研究生: |
鍾曜安 Chung, Yao-An |
---|---|
論文名稱: |
Synthesis and Applications of ZnO Nanorods 氧化鋅奈米棒的成長與應用研究 |
指導教授: |
陳力俊
Chen, Lih-Juann |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 英文 |
論文頁數: | 81 |
中文關鍵詞: | 氧化鋅 、太陽能電池 、光催化 |
外文關鍵詞: | ZnO, solar cell, photocatalysis |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Small-diameter ZnO nanorods have been prepared from aqueous
solution containing Zn(OH)4
2− ions, manganese acetate, and sodium
dodecyl sulfate in 3 h at room temperature. The added Mn2+ ions are
considered to lead to the formation of MnO2 nanoparticles, which serve
as the nucleation sites, to facilitate the growth of small diameter ZnO
nanorods. The as-prepared ZnO nanorods are single crystalline, 7–10
nm diameter and 200–300 nm in length. The high surface-to-volume
ratios determined by the Brunauer–Emmett–Teller method and the
surface oxygen deficiencies suggested by the cathodoluminescence
spectrum for the ZnO nanorods are conductive to the photocatalytic
activity. The photocatalytic activities on the conversion of nitride oxides
and degradation of methylene blue by ZnO nanorods were found to be
significantly enhanced by the presence of small-diameter ZnO nanorods.
Different sizes of ZnO nanorods were mixed with TiO2 nanoparticles
with a 1:99 ratio to prepare thin film for dye-sensitized solar cells. The
cell efficiency was measured and the optimal condition in our
experiments was found. The Voc and FF were found to increase with the
decrease of sizes of ZnO nanorods added. The capacitance and transient
photocurrent data show correlations to the tendency of short-circuit
current (Jsc). Thus, simulation model have been constructed to explain
this phenomenon. The contacts between TiO2 nanoparticles and ZnO
nanorods are crucial to the electrical properties. This calculation may
have potential in finding best sizes of ZnO nanowires and TiO2
nanoparticles in TiO2/ZnO nanoparticle/nanorod composite film for DSSC.
Chapter 1
1. Feynmen, R. P., “There’s plenty of room at the bottom,” at the annual meeting of the American physical society on December 29th at the california institute of technology, 1959.
2. Bhushan, B., "Springer handbook of nanotechnology," Springer-Verlag, Berlin Heidelberg. 2004.
3. Alivisatos, A. P., "Semiconductor clusters, nanocrystals, and quantum dots," Science 1996, 271, 933-937.
4. Murray, C. B.; Kagan, C. R.; Bawendi, M. G., "Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies," Annu. Rev. Mater. Sci. 2000, 30, 545-610.
5. Krans, J. M.; Vanruitenbeek, J. M.; Fisun, V. V.; Yanson, I. K.; Dejongh, L. J., "The signature of conductance quantization in metallic point contacts," Nature 1995, 375, 767-769.
6. Likharev, K. K.; Claeson, T., "Single electronics," Sci. Am. 1992, 266, 80-85.
7. Markovich, G.; Collier, C. P.; Henrichs, S. E.; Remacle, F.; Levine, R. D.; Heath, J. R., "Architectonic quantum dot solids," Acc. Chem. Res. 1999, 32, 415-423.
8. Narihiro, M.; Yusa, G.; Nakamura, Y.; Noda, T.; Sakaki, H., "Resonant tunneling of electrons via 20 nm scale InAs quantum dot and magnetotunneling spectroscopy of its electronic states," Appl. Phys. Lett. 1997, 70, 105-107.
9. Chen, J.; Reed, M. A.; Rawlett, A. M.; Tour, J. M., "Large on-off ratios and negative differential resistance in a molecular electronic device," Science 1999, 286, 1550-1552.
10. Papadopoulos, C.; Rakitin, A.; Li, J.; Vedeneev, A. S.; Xu, J. M., "Electronic transport in Y-junction carbon nanotubes," Phys. Rev. Lett. 2000, 85, 3476-3479.
11. Bjork, M. T.; Ohlsson, B. J.; Thelander, C.; Persson, A. I.; Deppert, K.; Wallenberg, L. R.; Samuelson, L., "Nanowire resonant tunneling diodes," Appl. Phys. Lett. 2002, 81, 4458-4460.
12. Tak, Y.; Yong, K. J., "Controlled growth of well-aligned ZnO nanorod array using a novel solution method," J. Phys. Chem. B 2005, 109, 19263-19269.
13. Zhou, J.; Xu, N. S.; Wang, Z. L., "Dissolving behavior and stability of ZnO wires in biofluids: A study on biodegradability and biocompatibility of ZnO nanostructures," Adv. Mater. 2006, 18, 2432-2435.
14. Wang, Z. L.; Song, J. H., "Piezoelectric nanogenerators based on zinc oxide nanowire arrays," Science 2006, 312, 242-246.
15. Wang, X. D.; Song, J. H.; Liu, J.; Wang, Z. L., "Direct-current nanogenerator riven by ultrasonic waves," Science 2007, 316, 102-105.
16. He, J. H.; Hsin, C. L.; Liu, J.; Chen, L. J.; Wang, Z. L., "Piezoelectric gated diode of a single ZnO nanowire," Adv. Mater. 2007, 19, 781-784.
17. Huang, M. H.; Mao, S.; Feick, H.; Yan, H. Q.; Wu, Y. Y.; Kind, H.; Weber, E.; Russo, R.; Yang, P. D., "Room-temperature ultraviolet nanowire nanolasers," Science 2001, 292, 1897-1899.
