研究生: |
李威廷 Lee, Wei-Ting |
---|---|
論文名稱: |
雙鉬五重鍵與主族試劑的反應研究 Reactions of the Mo-Mo Quintuple Bond with Main Group Reagents |
指導教授: |
蔡易州
Tsai, Yi-Chou |
口試委員: |
鄭建鴻
王朝諺 |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 134 |
中文關鍵詞: | 雙鉬五重鍵反應性 |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗室以雙氮基脒Li[HC(N-2,6-iPr2C6H3)2]為配基合成出第一個雙鉬五重鍵錯合物Mo2[μ-η2-HC(N-2,6-iPr2C6H3)2]2 (1),其具有低價數、低配位的特性,使其對小分子有豐富多變的反應性。錯合物1與一當量的二苯基鋅反應,可得錯合物(m-ZnC6H5)(1-C6H5)Mo2[m-2-HC(N-2,6-iPr2C6H3)2]2 (2),一分子的二苯基鋅進行碳鋅加成反應,苯基鋅以架橋形式配位於雙鉬金屬間。將錯合物2與親電試劑溴化甲苯進一步反應,得到錯合物[m-2-HC(N-2,6-iPr2C6H3)2]Mo[-2:2-C6H5
Zn(C6H5)Br]Mo[m-2-HC(N-2,6-iPr2C6H3)(N-2-iPr-6-CH(1-CH2)CH3-C6H3)] (3),其有一溴原子橋接在鉬原子與鋅原子之間,且有一異丙基上甲基進行碳氫鍵的氧化加成反應。錯合物1也可與四當量的二苯基鋅反應,兩分子的苯基分別以端點形式鍵結於鉬上,形成錯合物(1-C6H5)2Mo2[m-2-HC(N-2,6-iPr2C6H3)2]2 (5)。此外,錯合物1與兩當量的二甲基鋅反應,得到錯合物(m-2:1-Zn(CH3)2)2Mo2[m-
2-HC(N-2,6-iPr2C6H3)2]2 (6),其具有兩分子的二甲基鋅配位至雙鉬金屬上,形成兩片架橋配基;若將錯合物6溶於溶劑,會立刻轉變為錯合物(1-CH3)2(THF)Mo2[m-2-HC(N-2,6-iPr2C6H3)2]2 (7),兩分子的甲基以端點形式鍵結於鉬上,且其中一個甲基上的氫原子與鉬金屬間存在著微弱的agostic作用。
另外,錯合物1與兩當量的三甲基鋁反應,會形成一非常不穩定的錯合物[m-(CH3)2Al(CH3)2]Mo[m-2-HC(N-2,6-iPr2C6H3)(N-2-iPr-6-CH(1-CH2)CH3-C6H3)]
(m-H)Al(CH3)[m-2-HC(N-2,6-iPr2C6H3)2]Mo(1-CH3) (8),一分子的三甲基鋁進行碳-鋁加成反應至鉬鉬金屬鍵上形成架橋配基,且有一鉬金屬與雙氮基脒配基上氮原子的鍵結斷裂,並與鋁原子生成新的氮鋁鍵,最後還有一異丙基上甲基進行了碳氫鍵活化配位於鋁原子上。錯合物8於室溫下會立刻轉變為一中間產物9,其只要接觸到含有氧原子的溶劑即會形成錯合物Mo(Solvent)[m-2-HC(N-2,6-iPr2C6H3)2](m-CH3)Mo[m-2-HC(N-2,6-iPr2C6H3)(N-2-
iPr-6-CH(1-CH2)CH3-C6H3)] (Solvent = THF (10), Et2O (11)),具有一個甲基橋接於雙鉬金屬間,並有一異丙基上甲基進行碳氫鍵活化配位於鉬金屬上。將錯合物1與四當量的三乙基鋁反應,會有一分子的三乙基鋁進行碳-鋁加成反應並以架橋形式配位至雙鉬金屬鍵上,且具有兩個乙烯基分別配位於鉬金屬上,形成錯合物(2-C2H4)Mo[m-2-HC(N-2,6-iPr2C6H3)(N-2-iPr-6-CH(1-CH2)CH3-C6H3)](m-H)
Al(C2H5)[m-2-HC(N-2,6-iPr2C6H3)2]Mo(2-C2H4) (12)。
錯合物1若與一當量的苯基矽烷反應,則形成錯合物[m-Si(H)C6H5]Mo2[m-2-HC(N-2,6-iPr2C6H3)2]2 (13) ,有一分子的苯基矽烷進行氧化加成至雙鉬金屬上,並脫去一分子的氫氣,且錯合物13可活化微量的水分子進行氧化加成打斷氫氧鍵,形成錯合物(1-H)(1-OH)[m-Si(H)C6H5]Mo2[m-2-HC(N-2,6-iPr2C6H3)2]2 (14),此外,錯合物13可利用降溫1H-NMR實驗証實其具有一流變行為,並推算出流變過程的速率常速為88.8 s1及活化能為10.59 kcal/mol,而錯合物14則可利用升溫1H-NMR實驗証實也具有一流變行為,同樣可推算出流變過程的速率常速為56.61 s1及活化能為15.75 kcal/mol。除此之外,將錯合物1與一當量的二苯基鍺烷進行反應,一分子的二苯基鍺烷進行氧化加成並脫去一分子的氫分子,形成鍺烯以架橋形式作為配基配位於雙鉬金屬間,形成錯合物[m-Ge(C6H5)2]Mo2[m-2-HC(N-2,6-iPr2C6H3)2]2 (15)。
若將錯合物1與三當量的異氰酸苯酯反應,產生錯合物(m-1:2-PhNCO)(m-2:2-CON(Ph)CONPh)Mo2[m-2-HC(N-2,6-iPr2C6H3)2]2
(16),具有一分子的異氰酸苯酯配位於雙鉬金屬上,反向位置有另兩分子異氰酸苯酯經過碳氮偶合配位於雙鉬上;若與四當量的異氰酸苯酯反應,則有四分子異氰酸苯酯分別兩兩進行碳氮偶合配位於雙鉬上,形成錯合物[m-2:2-CON(Ph)C(O)NPh][m-2:2-CON(Ph)CONPh]Mo2[m-2-HC(N-2,6-iPr2
C6H3)2]2 (17)。此外,錯合物1能有效的催化異氰酸苯酯進行三聚合環化反應,產生1,3,5-異氰酸三苯基酯。
The low-coordinate and low-valent quintuple bonded dimolybdenum complex, Mo2[μ-η2-HC(N-2,6-iPr2C6H3)2]2 (1), displays remarkable reactivity toward main group reagents. Undergo an oxidative addition of 1 equiv of diphenylzinc to the Mo-Mo quintuple bond of 1, the dimolybdenum complex, (m-ZnC6H5)(1-C6H5)Mo2[m-2-HC(N-2,6-iPr2C6H3)2]2 (2) is afforded. Subsequent treatment of 2 with 1 equiv of benzyl bromide gives a novel dimolybdenum complex, [m-2-HC(N-2,6-iPr2C6H3)2]Mo[-2:2-C6H5Zn(C6H5)Br]Mo[m-2-HC(N-2,6-iPr2C6H3)(N-2-iPr-6-CH(1-CH2)CH3-C6H3)] (3), where one Br atom coordinates between molybdenum and zinc and the molybdenum center accompanies with C-H bond activation of methyl groups. Addition of 4 equiv of diphenylzinc to 1 leads to the formation of the quadruply-bonded dimolybdenum complex, (1-C6H5)2Mo2[m-2-HC(N-2,6-iPr2C6H3)2]2 (5), which functionalized of the Mo-Mo quintuple bond by two phenyl groups. Reaction of 1 with 2 equiv of dimethylzinc affords (m-2:1-Zn(CH3)2)2Mo2[m-2-HC(N-2,6-iPr2C6H3)2]2 (6), which is unstable in solvent at room temperature, it transforms into (1-CH3)2(THF)Mo2[m-2-HC(N-2,6-iPr2C6H3)2]2 (7) quickly. Each molybdenum has one phenyl group coordinates on it, and there is weak agostic interaction between the hydrogen atom of methyl group and the molybdenum center.
