink Technology”, Proc. SPIE 3999, pp. 881-889(2000).
    36. J. S. Chun, S. Bakshi, S. Barnett, J. Shih, and S. Lee, “Contact Hole Size Reducing Methods by using Water-Soluble Organic Over-coating material (WASOOM) as a barrier layer toward 0.15um contact hole; Resist flow technique I”, Proc. SPIE 3999, pp.620-626 (2000).
    37. T. Toyoshima, T. Ishibashi, A. Minanide, K. Sugino, K. Katayama, T. Shoya, I. Arimoto, N. Yasuda, H. Adachi, and Y. Matsui, “0.1 pm Level contact hole pattern formation with KrF lithography be resolution enhancement lithography assisted by chemical shrink (RELACS)“, EDM 1998, pp.333-336 (1998).
    38. K. Aramaki, T. Hamada, D. K. Lee, H. Okazaki, N. Tsugama, and G. Pawlowski, “Techniques to Print Sub-0.2 μm Contact Holes”, Proc. SPlE 3999, pp.738-749 (1991).
    39. H. Itoh, K. Nakamura, “Investigation of the charging effect on thin Sio2 layers with the electron beam lithography system”, J. Vac. Sci. Technol. B7(6), pp.1532-1235(1989)
    40. K. D. Cummings, M. Kiersh, “Charging effect from electron beam lithography”, J. Vac. Sci. Technol. B7(6), pp.1536-1239(1989)
    41. M. A. Z. Hupcey, C. K. Ober, “Copolymer approach to charge-dissipating electron-beam resists”, J. Vac. Sci. Technol. B16(6), pp.3701-3704(1998)
    42. Y. Todokoro, A. Kajiya, H. Watanabe, “Conductive two-layer resist system for electron-beam lithography”, J. Vac. Sci. Technol. B6(1), pp.357-360(1988)
    43. M. Angelopulos, M. Shaw, R. D. Kaplan, S. Perreault, Conducting polyanilines:Discharge layers for electron-beam lithography”, J. Vac. Sci. Technol. B7(6), pp.1519-1223(1989)
    44. M. Angelopulos, N. Patel, J. M. Shaw, N. C. Labianca, S. A. Rishton, “Water soluble conducting polyanilines:Applications in lithography”, J. Vac. Sci. Technol. B11(6), pp.2794-2797(1993)
    45. H. Watanabe, Y. Todokoro, “E-Beam Direct Wafer Writing Process Using a Water-Soluble Conductive Layer”, IEEE. pp.474-477(1989)
    46. K. M. Satyalakshmi, A. Olkhovets, M. G. metzler, C. K. Harnett, D. M. TanenBaum, H. G. Craighead, “Charge induced pattern distortion in low energy electron beam lithography”, J. Vac. Sci. Technol. B18(6), pp.3122-3125(2000)
    47. J. Ingino, G. Owen, C. N. Berglund, R. Browning, F. W. Pease, “Workpiece charge in electron beam lithography”, J. Vac. Sci. Technol. B12(3), pp.1367-1371(1994)
    48. R. Gangopadhyay, A. De, “Conducting Polymer Nanocomposites:A Brief Overview”, Chem. Mater. 12, pp608-622(2000)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE