簡易檢索 / 詳目顯示

研究生: 許瑞麟
Hsu, Jui-Lin
論文名稱: 利用軟性金屬基板壓合製成反結構有機太陽能電池
Fabrication of Inverted Organic Solar Cells on Flexible Metal Foils using Laminating Process
指導教授: 洪勝富
Horng, Sheng-Fu
口試委員: 洪勝富
孟心飛
冉曉雯
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 79
中文關鍵詞: 金屬箔壓合有機太陽電池
外文關鍵詞: metal foil, lamination, organic solar cell
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Roll-to-roll製程製作有機太陽能電池是未來發展的趨勢,在這個製程中,需要一個合適的軟性材料來當作基板,大部分相關的研究選擇使用了軟性塑膠基板,但是在本實驗中則嘗試使用一般家用的鋁箔當作基板,因為其耐熱、便宜、可撓、具有足夠的張力及良好抗水氧穿透能力。經過加工處理後使其具備絕緣性及平坦化,接著成功使用它製作出以薄銀當作穿透電極的有機太陽能電池。
    然而,為了解決薄銀穿透度過低的問題,我們用ITO取代薄銀,並嘗試結合軟性金屬基板,發展壓合的技術取代目前習以為常的layer by layer元件製作方法。而壓合元件的成功與否,則建立在好的導電高分子層的選擇上。
    在導電高分子層選擇過程中,首先使用D-sorbitol加入PEDOT:PSS(AI4083),經由調變D-sorbitol的比例我們得到最好的元件效率為2.59%;之後改用PEDOT:PSS(CPP105D)取代D-sorbitol當作添加劑,找到兩者混合的最佳比例,使元件可以達到3.05%的轉換效率,最後再透過電極的處理,使目前最高效率可以達到3.2%。這證實了在未來roll-to-roll製程中,我們可以結合金屬基板與壓合技術,大量製作大面積的有機太陽能電池。


    Using roll-to-roll fabrication process to produce organic solar cells is the future trends. To achieve this goal, an appropriate flexible substrate is needed. Most of the flexible OPVs reported to date have been fabricated on plastic substrate. In our work, we introduced general household aluminum foil as flexible substrate due to their effective protection against penetrating moisture and oxygen as well as formation of low-cost, robustness, and good thermal stability. By insulating and smoothing the surface of aluminum foil substrate, we successfully made a device which used thin silver film as transparent electrode.
    However, the transmittance of thin silver film is too low, we used transparent electrode ITO instead. For this purpose, we developed lamination process combined with Al-foil and ITO-glass substrate. On the other hand, one critical issue in lamination process is how to choose the conducting polymer layer as electronic glue.
    In our selectivity of the conducting polymer layer, PCE is obtained 2.59% via the addition of D-sorbitol to PEDOT:PSS(AI4083) firstly. Then, we showed the significant advances in PCE by replacing D-sorbitol with PEDOT:PSS(CPP105D). The optimization of PCE is 3.05%, and achieved 3.2% after electrode treatment. Our research represents a combination of metal-foil substrate and lamination technique which can be used in roll-to-roll manufacturing.

    摘要 I Abstract II 謝誌 IV 目錄 VII 圖目錄 X 第一章 序論 1 1.1研究背景 1 1.1.1 前言 1 1.1.2 太陽電池的發展 2 1.1.3 有機共軛高分子太陽能電池的發展 3 1.1.4 軟性基板有機太陽能電池的發展 5 1.2研究動機 6 1.2.1 以金屬基板當作軟性基板 7 1.2.2 壓合技術(Lamination) 8 1.3論文架構 9 第二章 實驗原理 10 2.1太陽電池原理簡介 10 2.1.1 工作原理 10 2.1.2 理想太陽電池等效電路 11 2.1.3 實際太陽電池等效電路 12 2.1.4 太陽電池基本參數介紹 13 2.2共軛高分子材料特性及能帶理論 17 2.2.1 共軛高分子材料特性 17 2.2.2 有機材料的能帶理論 18 2.3本論文太陽電池結構與材料選擇 19 2.3.1 所使用的太陽電池結構 19 2.3.2 材料選擇 20 第三章 實驗流程 24 3.1 ITO玻璃基板蝕刻圖樣化 24 3.1.1 ITO玻璃切割清洗 24 3.1.2 乾式光阻黏貼 25 3.1.3曝光 26 3.1.4顯影 27 3.1.5蝕刻 27 3.1.6去光阻 28 3.2 ITO玻璃基板準備與清洗 28 3.3 電子傳輸層(Electron Transport Layer, ETL)成膜 29 3.3.1 Cs2CO3 旋轉塗佈(Spin Coating) 29 3.3.2 PBD 旋轉塗佈(Spin Coating) 30 3.4 主動層(P3HT:PCBM)成膜 30 3.5 鋁箔基板固定在靜電貼上 31 3.6 鋁箔基板的清洗與絕緣化 32 3.6.1 舊式絕緣法 32 3.6.2 新式絕緣法 33 3.7 金屬電極蒸鍍 33 3.8 電洞傳輸層(Hole Transport Layer, HTL)成膜 35 3.9 Laminate(壓合)及元件封裝 36 3.9.1 Laminated device的壓合及封裝 37 3.9.2 Normal device的封裝 38 3.10 元件量測 39 3.10.1 電流電壓曲線(IV curve)量測系統 39 3.10.2 外部量子效率(EQE)量測系統 40 第四章 實驗結果與討論 41 4.1以鋁箔當作基板,薄銀當作透光電極製作元件 41 4.1.1 鋁箔基板絕緣 41 4.1.2 在絕緣的鋁箔基板上製作元件 42 4.1.3 金屬基板以薄銀當作穿透電極總結 46 4.2 透光電極、製程與結構改變 46 4.2.1 電極的選擇 46 4.2.2 元件結構及絕緣方法改變 50 4.2.3 壓合技術(Lamination) 53 4.3 使用壓合技術製作元件 56 4.3.1 PEDOT:PSS(AI4083)添加D-sorbitol比例選擇 57 4.3.2 PEDOT:PSS(AI4083)添加CPP105D比例選擇 59 4.3.3 PEDOT:PSS(AI4083)添加D-sorbitol與CPP105D比較 63 4.3.4 金屬電極的選擇與處理 66 4.3.5 第4.3節總結 69 4.4其他相關實驗 70 4.4.1 持續照光(Light soaking)時間選擇 70 4.4.2 蒸鍍元件與壓合元件比較 71 4.4.3 全軟板元件 73 第五章 實驗總結與未來研究發展 75 參考文獻 77