Treatment of 1 with 2 equiv of trimethylaluminum gives the unstable complex, [m-(CH3)2Al(CH3)2]Mo[m-2-HC(N-2,6-iPr2C6H3)(N-2-iPr-6-CH(1-CH2)CH3-C6H3)]
(m-H)Al(CH3)[m-2-HC(N-2,6-iPr2C6H3)2]Mo(1-CH3) (8). The formation of 8 is through the carboalumination of 1 equiv of trimethylaluminum to the Mo-Mo quintuple bond accompanies with a C-H bond activation of methyl group. Complex 8 changes into the intermediate complex 9, which then transforms into Mo(Solvent)[m-2-HC(N-2,6-iPr2C6H3)2](m-CH3)Mo[m-2-HC(N-2,6-iPr2C6H3)(N-2-
iPr-6-CH(1-CH2)CH3-C6H3)] (Solvent = THF (10), Et2O (11)) when it contacts solvents like tetrahydrofuran or ether. Complex 10 and 11 contain one methyl group bridging between two molybdenum centers and there is C-H bond activation of methyl group to the molybdenum. Reaction of 1 with 4 equiv of triethylaluminum gives (2-C2H4)Mo[m-2-HC(N-2,6-iPr2C6H3)(N-2-iPr-6-CH(1-CH2)CH3-C6H3)](m-
H)Al(C2H5)[m-2-HC(N-2,6-iPr2C6H3)2]Mo(2-C2H4) (12). The formation of 12 is through the carboalumination of 1 equiv of triethylaluminum to the Mo-Mo quintuple bond accompanies with a C-H bond activation of methyl group, and there are two vinyl groups coordinate to the molybdenum centers.
Treatment of 1 equiv of phenylsilane to 1 gives rise to the formation of [m-Si(H)C6H5]Mo2[m-2-HC(N-2,6-iPr2C6H3)2]2 (13), which is formed via an oxidative addition of one molecular phenylsilane to the dimolybdenum quintuple bond, and then releases one molecular hydrogen gas. Besides, Complex 13 can activate a small amount of water to give the novel product, (1-H)(1-OH)[m-Si(H)C6H5]Mo2[m-2-HC(N-2,6-iPr2C6H3)2]2 (14). Complex 13 and 14 exhibit the fluxional behavior, which have been characterized by variable temperature NMR. Introduction of 1 equiv of diphenylgermane to 1 leads to the formation of a lantern-type quadruply-bonded dimolybdenum complex, [m-Ge(C6H5)2]Mo2[m-2-HC(N-2,6-iPr2C6H3)2]2 (15).
Treatment of 1 with 3 equiv and 4 equiv of phenylisocyanate affords (m-1:2-PhNCO)(m-2:2-CON(Ph)CONPh)Mo2[m-2-HC(N-2,6-iPr2C6H3)2]2 (16) and [m-2:2-CON(Ph)C(O)NPh][m-2:2-CON(Ph)CONPh]Mo2[m-2-HC (N-2,6-iPr2
C6H3)2]2 (17), respectively. Complex 16 is formed via a C-N coupling in a “head-to-tail” mode, and one molecular phenylisocyanate coordinates on molybdenum centers. On the other hand, via C-N coupling, complex 17 has two pairs of two molecules of phenylisocyanate coordinate to the molybdenum centers. Beside, 1 can effectively catalyzes the cyclotrimerization of phenylisocyanate under mild conditions, affords high yield of 1,3,5-triphenylisocyanurate.
(1) Alvarez, S. Coord. Chem. Rev. 1999, 13, 193.
(2) Cummins, C. C. Prog. Inorg. Chem. 1998, 47, 685.
(3) Laplaza, C. E.; Cummins, C. C. Science 1995, 268, 861.
(4) Laplaza, C. E.; Odom, A. L.; Davis, W. M.; Cummins, C. C.; Protasiewicz,
J. D. J. Am.Chem. Soc. 1995, 117, 4999.
(5) Johnson, A. R.; Davis, W. M.; Cummins, C. C.; Serron, S.; Nolan, S. P.;
Musaev, D. G.; Morokuma, K. J. Am.Chem. Soc. 1998, 120, 2071.
