簡易檢索 / 詳目顯示

研究生: 曾傑民
Tseng, Chieh-Min
論文名稱: 晶格扭曲對面心立方高熵合金與傳統合金機械行為之影響
Effect of Lattice Distortion on Mechanical Behavior of Face-Centered Cubic High-Entropy Alloy and Conventional Alloy
指導教授: 林樹均
Lin, Su-Jien
口試委員: 李勝隆
Lee, Sheng-Long
張守一
Chang, Shou-Yi
洪健龍
Hung, Jian Lung
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 115
中文關鍵詞: 高熵合金晶格扭曲異向性變形機制
外文關鍵詞: High-entropy alloy, Lattice distortion, Anisotropy, Deformation mechanism
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究根據晶格扭曲程度設計了五款面心立方(Face-Centered Cubic, FCC)合金,分別為Ni (1A)、Ni-2 at.% W (1A2)、Ni-4 at.% W (1A4)、CrFeNi (3A)、CoCrFeMnNi (5A),並各自於不同狀態及溫度下進行機械性質的量測、變形行為的觀察,以及探討不同方向晶粒之塑性變形行為的差異,希望藉此釐清高熵合金所特有嚴重扭曲之晶格與其優異機械性能表現之間的關係。結果顯示,1A至5A隨著溶質原子的添加,晶格扭曲程度越趨嚴重,加上添加元素特性的影響,使得疊差能下降而讓分解的差排越難交叉滑移因此而提升加工硬化能力,進而減弱了晶體塑性變形異向性。拉伸性質方面,從1A、1A2到1A4,隨著W的添加,強度以及延展性都能有明顯的提升,展現出顯著的固溶強化效果。3A具有五種合金中最大的強度,但延展性最差。5A的強度比3A稍弱一點,但擁有較優異的延展性。透過應變硬化速率、應變硬化指數、Modified C-J analysis來進行分析,證實了1A至5A在越低溫環境具有越優異之應變硬化能力;且1A4、3A及5A在低溫下除了差排滑移以外,還能以變形雙晶的機制提供額外的加工強化並展現出更優異之機械性能。


    FCC high-entropy alloy (HEA) CoCrFeMnNi exhibits outstanding tensile properties at room temperature and even better at cryogenic temperature. So far, by our limited knowledge, it could be roughly deduced that the deformation behavior of the CoCrFeMnNi HEA is related to its low stacking fault energy and the significant effect of solid solution strengthening. However, it’s still unclear that how the severely distorted lattice structure would alter the deformation behavior in the CoCrFeMnNi HEA. In this study, Ni (1A), Ni-2 at.%W (1A2), Ni-4 at.%W (1A4), CrFeNi (3A), and CoCrFeMnNi (5A) were designed based on the degree of lattice distortion. The results showed that the crystallographic plastic anisotropy of 5A is the weakest, which was also discussed with the relationship between lattice distortion and earing phenomenon. As for the tensile properties, from 1A, 1A2, and 1A4, with the addition of W, the strength and ductility could be significantly improved, showing a remarkable solid solution strengthening effect. 3A has the highest strength among the five alloys, but the ductility is the worst, while the strength of 5A is slightly weaker than that of 3A, but it has superior ductility. Strain hardening rate, strain hardening exponent, and modified C-J analysis were investigated in order to further understand the strain hardening behavior as the temperature decreases, and it’s confirmed that strain hardening ability of 1A to 5A all became better at lower temperature.

    壹、 前言 1 貳、 文獻回顧 4 2.1 高熵合金的起源 4 2.2 高熵合金之四大效應[24] 5 2.2.1 高熵效應 5 2.2.2 遲緩擴散效應 5 2.2.3 嚴重晶格扭曲效應 7 2.2.4 雞尾酒效應 10 2.3 等莫耳CoCrFeMnNi FCC高熵合金 11 2.3.1 CoCrFeMnNi HEA的疊差能 11 2.3.2 CoCrFeMnNi HEA的機械性質與變形行為[6] 12 2.4 疊差能之量測 16 2.4.1 TEM量測法[27] 16 2.4.2 XRD量測法 19 2.5 塑性變形之異向性 20 2.5.1 深衝製程與凸耳現象 20 2.5.2 CoCrFeMnNi HEA的深衝行為[22] 22 2.6 拉伸曲線的應變硬化行為分析 25 2.6.1 應力應變曲線圖 25 2.6.2 加工硬化速率 26 2.6.3 應變硬化指數 27 2.6.4 Crussard & Jaoul (C-J) Analysis [35] 31 參、 實驗方法 35 3.1 合金成分 35 3.2 實驗流程 38 3.3 合金製備 39 3.3.1 真空電弧熔煉 39 3.3.2 均質化熱處理 39 3.3.3 冷輥軋 40 3.3.4 退火熱處理 40 3.4 X-ray繞射分析 41 3.5 微結構觀察 42 3.5.1 光學顯微鏡 (Optical Microscope, OM) 42 3.5.2 掃描式電子顯微鏡 (Scanning Electron Microscope, SEM) 42 3.5.3 電子背向散射繞射分析 (Electron Backscattered Diffraction, EBSD) 43 3.6 硬度量測 44 3.7 室溫及低溫拉伸測試 45 3.8 疊差能之XRD量測法 48 3.9 晶粒應變量測 49 肆、 結果與討論 51 4.1 各合金之SEM及EDX分析 51 4.1.1 1A2及1A4 51 4.1.2 3A 54 4.1.3 5A 55 4.2 輥軋後退火之硬度及微結構 56 4.2.1 硬度 56 4.2.2 微結構 63 4.3 晶體塑性變形異向性 67 4.3.1 晶粒應變分析 67 4.3.2 討論 68 4.4 不同溫度下之拉伸測試 75 4.4.1 拉伸性質 75 4.4.2 微結構 80 4.4.3 應變硬化行為 87 4.4.4 應變硬化指數 91 4.4.5 Modified Crussard & Jaoul (C-J) Analysis 99 伍、 結論 103 陸、 研究貢獻 106 柒、 建議未來工作 107 捌、 參考文獻 108

    [1] J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang, Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes. Advanced Engineering Materials, 2004. 6(5): p. 299-303.
    [2] J.W. Yeh, Recent progress in high-entropy alloys. Annales de Chimie Science des Matériaux, 2006. 31(6): p. 633-648.
    [3] Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, and Z.P. Lu, Microstructures and properties of high-entropy alloys. Progress in Materials Science, 2014. 61: p. 1-93.
    [4] S. Ranganathan, Alloyed pleasures: Multimetallic cocktails. Vol. 85. 2003.
    [5] O.N. Senkov, G.B. Wilks, J.M. Scott, and D.B. Miracle, Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics, 2011. 19(5): p. 698-706.
    [6] F. Otto, A. Dlouhý, C. Somsen, H. Bei, G. Eggeler, and E.P. George, The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy. Acta Materialia, 2013. 61(15): p. 5743-5755.
    [7] M.H. Tsai and J.W. Yeh, High-Entropy Alloys: A Critical Review. Materials Research Letters, 2014. 2(3): p. 107-123.
    [8] Y. Deng, C.C. Tasan, K.G. Pradeep, H. Springer, A. Kostka, and D. Raabe, Design of a twinning-induced plasticity high entropy alloy. Acta Materialia, 2015. 94: p. 124-133.
    [9] N. Read, W. Wang, K. Essa, and M.M. Attallah, Selective laser melting of AlSi10Mg alloy: Process optimisation and mechanical properties development. Materials & Design (1980-2015), 2015. 65: p. 417-424.
    [10] A. Takeuchi, N. Chen, T. Wada, W. Zhang, Y. Yokoyama, A. Inoue, and J.W. Yeh, Alloy Design for High-Entropy Bulk Glassy Alloys. Procedia Engineering, 2012. 36: p. 226-234.
    [11] Y. Zhang, X. Yang, and P.K.J.J. Liaw, Alloy Design and Properties Optimization of High-Entropy Alloys. 2012. 64(7): p. 830-838.
