簡易檢索 / 詳目顯示

研究生: 周育如
Chou, Yu-Ju
論文名稱: 投資組合效率分析與比較–資料包絡分析法之應用
The Analysis of Portfolios Efficiency by Data Envelopment Analysis
指導教授: 黃裕烈
Huang, Yu-Lieh
口試委員: 徐之強
Hsu, Chih-Chiang
徐士勛
Hsu, Shih-Hsun
學位類別: 碩士
Master
系所名稱: 科技管理學院 - 計量財務金融學系
Department of Quantitative Finance
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 61
中文關鍵詞: 資料包絡分析法投資組合資產配置
外文關鍵詞: data envelopment analysis, portfolio optimization, Asset allocation
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究欲建立投資標的選擇方法與投資組合最適化配置兩大領域間的橋樑,將兩大領域方法銜接並完整實作,並分析各個最適化投資組合配置模型的績效。本文使用資料包絡分析法 (data envelopment analysis, DEA) 針對2020 年臺灣證券交易所上市公司進行經營效率評估,透過篩選各產業內經營效率最高之公司作為投資標的,並應用於均值-變異數模型、均數-平均絕對離差模型、均數-條件風險模型及風險平價模型,最後分析不同的優化投資組合模型之投資績效,並使用資料包絡分析法評估各投資組合模型之相對效率。研究結果顯示,均數-平均絕對離差模型、均數-條件風險模型及風險平價模型,不論是樣本內亦或者是樣本外,雖然在報酬表現上略比等權重模型遜色,但在年化波動率及最大回落皆小於等權重模型,顯示出模型極小化風險的目標特性。然而,各個最適化模型一開始所設定的目標式皆不盡相同,不適合單一指標作為投資組合績效衡量的標準,因此本文使用能客觀考量多項產出及投入項的 DEA 方法評估投資組合模型績效表現。研究結果發現,透過 DEA 方法篩選出投資標的所建構的風險平價模型,在樣本內及樣本外的效率相較其他模型表現都最好。


    The goal of this paper is to fill the gap between the investment target selection method and portfolio allocation, implement the combined models, and analyze the performance of each portfolio allocation method. We use Data Envelopment Analysis (DEA) to evaluate the operating efficiency of listed companies on the Taiwan Stock Exchange in 2020. We select companies with the highest operating efficiency as investment targets and optimize them by applying various portfolio allocation methods, including Mean-variance (MV) model, Mean Absolute Deviation (MAD) model, Conditional Value-at-Risk (CVaR) model, and Risk Parity model. Finally, we analyze the performance and use DEA to assess the relative efficiency of different portfolio optimization methods.
    We conduct extensive experiments. Although the empirical results demonstrate that MAD, CVaR, and Risk Parity models are slightly worse than the equal-weight model in terms of the return in both in-sample and out-of-sample conditions, the annualized volatility and maximum drawdown are smaller than the baseline, showing the property of minimizing risk in the objective of the models. Nevertheless, it is not suitable to use a single indicator to assess the performance of those models as they have such diverse objective functions. Therefore, we propose using DEA to evaluate the performance of portfolio allocation methods, which considers multiple inputs and outputs objectively. The results show that combing the DEA and Risk Parity models yields superior performance in both in-sample and out-of-sampling efficiencies.

    1.前言 1 2.文獻回顧 3 3.資料與研究方法 7 4.實證結果 27 5.結論 36 附錄 39 參考文獻 58  

    中文參考文獻
    1. 高強、黃旭男與 Toshiyuki Sueyoshi (2022),《管理績效評估:資料包絡分析法》,(二版) 華泰文化出版社。
    2. 廖慶榮 (2009),《作業研究》,(二版),華泰文化出版社。