(6) Laplaza, C. E.; Davis, W. M.; Cummins, C. C. Angew. Chem. Int. Ed. 1995,
34, 2042.
(7) Cherry, J.-P. F.; Stephens, F. H.; Johnson, M. J. A.; Diaconescu, P. L.;
Cummins, C. C. Inorg. Chem. 2001, 40, 6860.
(8) Cossairt, B. M.; Cummins, C. C. J. Am.Chem. Soc. 2009, 131, 15501.
(9) Curley, J. J.; Piro, N. A.; Cummins, C. C. Inorg. Chem. 2009, 48, 9599.
(10) Tsai, Y. C.; Wang, P.-Y.; Chen, S.-A.; Chen, J.-M. J. Am.Chem. Soc. 2007,
129, 8066.
(11) Tsai, Y.-C.; Wang, P.-Y.; Lin, K.-M.; Chen, S.-A.; Chen, J.-M. Chem.
Commun. 2008, 205.
(12) Cotton, F. A.; Curtis, N. F.; Harris, C. B.; Johnson, B. F. G.; Lippard, S. J.;
Mague, J. T.; Robinson, W. R.; Wood, J. S. science 1964, 145, 1305.
(13) Cotton, F. A.; Murillo, C. A.; Walton, R. A. Multiple Bonds Between Metal
Atoms; Springer, Berlin, 2005.
(14) Lawton, D.; Mason, R. J. Am.Chem. Soc. 1965, 87, 921.
(15) Huq, F.; Mowat, W.; Shortland, A.; Skapski, A. C.; Wilkinson, G. Journal
of the Chemical Society D: Chemical Communications 1971, 1079.
(16) Strutz, H.; Schrock, R. R. organometallics 1984, 3, 1600.
(17) Chacon, S. T.; Chisholm, M. H.; Eisenstein, O.; Huffman, J. C. J.Am.Chem.
Soc. 1992, 114, 8497.
(18) Chisholm, M. H.; Huffman, J. C.; Hampden-Smith, M. J. J. Am.Chem. Soc.
1989, 111, 5284.
(19) Chisholm, M. H.; Hoffman, D. M.; Huffman, J. C. organometallics 1985, 4,
986.
(20) Canich, J. A. M.; Cotton, F. A.; Dunbar, K. R.; Falvello, L. R. Inorg. Chem.
1988, 27, 805.
(21) Yamashita, Y.; Salter, M. M.; Aoyama, K.; Kobayashi, S. Angew Chem Int
Ed Engl 2006, 45, 3816.
(22) Nguyen, T.; Sutton, A. D.; Braynda, M.; Fettinger, J. C.; Long, G. J.; Power, P. P. Science 2005, 310, 844.
(23) Ni, C.; Ellis, B. D.; Long, G. J.; Power, P. P. Chem Commun (Camb) 2009,
2332.
(24) Noor, A.; Glatz, G.; Müller, R.; Kaupp, M.; Demeshko, S.; Kempe, R.
Nature Chemistry 2009, 1, 322.
(25) Schwarzmaier, C.; Noor, A.; Glatz, G.; Zabel, M.; Timoshkin, A. Y.;
Cossairt, B. M.; Cummins, C. C.; Kempe, R.; Scheer, M. Angew Chem Int Ed Engl 2011, 50, 7283.
(26) Noor, A.; Sobgwi Tamne, E.; Qayyum, S.; Bauer, T.; Kempe, R. Chem.
Eur. J. 2011, 17, 6900.
(27) Hsu, C. W.; Yu, J. S.; Yen, C. H.; Lee, G. H.; Wang, Y.; Tsai, Y. C. Angew
Chem Int Ed Engl 2008, 47, 9933.
(28) 顏君旭 國立清華大學化學研究所碩士論文 2009.
(29) Efremov, Y. M.; Samoilova, A. N.; Kozhukhovskii, V. B.; Gurvich, L. V. J.