18. Choy, J. H.; Jang, E. S.; Won, J. H.; Chung, J. H.; Jang, D. J.; Kim, Y. W., "Soft solution route to directionally grown ZnO nanorod arrays on Si wafer; room-temperature ultraviolet laser," Adv. Mater. 2003, 15, 1911.
19. Wang, X. D.; Neff, C.; Graugnard, E.; Ding, Y.; King, J. S.; Pranger, L. A.; Tannenbaum, R.; Wang, Z. L.; Summers, C. J., "Photonic crystals fabricated using patterned nanorod arrays," Adv. Mater. 2005, 17, 2103-2106.
20. Wan, Q.; Li, Q. H.; Chen, Y. J.; Wang, T. H.; He, X. L.; Li, J. P.; Lin, C. L., "Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors," Appl. Phys. Lett. 2004, 84, 3654-3656.
21. Law, M.; Greene, L. E.; Johnson, J. C.; Saykally, R.; Yang, P. D., "Nanowire dye-sensitized solar cells," Nat. Mater. 2005, 4, 455-459.
22. Wan, Q.; Wang, T. H.; Zhao, J. C., "Enhanced photocatalytic activity of ZnO nanotetrapods," Appl. Phys. Lett. 2005, 87, 083105.
23. Pauporte, T.; Rathousky, J., "Electrodeposited mesoporous ZnO thin films as efficient photocatalysts for the degradation of dye pollutants," J. Phys. Chem. C 2007, 111, 7639-7644.
24. Miyauchi, M.; Nakajima, A.; Watanabe, T.; Hashimoto, K., "Photocatalysis and photoinduced hydrophilicity of various metal oxide thin films," Chem. Mater. 2002, 14, 2812-2816.
25. Kuo, T. J.; Lin, C. N.; Kuo, C. L.; Huang, M. H., "Growth of ultralong ZnO nanowires on silicon substrates by vapor transport and their use as recyclable photocatalysts," Chem. Mater. 2007, 19, 5143-5147.
26. Yang, J. L.; An, S. J.; Park, W. I.; Yi, G. C.; Choi, W., "Photocatalysis using ZnO thin films and nanoneedles grown by metal-organic chemical vapor deposition," Adv. Mater. 2004, 16, 1661-1664.
27. Kong, X. Y.; Wang, Z. L., "Spontaneous polarization-induced nanohelixes, nanosprings, and nanorings of piezoelectric nanobelts," Nano Lett. 2003, 3, 1625-1631.
28. Wang, Z. L., "Zinc oxide nanostructures: growth, properties and applications," J. Phys.: Condens. Matter 2004, 16, R829-R858.
29. Wang, Z. L.; Kong, X. Y.; Ding, Y.; Gao, P. X.; Hughes, W. L.; Yang, R. S.; Zhang, Y., "Semiconducting and piezoelectric oxide nanostructures induced by polar surfaces," Adv. Funct. Mater. 2004, 14, 943-956.
30. Kong, X. Y.; Ding, Y.; Yang, R.; Wang, Z. L., "Single-crystal nanorings formed by epitaxial self-coiling of polar nanobelts," Science 2004, 303, 1348-1351.
31. Hughes, W. L.; Wang, Z. L., "Formation of piezoelectric single-crystal nanorings and nanobows," J. Am. Chem. Soc. 2004, 126, 6703-6709.
32. Gao, P. X.; Ding, Y.; Mai, W. J.; Hughes, W. L.; Lao, C. S.; Wang, Z. L., "Conversion of zinc oxide nanobelts into superlattice-structured nanohelices," Science 2005, 309, 1700-1704.
33. Chiou, W. T.; Wu, W. Y.; Ting, J. M., "Growth of single crystal ZnO nanowires using sputter deposition," Diamond Relat. Mater. 2003, 12, 1841-1844.
34. Shen, G.; Bando, Y.; Lee, C. J., "Growth of self-organized hierarchical ZnO nanoarchitectures by a simple In/In2S3 controlled thermal evaporation process," J. Phys. Chem. B 2005, 109, 10779-10785.
35. Cheng, H. M.; Lin, K. F.; Hsu, H. C.; Lin, C. J.; Lin, L. J.; Hsieh, W. F., "Enhanced resonant Raman scattering and electron-phonon coupling from self-assembled secondary ZnO nanoparticles," J. Phys. Chem. B 2005, 109, 18385-18390.
36. Li, Q.; Kumar, V.; Li, Y.; Zhang, H.; Marks, T. J.; Chang, R. P. H., "Fabrication of ZnO nanorods and nanotubes in aqueous solutions," Chem. Mater. 2005, 17, 1001-1006.
37. Liu, Y.; Dong, J.; Hesketh, P. J.; Liu, M. L., "Synthesis and gas sensing properties of ZnO single crystal flakes," J. Mater. Chem. 2005, 15, 2316-2320.
38. He, J. H.; Hsu, J. H.; Wang, C. W.; Lin, H. N.; Chen, L. J.; Wang, Z. L., "Pattern and feature designed growth of ZnO nanowire arrays for vertical devices," J. Phys. Chem. B 2006, 110, 50-53.
39. Zhang, H.; Yang, D.; Ji, Y. J.; Ma, X. Y.; Xu, J.; Que, D. L., "Low temperature synthesis of flowerlike ZnO nanostructures by cetyltrimethylammonium bromide-assisted hydrothermal process," J. Phys. Chem. B 2004, 108, 3955-3958.
40. Lu, C. H.; Qi, L. M.; Yang, J. H.; Tang, L.; Zhang, D. Y.; Ma, J. M., "Hydrothermal growth of large-scale micropatterned arrays of ultralong ZnO nanowires and nanobelts on zinc substrate," Chem. Commun. 2006, 3551-3553.