    [12] C. Zhang, F. Zhang, S. Chen, and W. Cao, Computational Thermodynamics Aided High-Entropy Alloy Design. JOM, 2012. 64(7): p. 839-845.
    [13] J.W. Yeh, Alloy Design Strategies and Future Trends in High-Entropy Alloys. JOM, 2013. 65(12): p. 1759-1771.
    [14] B. Cantor, I.T.H. Chang, P. Knight, and A.J.B. Vincent, Microstructural development in equiatomic multicomponent alloys. Materials Science and Engineering: A, 2004. 375-377: p. 213-218.
    [15] A.J. Zaddach, C. Niu, C.C. Koch, and D.L. Irving, Mechanical Properties and Stacking Fault Energies of NiFeCrCoMn High-Entropy Alloy. Jom, 2013. 65(12): p. 1780-1789.
    [16] S. Huang, W. Li, S. Lu, F. Tian, J. Shen, E. Holmström, and L. Vitos, Temperature dependent stacking fault energy of FeCrCoNiMn high entropy alloy. Scripta Materialia, 2015. 108: p. 44-47.
    [17] S.R.S. Serope Kalpakjian, Manufacturing Engineering and Technology. 4th ed. 2001, Upper Saddle River, New Jersy: Prentice-Hall, Inc. 404-420.
    [18] J.D. Kiely and J.E. Houston, Nanomechanical properties of Au (111), (001), and (110) surfaces. Physical Review B, 1998. 57(19): p. 12588-12594.
    [19] W. Wang and K. Lu, Nanoindentation measurement of hardness and modulus anisotropy in Ni3Al single crystals. Journal of Materials Research, 2011. 17(09): p. 2314-2320.
    [20] J.J. Vlassak, M. Ciavarella, J.R. Barber, and X. Wang, The indentation modulus of elastically anisotropic materials for indenters of arbitrary shape. Journal of the Mechanics and Physics of Solids, 2003. 51(9): p. 1701-1721.
    [21] T.L. Li, Y.F. Gao, H. Bei, and E.P. George, Indentation Schmid factor and orientation dependence of nanoindentation pop-in behavior of NiAl single crystals. Journal of the Mechanics and Physics of Solids, 2011. 59(6): p. 1147-1162.
    [22] J.W. Bae, J. Moon, M.J. Jang, D.H. Ahn, S.H. Joo, J. Jung, D. Yim, and H.S. Kim, Deep Drawing Behavior of CoCrFeMnNi High-Entropy Alloys. Metallurgical and Materials Transactions A, 2017. 48(9): p. 4111-4120.
    [23] A. Inoue, Bulk Amorphous Alloys: Preparation and Fundamental Characteristics. 1998: Trans Tech Publications.
    [24] J.W. Yeh, Physical Metallurgy, in High-Entropy Alloys. 2016. p. 51-113.
    [25] J.W. Yeh, S.Y. Chang, Y.D. Hong, S.K. Chen, and S.J. Lin, Anomalous decrease in X-ray diffraction intensities of Cu–Ni–Al–Co–Cr–Fe–Si alloy systems with multi-principal elements. Materials Chemistry and Physics, 2007. 103(1): p. 41-46.
    [26] G. Laplanche, A. Kostka, O.M. Horst, G. Eggeler, and E.P. George, Microstructure evolution and critical stress for twinning in the CrMnFeCoNi high-entropy alloy. Acta Materialia, 2016. 118: p. 152-163.
    [27] D. Hull and D.J. Bacon, Jogs and the Intersection of Dislocations, in Introduction to Dislocations. 2011. p. 137-155.
    [28] H.M. Otte, Measurement of Stacking‐Fault Energies by X‐Ray Diffraction. Journal of Applied Physics, 1967. 38(1): p. 217-222.
    [29] R.P. Reed and R.E. Schramm, Relationship between stacking‐fault energy and x‐ray measurements of stacking‐fault probability and microstrain. Journal of Applied Physics, 1974. 45(11): p. 4705-4711.
    [30] B.E. Warren, X-ray studies of deformed metals. Progress in Metal Physics, 1959. 8: p. 147-202.