Mol. Spectrosc. 1978, 73, 430.
(30) Tsai, Y.-C.; chen, H.-Z.; Chang, C.-C.; Yu, J.-S. K.; Lee, G.-H.; Wang, Y.;
Kuo, T.-S. J. Am.Chem. Soc. 2009, 131, 12534.
(31) 劉士誠 國立清華大學化學研究所碩士論文 2010.
(32) 陳思妏 國立清華大學化學研究所碩士論文 2011.
(33) 陳宏章 國立清華大學化學研究所碩士論文 2011.
(34) Rao, S. A.; Knochel, P. J. Am.Chem. Soc. 1991, 113, 5735.
(35) Soai, K.; Niwa, S. Chem. Rev. 1992, 92, 833.
(36) Knochel, P.; Singer, R. D. Chem. Rev. 1993, 93, 2117.
(37) Nakamura, M.; Hirai, A.; Nakamura, E. J. Am.Chem. Soc. 2000, 122, 978.
(38) Alexakis, A.; Backvall, J. E.; Krause, N.; Pamies, O.; Dieguez, M. Chem.
Rev. 2008, 108, 2796.
(39) Gourdet, B.; Rudkin, M. E.; Watts, C. A.; Lam, H. W. The Journal of
organic chemistry 2009, 74, 7849.
(40) Tarwade, V.; Liu, X.; Yan, N.; Fox, J. M. J. Am.Chem. Soc. 2009, 131,
5382.
(41) Yoshida, Y.; Murakami, K.; Yorimitsu, H.; Oshima, K. J. Am.Chem. Soc.
2010, 132, 8878.
(42) Melzig, L.; Metzger, A.; Knochel, P. Chemistry 2011, 17, 2948.
(43) Studemann, T.; Ibrahim-Ouali, M.; Knochel, P. Tetrahedron 1998, 54,
1299.
(44) Bollermann, T.; Gemel, C.; Fischer, R. A. Coord. Chem. Rev. 2012, 256,
537.
(45) Crotty, D. E.; Anderson, T. J.; Glick, M. D.; Oliver, J. P. Inorg. Chem.
1977, 16, 2346.
(46) Budzelaar, P. H. M.; Boersma, J.; Kerk, G. J. M. V. d.; Spek, A. L.;
Duisenberg, A. J. M. Inorg. Chem. 1982, 21, 3777.
(47) Fryzuk, M. D.; McConville, D. H.; Rettig, S. J. Organometallics 1993, 12,
2152.
(48) Cadenbach, T.; Bollermann, T.; Gemel, C.; Fernandez, I.; von Hopffgarten,
M.; Frenking, G.; Fischer, R. A. Angew Chem Int Ed Engl 2008, 47, 9150.
(49) Crotty, D. E.; Anderson, T. J.; Glick, M. D.; Oliver, J. P. Inorg. Chem.
1977, 16, 2346.
(50) Crotty, D. E.; Corey, E. R.; Anderson, T. J.; Glick, M. D.; Oliver, J. P.
Inorg. Chem. 1977, 16, 920.
(51) Cadenbach, T.; Bollermann, T.; Gemel, C.; Tombul, M.; Fernandez, I.;
Hopffgarten, M. V.; Frenking, G.; Fischer, R. A. J. Am.Chem. Soc. 2009, 131, 16063.
(52) Chisholm, M. H.; Huffman, J. C.; Ratermann, A. L.; Smith, C. A. Inorg.
Chem. 1984, 23, 1596.
(53) Campbell, F. L.; Cotton, F. A.; Powell, G. L. Inorg. Chem. 1984, 23, 4222.
(54) Cotton, F. A.; Fanwick, P. E. Inorg. Chem. 1983, 22, 1327.
(55) Knochel, P.; Singer, R. D. Chem. Rev. 1993, 93, 2117.
(56) Resa, I.; Carmona, E.; Gutierrez-Puebla, E.; Monge, A. science 2004, 305,
1136.
(57) Dekker, J.; Budzelaar, P. H. M.; Boersma, J.; M., G. J.; Spek, A. L.
Organometallics 1984, 3, 1403.