41. Greene, L. E.; Law, M.; Goldberger, J.; Kim, F.; Johnson, J. C.; Zhang, Y. F.; Saykally, R. J.; Yang, P. D., "Low-temperature wafer-scale production of ZnO nanowire arrays," Angew. Chem. Int. Ed. 2003, 42, 3031-3034.
42. Hu, J. T.; Odom, T. W.; Lieber, C. M., "Chemistry and physics in one dimension: Synthesis and properties of nanowires and nanotubes," Acc. Chem. Res. 1999, 32, 435-445.
43. Greyson, E. C.; Babayan, Y.; Odom, T. W., "Directed growth of ordered arrays of small-diameter ZnO nanowires," Adv. Mater. 2004, 16, 1348-1352.
44. Xu, C.; Chun, J.; Rho, K.; Lee, H. J.; Jeong, Y. H.; Kim, D. E.; Chon, B.; Hong, S.; Joo, T., "Ferromagnetic ZnO bicrystal nanobelts fabricated in low temperature," Appl. Phys. Lett. 2006, 89, 093117.
45. Tak, Y.; Yong, K.; Park, C., Growth of Aligned ZnO Nanorods on Pt Buffer "Layer Coated Silicon Substrates Using Metallorganic Chemical Vapor Deposition," J. Electrochem. Soc. 2005, 152, G794-G797.
46. Lin, Y. R.; Yang, S. S.; Tsai, S. Y.; Hsu, H. C.; Wu, S. T.; Chen, I. C., "Visible photoluminescence of ultrathin ZnO nanowire at room temperature," Cryst. Growth Des. 2006, 6, 1951-1955.
47. Fang, Y. P.; Pang, Q.; Wen, X. G.; Wang, B. N.; Yang, S. H., "Synthesis of ultrathin ZnO nanofibers aligned on a zinc substrate," Small 2006, 2, 612-615.
48. Sun, Y.; Fuge, G. M.; Fox, N. A.; Riley, D. J.; Ashfold, M. N. R., "Synthesis of aligned arrays of ultrathin ZnO nanotubes on a Si wafer coated with a thin ZnO film," Adv. Mater. 2005, 17, 2477-2481.
49. Chang, Y. C.; Chen, L. J., "ZnO nanoneedles with enhanced and sharp ultraviolet cathodoluminescence peak," J. Phys. Chem. C 2007, 111, 1268-1272.
50. Yang, W. C.; Wang, C. W.; Wang, J. C.; Chang, Y. C.; Hsu, H. C.; Nee, T. E.; Chen, L. J.; He, J. H., "Aligned Er-doped ZnO nanorod arrays with enhanced 1.54 μm infrared emission," J. Nanosci. Nanotechnol. 2008, 8, 3363-3368.
51. Lv, Y.; Guo, L.; Xu, H.; Ding, L.; Yang, C.; Wang, J.; Ge, W.; Yang, S.; Wu, Z., "Low temperature synthesis and optical properties of small-diameter ZnO nanorods," J. Appl. Phys. 2006, 99, 114302.
52. Sun, B.; Sirringhaus, H., "Solution-processed zinc oxide field-effect transistors based on self-assembly of colloidal nanorods," Nano Lett. 2005, 5, 2408-2413.
53. Yang, J.; Liu, G.; Lu, J.; Qiu, Y.; Yang, S., "Electrochemical route to the synthesis of ultrathin ZnO nanorod/nanobelt arrays on zinc substrate," Appl. Phys. Lett. 2006, 90, 103109.
54. Cao, H. L.; Qian, X. F.; Gong, Q.; Du, W. M.; Ma, X. D.; Zhu, Z. K., "Shape- and size-controlled synthesis of nanometre ZnO from a simple solution route at room temperature," Nanotechnology 2006, 17, 3632-3636.
55. Li, P.; Wei, Y.; Liu, H.; Wang, X. K., "A simple low-temperature growth of ZnO nanowhiskers directly from aqueous solution containing Zn(OH)42- ions," Chem. Commun. 2004, 2856-2857.
56. Xu, F.; Yuan, Z. Y.; Du, G. H.; Ren, T. Z.; Bouvy, C.; Halasa, M.; Su, B. L., "Simple approach to highly oriented ZnO nanowire arrays: large-scale growth, photoluminescence and photocatalytic properties," Nanotechnology 2006, 17, 588-594.
57. Serway, R. A., "Physics for scientists & engineers," 1990, pp. 1150.
58. Würfel, P., "Physics of solar cells," Weinheim: Wiley-VCH. 2005.
59. Bazouni, T., "The Physics of solar cells," 2009.
60. Oregan, B.; Gratzel, M., "A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films," Nature 1991, 353, 737-740.
61. Nazeeruddin, M. K.; Kay, A.; Rodicio, I.; Humphrybaker, R.; Müller, E.; Liska, P.; Vlachopoulos, N.; Grätzel, M., "Conversion of light to electricity by cis-X2bis- (2,2’-bipyridyl-4,4’-dicarboxylate) ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline TiO2 electrodes," J. Am. Chem. Soc. 1993, 115, 6382-6390.
62. www.solaronix.com
63. Wei, T. C.; Wan, C. C.; Wang, Y. Y., "Poly(N-vinyl-2-pyrrolidone)-capped platinum nanoclusters on indium-tin oxide glass as counterelectrode for dye-sensitized solar cells," Appl. Phys. Lett. 2006, 88, 103122.
64. Matthews, D.; Infelta, P.; Gratzel, M., "Calculation of the photocurrent-potential characteristic for regenerative, sensitized semiconductor electrodes," Sol. Energy Mater. Sol. Cells 1996, 44, 119-155.