    英文參考文獻
    1. Alam, I. M. S. and R. C. Sickles, (1998). “The relationship between stock market returns and technical efficiency innovations: Evidence from the US airline industry.” Journal of Productivity Analysis, 9, 35–51.
    2. Artzner, P., F. Delbaen, J. Eber, and D. Heath, (1999). “Coherent measure of Risk.” Mathematical Finance, 9, 203-228.
    3. Banker, R. D., A. Charnes, and W. W. Cooper, (1984). “Some models for estimating technical and scale inefficiencies in data envelopment analysis.” Management Science, 30, 1078-1092.
    4. Basso, A. and S. Funari, (2003). “Measuring the performance of ethical mutual funds: a DEA approach.” Journal of the Operational Research Society, 54, 521-531.
    5. Bawa, V. S. and E. B. Lingenberg, (1977). “Capital market equilibrium in a mean-lower partial moment framework.” Journal of Financial Economics, 5, 189-200.
    6. Blume, L., D. Easley, and M. O’Hara, (1994). “Market statistics and technical analysis: The Role of Volume.” The Journal of Finance, 49 (1), 153–181.
    7. Boussofiane, A., R. G. Dyson, and E. Thanassoulis, (1991). “Applied data envelopment analysis.” European Journal of Operational Research, 52, 1-15.
    8. Bruder, B. and T. Roncalli, (2012). “Managing risk exposures using the risk budgeting approach.” Working Paper.
    9. Charnes, A., W. W. Cooper, and E. Rhodes, (1978). “Measuring the efficiency of decision makingunits.” European Journal of Operational Research, 2, 429-444.
    10. Chen, H. H. (2008). “Stock selection using data envelopment analysis. Industrial Management Data Systems.”
    11. Edirisinghe, N. C. P. and X. Zhang, (2007). “Generalized DEA model of fundamental analysis and its application to portfolio optimization.” Journal of Banking Finance, 31, 3311-3335.
    12. Edirisinghe, N. C. P. and X. Zhang, (2008). “Portfolio selection under DEA-based relative financial strength indicators: case of US industries.” Journal of the Operational Research Society, 59, 842-856.
    13. Estrada, J. (2008). “Mean-semivariance optimization: A heuristic approach.” Journal of Applied Finance (Formerly Financial Practice and Education), 18.
    14. Fan, A. and M. Palaniswami, (2001). “Stock selection using support vector machines.” International Joint Conference on Neural Networks. Proceedings, 3, 1793-1798.
    15. Farrell, M. J., (1957). “The measurement of productive efficiency.” Journal of the Royal Statistical Society: Series A (General), 120 (3), 253-281.
    16. Frijns, B., D. Margaritis, and M. Psillaki, (2012). “Firm efficiency and stock returns.” Journal of Productivity Analysis, 37, 295-306.
    17. Huang, C. F. (2012). “A hybrid stock selection model using genetic algorithms and support vector regression.” Applied Soft Computing, 12 (2), 807-818.
    18. Hurley, W. J. and J. Brimberg, (2015). “A note on the sensitivity of the strategic asset allocation problem.” Operations Research Perspectives, 2, 133-136.
    19. Konno, H. (1990). “Piecewise linear risk function and portfolio optimization.” Journal of the Operations Research Society of Japan, 33 (2), 139-156.
    20. Konno, H. and H. Yamazaki, (1991). “Mean-absolute deviation portfolio optimization model and its applications to Tokyo stock market.” Management Science, 37, 519-531.
    21. Lamb, J. D. and K. H. Tee, (2012). “Data envelopment analysis models of investment funds.” European Journal of Operational Research, 216 (3), 687-696.
    22. Lee, C. L. (2006). “Downside Risk Analysis in Australin commercial Property.” Australian Property Journal, 39, 16-20.
    23. Lo, A. W., H., Mamaysky, and J. Wang, (2000). “Foundations of technical analysis: Computational algorithms, statistical inference, and empirical implementation.” The Journal of Finance, 55 (4), 1705-1765.
    24. Lucas, A. and P. Klaassen (1998). “Extreme returns, downside risk, and optimal asset allocation.” Journal of Portfolio Management, 25, 71-79.
    25. Markowitz, H. (1952). “Portfolio selection.” The Journal of Finance, 7, 77–91.
    26. Markowitz, H. (1959). Portfolio Selection: Efficient Diversification of Investment, New York: John Wiley Sons.
    27. Merton, R. (1972). “An analytic derivation of the efficient portfolio frontier.” Journal of Financial and Quantitative Analysis, 7 (4), 1851-1872.
    28. Murthi, B. P. S., Y. K. Choi, and P. Desai (1997). “Efficiency of mutual funds and portfolio performance measurement: A non-parametric approach.” European Journal of Operational Research, 98, 408-418.
    29. Rockafellar, R. T. and S. Uryasev (2000). “Optimization of conditional value-at-risk.” Journal of Risk, 2, 21-42.
    30. Roy, A. D. (1952). “Safety first and the holding of assets. Econometrica: Journal of the Econometric Society, 431-449.
    31. Seiford, L. M. (1996). “Data envelopment analysis: the evolution of the state of the art (1978–1995).” Journal of Productivity Analysis, 7 (2), 99-137.
    32. Yao, J., C. L. Tan, and H. L. Poh, (1999). “Neural networks for technical analysis: a study on KLCI.” International Journal of Theoretical and Applied Finance, 2 (2), 221-241.

    QR CODE