(58) Garcia, M. E.; Ramos, A.; Ruiz, M. A.; Lanfranchi, M.; Marchio, L.
Organometallics 2007, 26, 6197.
(59) Crabtree, R. H.; Mingos, D. M. P. Comprehensive Organometallic
Chemistry III, Volumes 1 - 13; Elsevier, 2007.
(60) Van Horn, D. E.; Negishi, E.-i. J. Am.Chem. Soc. 1978, 100, 2252.
(61) Negishi, E.-I.; Kondakov, D. Y. Chem. Soc. Rev. 1996, 25, 417.
(62) Negishi, E.; Wang, G.; Rao, H.; Xu, Z. The Journal of organic chemistry
2010, 75, 3151.
(63) Camara, J. M.; Petros, R. A.; Norton, J. R. J Am Chem Soc 2011, 133, 5263.
(64) Forder, R. A.; Green, M. L. H.; MacKenzie, R. E.; Poland, J. S.; Prout, K. J.
Chem. Soc., Chem. Commun. 1973, 426.
(65) Benfield, F. W.; Francis, B. R.; Green, M. L. H.; Luong-Thi, N.-T.; Moser,
G.; Poland, J. S.; Roe, D. M. Journal of the Less-Common Metals 1974, 36,
187.
(66) Okazaki, M.; Tobita, H.; Ogino, H. Dalton Transactions 2003, 493.
(67) Lewis, K. M.; Rethwisch, D. G. Catalyzed Direct Reactions of Silicon,
1993.
(68) Lewis, L. N. The Chemistry of Organic Silicon Compounds; Wiley:
Chichester, UK, 1998.
(69) Curtis, M. D.; Epstein, P. S. Adv. Organomet. Chem. 1981, 19, 213.
(70) Kumada, M. J. J. Organoment. Chem. 1975, 100, 127.
(71) Franz, A. K.; Woerpel, K. A. J. Am.Chem. Soc. 1999, 121, 949.
(72) Palmer, W. S.; Woerpel, K. A. Organometallics 2001, 20, 3691.
(73) Cirakovic, J.; Driver, T. G.; Woerpel, K. A. J. Am.Chem. Soc. 2002, 124,
9370.
(74) Hayes, P. G.; Waterman, R.; Glaser, P. B.; Tilley, T. D. Organometallics
2009, 28, 5082.
(75) Corey, J. Y.; Braddock-Wilking, J. Chem. Rev. 1999, 99, 175.
(76) Ueno, K.; Masuko, A.; Ogino, H. Organometallics 1999, 18, 2694.
(77) Crabtree, R. H. The Organometallic Chemistry of the Transition Metals;
4th ed.; John Wiley & Sons, Inc.: Hoboken, New Jersey, 2005.
(78) Shinohara, A.; McBee, J.; Tilley, T. D. Inorg Chem 2009, 48, 8081.
(79) Mork, B. V.; Tilley, T. D.; Schultz, A. J.; Cowan, J. A. J. Am.Chem. Soc.
2004, 126, 10428.
(80) Braunstein, P.; Nobel, D. Chem. Rev. 1989, 89, 1927.
(81) Zhu, X.; Fan, J.; Wu, Y.; Wang, S.; Zhang, L.; Yang, G.; Wei, Y.; Yin, C.;
Zhu, H.; Wu, S.; Zhang, H. Organometallics 2009, 28, 3882.
(82) Yi, W.; Zhang, J.; Hong, L.; Chen, Z.; Zhou, X. Organometallics 2011, 30,
5809.
(83) Sun, Y.; Zhang, Z.; Wang, X.; Li, X.; Weng, L.; Zhou, X. Organometallics
2009, 28, 6320.
(84) Krahulic, K. E.; Enright, G. D.; Parvez, M.; Roesler, R. J. Am.Chem. Soc.
2005, 127, 4142.
(85) Dilworth, J. R.; Zubieta, J. A. J. Chem. Soc., Dalton Trans. 1983, 397.
(86) Furstner, A.; Mathes, C.; Lehmann, C. W. Chem. Eur. J. 2001, 7, 5299.