    [31] https://www.tes.com/lessons/j_Mn2B9X8Al9vA/spinning-deep-drawing-and-bending.
    [32] N. Kishor and D. Ravi Kumar, Optimization of initial blank shape to minimize earing in deep drawing using finite element method. Journal of Materials Processing Technology, 2002. 130-131: p. 20-30.
    [33] J. Savoie, J.J. Jonas, S.R. Macewen, and R. Perrin, Evolution of r-Value During the Tensile Deformation of Aluminium. Textures and Microstructures, 1995. 23(3): p. 149-171.
    [34] https://mechanicalc.com/reference/mechanical-properties-of-materials.
    [35] R.E. Reed-Hill, W.R. Cribb, and S.N. Monteiro, Concerning the analysis of tensile stress-strain data using log dσ/dεp versus log σ diagrams. Metallurgical Transactions, 1973. 4(11): p. 2665-2667.
    [36] P. Ludwik, Elemente der Technologischen Mechanik. 1909.
    [37] J.H. Hollomon, Metall. Technol., 1945: p. 268-290.
    [38] G.E. Dieter, Mechanical Metallurgy 1986, New York: McGraw‐Hill.
    [39] M. Umemoto, K. Tsuchiya, Z.G. Liu, and S. Sugimoto, Tensile stress-strain analysis of single-structure steels. Metallurgical and Materials Transactions A, 2000. 31(7): p. 1785-1794.
    [40] G.C. Soares, M.C.M. Rodrigues, and L.d.A. Santos, Influence of Temperature on Mechanical Properties, Fracture Morphology and Strain Hardening Behavior of a 304 Stainless Steel. Materials Research, 2017. 20(suppl 2): p. 141-151.
    [41] C.C. Yen, C.C. Wang, S.Y. Chang, S.J. Lin, J.W. Yeh, and Y.C. Lo, Unpublished work. 2019.
    [42] C. Kittel, Introduction to Solid State Physics. 7 th ed. 1996, New York, Chichester, Brisbane, Toronto, Singapore: John Wiley & Sons, Inc.
    [43] F. Otto, N.L. Hanold, and E.P. George, Microstructural evolution after thermomechanical processing in an equiatomic, single-phase CoCrFeMnNi high-entropy alloy with special focus on twin boundaries. Intermetallics, 2014. 54: p. 39-48.
    [44] J.M. Popplewell and J. Crane, Order-strengthening in Cu−Al alloys. Metallurgical and Materials Transactions B, 1971. 2(12): p. 3411-3420.
    [45] Y. Tomokiyo, N. Kuwano, and T. Eguchi, Short Range Ordering in Deformed αCu–Al Alloys. Transactions of the Japan Institute of Metals, 1975. 16(8): p. 489-499.
    [46] J.M. Vitek and H. Warlimont, The mechanism of anneal hardening in dilute copper alloys. Metallurgical Transactions A, 1979. 10(12): p. 1889-1892.
    [47] G. Laplanche, S. Berglund, C. Reinhart, A. Kostka, F. Fox, and E.P. George, Phase stability and kinetics of σ-phase precipitation in CrMnFeCoNi high-entropy alloys. Acta Materialia, 2018. 161: p. 338-351.
    [48] W.F. Hosford Jr, R.L. Fleischer, and W.A. Backofen, Tensile deformation of aluminum single crystals at low temperatures. Vol. 8. 1960. 187–199.
    [49] I.V. Kireeva, Y.I. Chumlyakov, Z.V. Pobedennaya, I.V. Kuksgausen, and I. Karaman, Orientation dependence of twinning in single crystalline CoCrFeMnNi high-entropy alloy. Materials Science and Engineering: A, 2017. 705: p. 176-181.
    [50] Z. Wu, H. Bei, G.M. Pharr, and E.P. George, Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures. Acta Materialia, 2014. 81: p. 428-441.
    [51] K. Shinohara, K. Yasuda, M. Yamada, and C. Kinoshita, Universal method for evaluating work-hardening exponent of metals using ultra-microhardness tests. Acta Metallurgica et Materialia, 1994. 42(11): p. 3909-3915.

    QR CODE