65. Grätzel, M., "Photoelectrochemical cells," Nature 2001, 414, 338-344.
66. Krüger, j., "Interface engineering in solid-state dye sensitized solar cells", École Polytechnique Fédérale de Lausanne. 2003.
67. Patch, K., "Solar cell doubles as battery," Technology Research News. 2006.
Chapter 2
1. Li, P.; Wei, Y.; Liu, H.; Wang, X. K., "A simple low-temperature growth of ZnO nanowhiskers directly from aqueous solution containing Zn(OH)42- ions," Chem. Commun. 2004, 2856-2857.
2. Usui, H., "Influence of surfactant micelles on morphology and photoluminescence of zinc oxide nanorods prepared by one-step chemical synthesis in aqueous solution," J. Phys. Chem. C 2007, 111, 9060-9065.
3. Hsiao, P. T.; Wang, K. P.; Cheng, C. W.; Teng, H. S., "Nanocrystalline anatase TiO2 derived from a titanate-directed route for dye-sensitized solar cells," J. Photochem. Photobiol., A 2007, 188, 19-24.
4. Zhang, Z. P.; Zakeeruddin, S. M.; O'Regan, B. C.; Humphry-Baker, R.; Grätzel, M., "Influence of 4-guanidinobutyric acid as coadsorbent in reducing recombination in dye-sensitized solar cells," J. Phys. Chem. B 2005, 109, 21818-21824.
5. Quintana, M.; Edvinsson, T.; Hagfeldt, A.; Boschloo, G., "Comparison of dye-sensitized ZnO and TiO2 solar cells: Studies of charge transport and carrier lifetime," J. Phys. Chem. C 2007, 111, 1035-1041.
Chapter 3
1. Tak, Y.; Yong, K. J., "Controlled growth of well-aligned ZnO nanorod array using a novel solution method," J. Phys. Chem. B 2005, 109, 19263-19269.
2. Lee, J. Y.; Choi, Y. S.; Kim, J. H.; Park, M. O.; Im, S., "Optimizing n-ZnO/p-Si heterojunctions for photodiode applications," Thin Solid Films 2002, 403-404, 553–557.
3. He, J. H.; Ho, S. T.; Wu, T. B.; Chen, L. J.; Wang, Z. L., "Electrical and photoelectrical performances of nano-photodiode based on ZnO nanowires," Chem. Phys. Lett. 2007, 435, 119-122.
4. Koch, M. H.; Timbrell, P. Y.; Lamb, R. N., "The influence of film crystallinity on the coupling efficiency of ZnO optical modulator wave-guides," Semicond. Sci. Technol. 1995, 10, 1523-1527.
5. Huang, M. H.; Mao, S.; Feick, H.; Yan, H. Q.; Wu, Y. Y.; Kind, H.; Weber, E.; Russo, R.; Yang, P. D., "Room-temperature ultraviolet nanowire nanolasers," Science 2001, 292, 1897-1899.
6. Choy, J. H.; Jang, E. S.; Won, J. H.; Chung, J. H.; Jang, D. J.; Kim, Y. W., "Soft solution route to directionally grown ZnO nanorod arrays on Si wafer; room-temperature ultraviolet laser," Adv. Mater. 2003, 15, 1911-1914.
7. Wang, X. D.; Neff, C.; Graugnard, E.; Ding, Y.; King, J. S.; Pranger, L. A.; Tannenbaum, R.; Wang, Z. L.; Summers, C. J., "Photonic crystals fabricated using patterned nanorod arrays," Adv. Mater. 2005, 17, 2103-2106.
8. Wan, Q.; Li, Q. H.; Chen, Y. J.; Wang, T. H.; He, X. L.; Li, J. P.; Lin, C. L., "Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors," Appl. Phys. Lett. 2004, 84, 3654.
9. Law, M.; Greene, L. E.; Johnson, J. C.; Saykally, R.; Yang, P. D., "Nanowire dye-sensitized solar cells," Nat. Mater. 2005, 4, 455-459.
10. Wan, Q.; Wang, T. H.; Zhao, J. C., "Enhanced photocatalytic activity of ZnO nanotetrapods," Appl. Phys. Lett. 2005, 87, 083105.
11. Pauporte, T.; Rathousky, J., "Electrodeposited mesoporous ZnO thin films as efficient photocatalysts for the degradation of dye pollutants," J. Phys. Chem. C 2007, 111, 7639-7644.
12. Miyauchi, M.; Nakajima, A.; Watanabe, T.; Hashimoto, K., "Photocatalysis and photoinduced hydrophilicity of various metal oxide thin films," Chem. Mater. 2002, 14, 2812-2816.
13. Yang, J. L.; An, S. J.; Park, W. I.; Yi, G. C.; Choi, W., "Photocatalysis using ZnO thin films and nanoneedles grown by metal-organic chemical vapor deposition," Adv. Mater. 2004, 16, 1661-1614.
14. He, J. H.; Hsin, C. L.; Liu, J.; Chen, L. J.; Wang, Z. L., "Piezoelectric gated diode of a single ZnO nanowire," Adv. Mater. 2007, 19, 781-784.
15. Wang, Z. L., "Zinc oxide nanostructures: growth, properties and applications," J. Phys.: Condens. Matter 2004, 16, R829-R858.
16. Wang, Z. L.; Kong, X. Y.; Ding, Y.; Gao, P. X.; Hughes, W. L.; Yang, R. S.; Zhang, Y., "Semiconducting and piezoelectric oxide nanostructures induced by polar surfaces," Adv. Funct. Mater. 2004, 14, 943-956.
17. Wang, Z. L.; Song, J. H., "Piezoelectric nanogenerators based on zinc oxide nanowire arrays," Science 2006, 312, 242-246.
18. Greyson, E. C.; Babayan, Y.; Odom, T. W., "Directed growth of ordered arrays of small-diameter ZnO nanowires," Adv. Mater. 2004, 16, 1348-1352.
19. Xu, C.; Chun, J.; Rho, K.; Lee, H. J.; Jeong, Y. H.; Kim, D. E.; Chon, B.; Hong, S.; Joo, T., "Ferromagnetic ZnO bicrystal nanobelts fabricated in low temperature," Appl. Phys. Lett. 2006, 89, 093117.
20. Tak, Y.; Yong, K.; Park, C., "Growth of aligned ZnO nanorods on Pt buffer layer coated silicon substrates using metallorganic chemical vapor deposition," J. Electrochem. Soc. 2005, 152, G794-G797.
21. He, J. H.; Hsu, J. H.; Wang, C. W.; Lin, H. N.; Chen, L. J.; Wang, Z. L., "Pattern and feature designed growth of ZnO nanowire arrays for vertical devices," J. Phys. Chem. B 2006, 110, 50-53.
22. Lin, Y. R.; Yang, S. S.; Tsai, S. Y.; Hsu, H. C.; Wu, S. T.; Chen, I. C., "Visible photoluminescence of ultrathin ZnO nanowire at room temperature," Cryst. Growth Des. 2006, 6, 1951-1955.
23. Fang, Y. P.; Pang, Q.; Wen, X. G.; Wang, B. N.; Yang, S. H., "Synthesis of ultrathin ZnO nanofibers aligned on a zinc substrate," Small 2006, 2, 612-615.
24. Sun, Y.; Fuge, G. M.; Fox, N. A.; Riley, D. J.; Ashfold, M. N. R., "Synthesis of aligned arrays of ultrathin ZnO nanotubes on a Si wafer coated with a thin ZnO film," Adv. Mater. 2005, 17, 2477-2481.
25. Chang, Y. C.; Chen, L. J., "ZnO nanoneedles with enhanced and sharp ultraviolet cathodoluminescence peak," J. Phys. Chem. C 2007, 111, 1268-1272.
26. Yang, W. C.; Wang, C. W.; Wang, J. C.; Chang, Y. C.; Hsu, H. C.; Nee, T. E.; Chen, L. J.; He, J. H., "Aligned Er-doped ZnO nanorod arrays with enhanced 1.54 μm infrared emission," J. Nanosci. Nanotechnol. 2008, 8, 3363-3368.
27. Sun, B.; Sirringhaus, H., "Solution-processed zinc oxide field-effect transistors based on self-assembly of colloidal nanorods," Nano Lett. 2005, 5, 2408-2413.
28. Yang, J.; Liu, G.; Lu, J.; Qiu, Y.; Yang, S., "Electrochemical route to the synthesis of ultrathin ZnO nanorod/nanobelt arrays on zinc substrate," Appl. Phys. Lett. 2006, 90, 103109.
29. Cao, H. L.; Qian, X. F.; Gong, Q.; Du, W. M.; Ma, X. D.; Zhu, Z. K., "Shape- and size-controlled synthesis of nanometre ZnO from a simple solution route at room temperature," Nanotechnology 2006, 17, 3632-3636.
30. Li, P.; Wei, Y.; Liu, H.; Wang, X. K., "A simple low-temperature growth of ZnO nanowhiskers directly from aqueous solution containing Zn(OH)42- ions," Chem. Commun. 2004, 2856-2857.
31. Usui, H., "Influence of surfactant micelles on morphology and photoluminescence of zinc oxide nanorods prepared by one-step chemical synthesis in aqueous solution," J. Phys. Chem. C 2007, 111, 9060-9065.
32. Kuo, T. J.; Lin, C. N.; Kuo, C. L.; Huang, M. H., "Growth of ultralong ZnO nanowires on silicon substrates by vapor transport and their use as recyclable photocatalysts," Chem. Mater. 2007, 19, 5143-5147.
33. Lu, G.; Linsebigler, A.; Yates, J. T., "Photooxidation of CH3Cl on TiO2(110) - a mechanism not involving H2O," J. Phys. Chem. 1995, 99, 7626-7631.
34. Moulder, J. F.; Stiuckel, W. F.; Sobol, P. E.; Bomben, K. D., "Handbook of X-ray photoelectron spectroscopy," Perkin-Elmer Corporation: Waltham, MA,. 1992.
35. Kang, Y. J.; Kim, D. S.; Lee, S. H.; Park, J.; Chang, J.; Moon, J. Y.; Lee, G.; Yoon, J.; Jo, Y.; Jung, M. H., "Ferromagnetic Zn1-xMnxO (x=0.05, 0.1, and 0.2) nanowires," J. Phys. Chem. C 2007, 111, 14956-14961.
36. Chen, H. R.; Dong, X. P.; Shi, J. L.; Zhao, J. J.; Hua, Z. L.; Gao, J. H.; Ruan, M. L.; Yan, D. S., "Templated synthesis of hierarchically porous manganese oxide with a crystalline nanorod framework and its high electrochemical performance," J. Mater. Chem. 2007, 17, 855-860.
37. Yang, L.; May, P. W.; Yin, L.; Scott, T. B., "Growth of self-assembled ZnO nanoleaf from aqueous solution by pulsed laser ablation," Nanotechnology 2007, 18, 215602.
38. Jiang, P.; Zhou, J. J.; Fang, H. F.; Wang, C. Y.; Wang, Z. L.; Xie, S. S., "Hierarchical shelled ZnO structures made of bunched nanowire arrays," Adv. Funct. Mater. 2007, 17, 1303-1310.
39. Du, N.; Zhang, H.; Yang, Z.; Zhai, C.; Yu, J.; Wu, J.; Zhang, X.; Yang, D., "Tailor of ZnO morphology by heterogeneous nucleation in the aqueous solution," Mater. Res. Bull. 2007, 42, 1316.
Chapter 4
1. Wan, Q.; Wang, T. H.; Zhao, J. C., "Enhanced photocatalytic activity of ZnO nanotetrapods," Appl. Phys. Lett. 2005, 87, 083105.
2. Pauporte, T.; Rathousky, J., "Electrodeposited mesoporous ZnO thin films as efficient photocatalysts for the degradation of dye pollutants," J. Phys. Chem. C 2007, 111, 7639-7644.
3. Miyauchi, M.; Nakajima, A.; Watanabe, T.; Hashimoto, K., "Photocatalysis and photoinduced hydrophilicity of various metal oxide thin films," Chem. Mater. 2002, 14, 2812-2816.
4. Yang, J. L.; An, S. J.; Park, W. I.; Yi, G. C.; Choi, W., "Photocatalysis using ZnO thin films and nanoneedles grown by metal-organic chemical vapor deposition," Adv. Mater. 2004, 16, 1661-1664.
5. Xu, F.; Yuan, Z. Y.; Du, G. H.; Ren, T. Z.; Bouvy, C.; Halasa, M.; Su, B. L., "Simple approach to highly oriented ZnO nanowire arrays: large-scale growth, photoluminescence and photocatalytic properties," Nanotechnology 2006, 17, 588-594.
6. Tseng, Y. H.; Kuo, C. S.; Huang, C. H.; Li, Y. Y.; Chou, P. W.; Cheng, C. L.; Wong, M. S., "Visible-light-responsive nano-TiO2 with mixed crystal lattice and its photocatalytic activity," Nanotechnology 2006, 17, 2490-2497.
7. Lin, Y. M.; Tseng, Y. H.; Huang, J. H.; Chao, C. C.; Chen, C. C.; Wang, I., "Photocatalytic activity for degradation of nitrogen oxides over visible light responsive titania-based photocatalysts," Environmental Science & Technology 2006, 40, 1616-1621.
8. Yen, C. Y.; Lin, Y. F.; Liao, S. H.; Weng, C. C.; Huang, C. C.; Hsiao, Y. H.; Ma, C. C. M.; Chang, M. C.; Shao, H.; Tsai, M. C.; Hsieh, C. K.; Tsai, C. H.; Weng, F. B., "Preparation and properties of a carbon nanotube-based nanocomposite photoanode for dye-sensitized solar cells," Nanotechnology 2008, 19, 375305.
Chapter 5
1. O'Regan, B.; Grätzel, M., "A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films," Nature 1991, 353, 737-740.
2. Nazeeruddin, M. K.; Kay, A.; Rodicio, I.; Humphrybaker, R.; Müller, E.; Liska, P.; Vlachopoulos, N.; Grätzel, M., "Conversion of light to electricity by cis-X2bis- (2,2’-bipyridyl-4,4’-dicarboxylate) ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline TiO2 electrodes," J. Am. Chem. Soc. 1993, 115, 6382-6390.
3. Grätzel, M., "Perspectives for dye-sensitized nanocrystalline solar cells," Prog. Photovoltaics 2000, 8, 171-185.
4. van de Lagemaat, J.; Park, N. G.; Frank, A. J., "Influence of electrical potential distribution, charge transport, and recombination on the photopotential and photocurrent conversion efficiency of dye-sensitized nanocrystalline TiO2 solar cells: A study by electrical impedance and optical modulation techniques," J. Phys. Chem. B 2000, 104, 2044-2052.
5. Rensmo, H.; Keis, K.; Lindstrom, H.; Sodergren, S.; Solbrand, A.; Hagfeldt, A.; Lindquist, S. E.; Wang, L. N.; Muhammed, M., "High light-to-energy conversion efficiencies for solar cells based on nanostructured ZnO electrodes," J. Phys. Chem. B 1997, 101, 2598-2601.
6. Ferrere, S.; Zaban, A.; Gregg, B. A., "Dye sensitization of nanocrystalline tin oxide by perylene derivatives," J. Phys. Chem. B 1997, 101, 4490-4493.
7. Grätzel, M., "Photoelectrochemical cells," Nature 2001, 414, 338-344.
8. Keis, K.; Magnusson, E.; Lindström, H.; Lindquist, S. E.; Hagfeldt, A., "A 5% efficient photo electrochemical solar cell based on nanostructured ZnO electrodes," Sol. Energy Mater. Sol. Cells 2002, 73, 51-58.
9. Özgür, U.; Alivov, Y. I.; Liu, C.; Teke, A.; Reshchikov, M. A.; Doğan, S.; Avrutin, V.; Cho, S. J.; Morkoç, H., "A comprehensive review of ZnO materials and devices," J. Appl. Phys. 2005, 98, 041301.
10. Chiou, W. T.; Wu, W. Y.; Ting, J. M., "Growth of single crystal ZnO nanowires using sputter deposition," Diamond Relat. Mater. 2003, 12, 1841-1844.
11. Shen, G.; Bando, Y.; Lee, C. J., "Growth of self-organized hierarchical ZnO nanoarchitectures by a simple In/In2S3 controlled thermal evaporation process," J. Phys. Chem. B 2005, 109, 10779-10785.