    [1]. D. M. Chapin, C. S. Fuller, and G. L. Pearson,” A new silicon pn junction photocell for converting solar radiation into electrical power,” J. Appl. Phys. 25, 676 (1954)
    [2]. C. W. Tang, “Two-layer organic photovoltaic cell,” Appl. Phys. Lett. 48, 183(1985)
    [3]. G. Yu, K. Pakbaz, and A. J. Heeger, “Semiconducting polymer diodes: Large size,low cost photodetectors with excellent visibleultraviolet sensitivity,” Appl. Phys. Lett. 64, 3422 (1994)
    [4]. Kyungkon Kim, Jiwen Liu, Manoj A. G. Namboothiry, and David L. Carroll, “Roles of donor and acceptor nanodomains in 6% efficient thermally annealed polymer photovoltaics,” Appl. Phys. Lett. 90, 163511 (2007).
    [5]. C. J. Brabec, F. Pandinger, “Realization of large area flexible fullereneconjugate polymer photocells: a route to plastic solar cell,” Synthetic Metals 102, 861-864 (1999).
    [6]. M. Al-Ibrahim, H. K. Roth, and S. Sensfuss, Appl. Phys. Lett. 85, 1481 (2004).
    [7]. Jinsong Huang, Gang Li, and Yang Yang, “A Semi-transparent plastic solar cell fabricated by a lamination process,” Adv. Mater. 20, 415-419 (2008)
    [8]. Seok-In Na, Seok-Soon Kim, Jang Jo, and Dong-Yu Kim, “Efficient and flexible ITO-free organic solar cells using highly conductive polymer anodes,” Adv.Mater. 20, 1-7 (2008)
    [9]. Frederik C. Krebs, “All solution roll-to-roll processed polymer solar cells free from indium-tin-oxide and vacuum coating steps,” Organic Electronics, 10, 761-768 (2009)
    [10]. F. C. Chen, J.L Wu, C. L. Lee, W. C. Huang, H. M. Chen, W. C. Chen, “Flexible Polymer Photovoltaic Devices Prepared With Inverted Structures on Metal Foils,” IEEE Electorn Device Letters, 30, 7 (2009)
    [11]. Jianyong Ouyang and Yang Yang, “Conducting Polymer as Transparent Electric Glue”, Adv. Mater. 2006, 18, 2141–2144.
    [12]. Jinsong Huang, Gang Li, and Yang Yang, “A Semi-transparent Plastic Solar Cell Fabricated by a Lamination Process”, Adv. Mater. 2008, 20, 415–419.
    [13]. Yongbo Yuan, Yu Bi, and Jinsong Huang, “Achieving high efficiency laminated solar cell with interfacial modified metallic electrode and pressure induced crystallization”, Appl. Phys. Lett. 98, 063306 (2011)
    [14]. H. Sirringhaus, P. J. Brown, R. H. Friend, M. M. Nielsen, K. Bechgaard, B. M. W. Langeveld-Voss, A. J. H. Spiering, R. A. J. Janssen, E. W. Meijer, P. Herwig, and D. M. De Leeuw, “ Two-dimensional charge transport in self-organized, high-mobility conjugated polymers,” Nature, 401, 685 (1999).
    [15]. J. C. Hummelen, B. W. Knight, F. Lepeq, F. Wudl, J. Yao, and C. L. Wilkins, “Preparation and Characterization of Fulleroid and Methanofullerene Derivatives,” J.Org. Chem. 60, 532 (1995)
    [16]. E. J. Meijer, D. M. de Leeuw, S. Setayesh, E. V. Veenendaal, B. H. Huisman, P. W. M. Blom, J. C. Hummelen, U. Scherf, T. M. Klapwijk. Nat. Mater. 2, 678 (2003)
    [17]. H. Hoppe, and N. S. Sariciftci, “Organic solar cells: An overview,” J. Mater. Res. 19, 1924 (2004).
    [18]. G. Li. Shrotriya, J. Huang, Y. Yao, and Y. Yang, “High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends,” Nature Mater. 4, 864, (2005).
    [19]. Brian A. Bailey, Matthew O. Reese, Dana C. Olson, Sean E. Shaheen, Nikos Kopidakis, “Air-processed organic photovoltaic devices fabricated with hotpress lamination,” Organic Electronics 12(2011) 108-112
    [20]. MotoshiNakamura, ChunheYang, KeisukeTajima, KazuhitoHashimoto, “High-performance polymer photovoltaic devices with inverted structure prepared by thermal lamination,” Solar Energy Materials & Solar Cells 93 (2009) 1681–1684

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE