研究生: |
許瑞麟 Hsu, Jui-Lin |
---|---|
論文名稱: |
利用軟性金屬基板壓合製成反結構有機太陽能電池 Fabrication of Inverted Organic Solar Cells on Flexible Metal Foils using Laminating Process |
指導教授: |
洪勝富
Horng, Sheng-Fu |
口試委員: |
洪勝富
孟心飛 冉曉雯 |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 79 |
中文關鍵詞: | 金屬箔 、壓合 、有機太陽電池 |
外文關鍵詞: | metal foil, lamination, organic solar cell |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Roll-to-roll製程製作有機太陽能電池是未來發展的趨勢,在這個製程中,需要一個合適的軟性材料來當作基板,大部分相關的研究選擇使用了軟性塑膠基板,但是在本實驗中則嘗試使用一般家用的鋁箔當作基板,因為其耐熱、便宜、可撓、具有足夠的張力及良好抗水氧穿透能力。經過加工處理後使其具備絕緣性及平坦化,接著成功使用它製作出以薄銀當作穿透電極的有機太陽能電池。
然而,為了解決薄銀穿透度過低的問題,我們用ITO取代薄銀,並嘗試結合軟性金屬基板,發展壓合的技術取代目前習以為常的layer by layer元件製作方法。而壓合元件的成功與否,則建立在好的導電高分子層的選擇上。
在導電高分子層選擇過程中,首先使用D-sorbitol加入PEDOT:PSS(AI4083),經由調變D-sorbitol的比例我們得到最好的元件效率為2.59%;之後改用PEDOT:PSS(CPP105D)取代D-sorbitol當作添加劑,找到兩者混合的最佳比例,使元件可以達到3.05%的轉換效率,最後再透過電極的處理,使目前最高效率可以達到3.2%。這證實了在未來roll-to-roll製程中,我們可以結合金屬基板與壓合技術,大量製作大面積的有機太陽能電池。
Using roll-to-roll fabrication process to produce organic solar cells is the future trends. To achieve this goal, an appropriate flexible substrate is needed. Most of the flexible OPVs reported to date have been fabricated on plastic substrate. In our work, we introduced general household aluminum foil as flexible substrate due to their effective protection against penetrating moisture and oxygen as well as formation of low-cost, robustness, and good thermal stability. By insulating and smoothing the surface of aluminum foil substrate, we successfully made a device which used thin silver film as transparent electrode.
However, the transmittance of thin silver film is too low, we used transparent electrode ITO instead. For this purpose, we developed lamination process combined with Al-foil and ITO-glass substrate. On the other hand, one critical issue in lamination process is how to choose the conducting polymer layer as electronic glue.
In our selectivity of the conducting polymer layer, PCE is obtained 2.59% via the addition of D-sorbitol to PEDOT:PSS(AI4083) firstly. Then, we showed the significant advances in PCE by replacing D-sorbitol with PEDOT:PSS(CPP105D). The optimization of PCE is 3.05%, and achieved 3.2% after electrode treatment. Our research represents a combination of metal-foil substrate and lamination technique which can be used in roll-to-roll manufacturing.
[1]. D. M. Chapin, C. S. Fuller, and G. L. Pearson,” A new silicon pn junction photocell for converting solar radiation into electrical power,” J. Appl. Phys. 25, 676 (1954)
[2]. C. W. Tang, “Two-layer organic photovoltaic cell,” Appl. Phys. Lett. 48, 183(1985)
[3]. G. Yu, K. Pakbaz, and A. J. Heeger, “Semiconducting polymer diodes: Large size,low cost photodetectors with excellent visibleultraviolet sensitivity,” Appl. Phys. Lett. 64, 3422 (1994)
[4]. Kyungkon Kim, Jiwen Liu, Manoj A. G. Namboothiry, and David L. Carroll, “Roles of donor and acceptor nanodomains in 6% efficient thermally annealed polymer photovoltaics,” Appl. Phys. Lett. 90, 163511 (2007).
[5]. C. J. Brabec, F. Pandinger, “Realization of large area flexible fullereneconjugate polymer photocells: a route to plastic solar cell,” Synthetic Metals 102, 861-864 (1999).
[6]. M. Al-Ibrahim, H. K. Roth, and S. Sensfuss, Appl. Phys. Lett. 85, 1481 (2004).
[7]. Jinsong Huang, Gang Li, and Yang Yang, “A Semi-transparent plastic solar cell fabricated by a lamination process,” Adv. Mater. 20, 415-419 (2008)
[8]. Seok-In Na, Seok-Soon Kim, Jang Jo, and Dong-Yu Kim, “Efficient and flexible ITO-free organic solar cells using highly conductive polymer anodes,” Adv.Mater. 20, 1-7 (2008)
[9]. Frederik C. Krebs, “All solution roll-to-roll processed polymer solar cells free from indium-tin-oxide and vacuum coating steps,” Organic Electronics, 10, 761-768 (2009)
[10]. F. C. Chen, J.L Wu, C. L. Lee, W. C. Huang, H. M. Chen, W. C. Chen, “Flexible Polymer Photovoltaic Devices Prepared With Inverted Structures on Metal Foils,” IEEE Electorn Device Letters, 30, 7 (2009)
[11]. Jianyong Ouyang and Yang Yang, “Conducting Polymer as Transparent Electric Glue”, Adv. Mater. 2006, 18, 2141–2144.
[12]. Jinsong Huang, Gang Li, and Yang Yang, “A Semi-transparent Plastic Solar Cell Fabricated by a Lamination Process”, Adv. Mater. 2008, 20, 415–419.
[13]. Yongbo Yuan, Yu Bi, and Jinsong Huang, “Achieving high efficiency laminated solar cell with interfacial modified metallic electrode and pressure induced crystallization”, Appl. Phys. Lett. 98, 063306 (2011)
[14]. H. Sirringhaus, P. J. Brown, R. H. Friend, M. M. Nielsen, K. Bechgaard, B. M. W. Langeveld-Voss, A. J. H. Spiering, R. A. J. Janssen, E. W. Meijer, P. Herwig, and D. M. De Leeuw, “ Two-dimensional charge transport in self-organized, high-mobility conjugated polymers,” Nature, 401, 685 (1999).
[15]. J. C. Hummelen, B. W. Knight, F. Lepeq, F. Wudl, J. Yao, and C. L. Wilkins, “Preparation and Characterization of Fulleroid and Methanofullerene Derivatives,” J.Org. Chem. 60, 532 (1995)
[16]. E. J. Meijer, D. M. de Leeuw, S. Setayesh, E. V. Veenendaal, B. H. Huisman, P. W. M. Blom, J. C. Hummelen, U. Scherf, T. M. Klapwijk. Nat. Mater. 2, 678 (2003)
[17]. H. Hoppe, and N. S. Sariciftci, “Organic solar cells: An overview,” J. Mater. Res. 19, 1924 (2004).
[18]. G. Li. Shrotriya, J. Huang, Y. Yao, and Y. Yang, “High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends,” Nature Mater. 4, 864, (2005).
[19]. Brian A. Bailey, Matthew O. Reese, Dana C. Olson, Sean E. Shaheen, Nikos Kopidakis, “Air-processed organic photovoltaic devices fabricated with hotpress lamination,” Organic Electronics 12(2011) 108-112
[20]. MotoshiNakamura, ChunheYang, KeisukeTajima, KazuhitoHashimoto, “High-performance polymer photovoltaic devices with inverted structure prepared by thermal lamination,” Solar Energy Materials & Solar Cells 93 (2009) 1681–1684