12. Cheng, H. M.; Lin, K. F.; Hsu, H. C.; Lin, C. J.; Lin, L. J.; Hsieh, W. F., "Enhanced resonant Raman scattering and electron-phonon coupling from self-assembled secondary ZnO nanoparticles," J. Phys. Chem. B 2005, 109, 18385-18390.
13. Liu, Y.; Dong, J.; Hesketh, P. J.; Liu, M. L., "Synthesis and gas sensing properties of ZnO single crystal flakes," J. Mater. Chem. 2005, 15, 2316-2320.
14. He, J. H.; Hsu, J. H.; Wang, C. W.; Lin, H. N.; Chen, L. J.; Wang, Z. L., "Pattern and feature designed growth of ZnO nanowire arrays for vertical devices," J. Phys. Chem. B 2006, 110, 50-53.
15. Zhang, H.; Yang, D.; Ji, Y. J.; Ma, X. Y.; Xu, J.; Que, D. L., "Low temperature synthesis of flowerlike ZnO nanostructures by cetyltrimethylammonium bromide-assisted hydrothermal process," J. Phys. Chem. B 2004, 108, 3955-3958.
16. Lu, C. H.; Qi, L. M.; Yang, J. H.; Tang, L.; Zhang, D. Y.; Ma, J. M., "Hydrothermal growth of large-scale micropatterned arrays of ultralong ZnO nanowires and nanobelts on zinc substrate," Chem. Commun. 2006, 3551-3553.
17. Redmond, G.; Fitzmaurice, D.; Graetzel, M., "Visible light sensitization by cis-bis(thiocyanato)bis(2,2'-bipyridyl-4,4'-dicarboxylato)ruthenium(II) of a transparent nanocrystalline ZnO film prepared by sol-gel techniques," Chem. Mater. 1994, 6, 686-691.
18. Chung, Y. A.; Chang, Y. C.; Lu, M. Y.; Wang, C. Y.; Chen, L. J., "Synthesis and photocatalytic activity of small-diameter ZnO nanorods," J. Electrochem. Soc. 2009, 156, F75-F79.
19. Peterson, R. B.; Fields, C. L.; Gregg, B. A., "Epitaxial chemical deposition of ZnO nanocolumns from NaOH," Langmuir 2004, 20, 5114-5118.
20. Pan, Z. W.; Dai, Z. R.; Wang, Z. L., "Nanobelts of semiconducting oxides," Science 2001, 291, 1947-1949.
21. Kong, Y. C.; Yu, D. P.; Zhang, B.; Fang, W.; Feng, S. Q., "Ultraviolet-emitting ZnO nanowires synthesized by a physical vapor deposition approach," Appl. Phys. Lett. 2001, 78, 407-409.
22. Huang, M. H.; Wu, Y. Y.; Feick, H.; Tran, N.; Weber, E.; Yang, P. D., "Catalytic growth of zinc oxide nanowires by vapor transport," Adv. Mater. 2001, 13, 113-116.
23. Yan, H. Q.; He, R. R.; Pham, J.; Yang, P. D., "Morphogenesis of one-dimensional ZnO nano- and microcrystals," Adv. Mater. 2003, 15, 402-405.
24. Quintana, M.; Edvinsson, T.; Hagfeldt, A.; Boschloo, G., "Comparison of dye-sensitized ZnO and TiO2 solar cells: Studies of charge transport and carrier lifetime," J. Phys. Chem. C 2007, 111, 1035-1041.
25. Yen, C. Y.; Lin, Y. F.; Liao, S. H.; Weng, C. C.; Huang, C. C.; Hsiao, Y. H.; Ma, C. C. M.; Chang, M. C.; Shao, H.; Tsai, M. C.; Hsieh, C. K.; Tsai, C. H.; Weng, F. B., "Preparation and properties of a carbon nanotube-based nanocomposite photoanode for dye-sensitized solar cells," Nanotechnology 2008, 19, 375305.
26. Pang, S.; Xie, T. F.; Zhang, Y.; Wei, X.; Yang, M.; Wang, D. J., "Research on the effect of different sizes of ZnO nanorods on the efficiency of TiO2-based dye-sensitized solar cells," J. Phys. Chem. C 2007, 111, 18417-18422.
27. Hsiao, P. T.; Wang, K. P.; Cheng, C. W.; Teng, H. S., "Nanocrystalline anatase TiO2 derived from a titanate-directed route for dye-sensitized solar cells," J. Photochem. Photobiol., A 2007, 188, 19-24.
28. Kim, Y.; Yoo, B. J.; Vittal, R.; Lee, Y.; Park, N. G.; Kim, K. J., "Low-temperature oxygen plasma treatment of TiO2 film for enhanced performance of dye-sensitized solar cells," Journal of Power Sources 2008, 175, 914-919.
29. Wei, T. C.; Wan, C. C.; Wang, Y. Y., "Poly(N-vinyl-2-pyrrolidone)-capped platinum nanoclusters on indium-tin oxide glass as counterelectrode for dye-sensitized solar cells," Appl. Phys. Lett. 2006, 88, 103122.
30. Zhang, Z. P.; Zakeeruddin, S. M.; O'Regan, B. C.; Humphry-Baker, R.; Grätzel, M., "Influence of 4-guanidinobutyric acid as coadsorbent in reducing recombination in dye-sensitized solar cells," J. Phys. Chem. B 2005, 109, 21818-21824.
31. Tan, B.; Wu, Y. Y., "Dye-sensitized solar cells based on anatase TiO2 nanoparticle/nanowire composites," J. Phys. Chem. B 2006, 110, 15932-15938.
32. Millington, K. R.; Fincher, K. W.; King, A. L., "Mordant dyes as sensitisers in dye-sensitised solar cells," Sol. Energy Mater. Sol. Cells 2007, 91, 1618-1630.
33. Kim, S.; Lee, J. K.; Kang, S. O.; Ko, J.; Yum, J. H.; Fantacci, S.; De Angelis, F.; Di Censo, D.; Nazeeruddin, M. K.; Grätzel, M., "Molecular engineering of organic sensitizers for solar cell applications," J. Am. Chem. Soc. 2006, 128, 16701-16707.
34. Kusama, H.; Arakawa, H., "Influence of pyrimidine additives in electrolytic solution on dye-sensitized solar cell performance," J. Photochem. Photobiol., A 2003, 160, 171-179.
35. Ito, S.; Chen, P.; Comte, P.; Nazeeruddin, M. K.; Liska, P.; Péchy, P.; Grätzel, M., "Fabrication of screen-printing pastes from TiO2 powders for dye-sensitised solar cells," Prog. Photovoltaics 2007, 15, 603-612.
36. Wang, Z. S.; Kawauchi, H.; Kashima, T.; Arakawa, H., "Significant influence of TiO2 photoelectrode morphology on the energy conversion efficiency of N719 dye-sensitized solar cell," Coordination Chemistry Reviews 2004, 248, 1381-1389.
37. Ito, S.; Murakami, T. N.; Comte, P.; Liska, P.; Grätzel, C.; Nazeeruddin, M. K.; Grätzel, M., "Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10%," Thin Solid Films 2008, 516, 4613-4619.
38. Ferber, J.; Stangl, R.; Luther, J., "An electrical model of the dye-sensitized solar cell," Sol. Energy Mater. Sol. Cells 1998, 53, 29-54.
39. Forro, L.; Chauvet, O.; Emin, D.; Zuppiroli, L.; Berger, H.; Lévy, F., "High-mobility n-type charge-carriers in large single-crystals of anatase TiO2," J. Appl. Phys. 1994, 75, 633-635.
40. Seager, C. H.; Myers, S. M., "Quantitative comparisons of dissolved hydrogen density and the electrical and optical properties of ZnO," J. Appl. Phys. 2003, 94, 2888-2894.
Chapter 7
1. Osterwalder, U.; Mongiat, S.; Herzog, B., "In vitro and in vivo assessment of UVA protection of sunscreens with traditional actives ZnO and avobenzone and new UV absorbers MBBT and BEMT," Journal of the American Academy of Dermatology 2004, 50, P524.
2. Nasu, A.; Otsubo, Y., "Rheology and UV-protecting properties of complex suspensions of titanium dioxides and zinc oxides," Journal of Colloid and Interface Science 2007, 310, 617-623.
3. Dorfman, A.; Kumar, N.; Hahm, J., "Nanoscale ZnO-enhanced fluorescence detection of protein interactions," Adv. Mater. 2006, 18, 2685-2690.
4. Hanley, C.; Layne, J.; Punnoose, A.; Reddy, K. M.; Coombs, I.; Coombs, A.; Feris, K.; Wingett, D., "Preferential killing of cancer cells and activated human T cells using ZnO nanoparticles," Nanotechnology 2008, 19, 295103.
5. Lin, W. S.; Xu, Y.; Huang, C. C.; Ma, Y. F.; Shannon, K. B.; Chen, D. R.; Huang, Y. W., "Toxicity of nano- and micro-sized ZnO particles in human lung epithelial cells," J. Nanopart. Res. 2009, 11, 25-39.
6. Dalpian, G. M.; Chelikowsky, J. R., "Self-purification in semiconductor nanocrystals," Phys. Rev. Lett. 2006, 96, 226802.
7. Dietl, T.; Ohno, H.; Matsukura, F.; Cibert, J.; Ferrand, D., "Zener model description of ferromagnetism in zinc-blende magnetic semiconductors," Science 2000, 287, 1019-1022.
8. Sato, K.; Katayama-Yoshida, H., "Ferromagnetism in a transition metal atom doped ZnO," Physica E-Low-Dimensional Systems & Nanostructures 2001, 10, 251-255.
9. Lin, C. Y.; Wang, W. H.; Lee, C. S.; Sun, K. W.; Suen, Y. W., "Magnetophotoluminescence properties of Co-doped ZnO nanorods," Appl. Phys. Lett. 2009, 94, 151909.
10. Yao, T.; Yan, W. S.; Sun, Z. H.; Pan, Z. Y.; He, B.; Jiang, Y.; Wei, H.; Nomura, M.; Xie, Y.; Xie, Y. N.; Hu, T. D.; Wei, S. Q., "High-temperature ferromagnetism of hybrid nanostructure Ag-Zn0.92Co0.08O dilute magnetic semiconductor," J. Phys. Chem. C 2009, 113, 3581-3585.
11. Gautam, U. K.; Panchakarla, L. S.; Dierre, B.; Fang, X. S.; Bando, Y.; Sekiguchi, T.; Govindaraj, A.; Golberg, D.; Rao, C. N. R., "Solvothermal synthesis, cathodoluminescence, and field-emission properties of pure and N-doped ZnO nanobullets," Adv. Funct. Mater. 2009, 19, 131-140.
12. Suslick, K. S., "Sonochemistry," Science 1990, 247, 1439-1445.
13. Shchukin, D. G.; Möhwald, H., "Self-repairing coatings containing active nanoreservoirs," Small 2007, 3, 926-943.
14. Xiong, H. M.; Shchukin, D. G.; Möhwald, H.; Xu, Y.; Xia, Y. Y., "Sonochemical synthesis of highly luminescent Zinc oxide nanoparticles doped with Magnesium(II)," Angew. Chem. Int. Ed. 2009, 48, 2727-2731.