簡易檢索 / 詳目顯示

研究生: 林家榮
Lin, Jia-Rong
論文名稱: 電磁波防護與能量回收充電系統
Electromagnetic Radiation Protection and Energy Harvesting system
指導教授: 徐永珍
Hsu, Yung-Jane
口試委員: 賴宇紳
Lai, Yu-Shen
郭明清
Kuo, Ming-Ching
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 70
中文關鍵詞: 能量回收行動電話
外文關鍵詞: energy harvesting, mobile phone
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著行動電話普及,電磁波危害的議題逐漸為大眾所注意。本論文於手機面板處置入第二個天線,希望將原本輻射至人體腦部之電磁波能量回收。由於設計前量測手機輻射訊號實驗可發現振幅過小,本論文於是設計transformer將天線所收到振幅放大,以利回收電路加以利用;最後提出利用天線交流訊號抬升直流準位的voltage multiplier 電路取代原有電路架構。為了使得transformer有較高放大倍率,本論文於製程上使用TSMC 0.18-μm CMOS 1P6M標準製程來加以實現,整體晶片面積為0.88X0.61mm^2。


    As the mobile phone got more popular, people paid more attention to the issue of electromagnetic (EM) wave hazards. This thesis is committed to recycle the EM wave energy which radiates from the mobile phone to human brain by means of placing a second antenna at faceplate. Because the signal amplitude acquired from the antenna is too small to use for the subsequent circuit, a transformer was designed as the first stage to enlarge the signal amplitude. For charging a lithium ion battery with the recycled energy, a rectifier circuit and a charge pump circuit were implemented. Also, voltage multiplier circuits were proposed to uplift the DC quasi voltage by using antenna AC signal. To make sure of a high transition ratio of the transformer, the TSMC 0.18μm CMOS 1P6M standard process was utilized. The whole chip area is 0.88X0.61mm^2.

    摘要 I Abstract II 致謝 III 目 錄 IV 圖目錄 VI 表目錄 VIII 第一章 前言 1 1.1相關研究 1 1.2 研究動機 2 1.3本論文章節安排 6 第二章 研究背景 7 2.1手機天線輻射能量之量測 7 2.1.1 行動電話(mobile phone) 7 2.1.2 天線(antenna) 7 2.1.3 傳輸線(transmission line) 8 2.1.4 頻譜分析儀(spectrum analyzer) 10 2.2 Transformer介紹 11 2.2.1文獻回顧 11 2.2.2 Transformer原理簡介 12 第三章 Transformer與電路設計 14 3.1 系統架構 14 3.2 Transformer設計 14 3.2.1 側邊立體圖 15。 3.2.2 各層金屬俯視圖 16 3.2.3 Transformer模擬結果及pad影響 21 3.3 Transformer on wafer 量測設計 24 3.3.1 Transformer金屬層調整 25 3.3.2 Four-port parasitic de-embedding method 29 3-4整流與充電電路設計 31 3.4.2整流電路(ac-to-dc) 34 3.4.3 Charge pump電路 36 第四章 電路模擬與佈局考量 38 4.1 模擬結果圖 38 4.1.1 Post-layout simulation(TT、FF、SS corner) 38 4.1.2 Post-layout simulation 溫度變化 42 4.2 電路佈局 45 第五章 量測考量與結果 48 5.1 量測儀器介紹 48 5.2 Transformer on wafer 量測 50 5.3 電路量測 54 5.4 測試平台與量測環境 59 5.4.1 測試平台 59 5.4.2 量測環境 60 5.5 量測結果 61 5.6 Summary 66 5.6.1 transformer量測結果 66 5.6.2 充電電路量測結果 66 第六章 結論與後續研究建議 67 6.1 成果整理 67 6.2 後續研究改進之建議 67 參考文獻 69

    [1] J.A. Paradiso and T. Starner, “Energy scavenging for mobile and wireless electronics,” Pervasive Computing, IEEE CS and IEEE ComSoc, pp. 18-27,Jan. 2005.
    [2] T. Takebayashi, S. Akiba, Y. Kikuchi, M. Taki, K. Wake, S. Watanabe and N. Yamaguch, “Mobile phone use and acoustic neuroma risk in Japan,” Occupation. Environ. Med., vol. 63, pp. 802–807, Aug. 2006.
    [3] S. Lönn, A. Ahlbom, P. Hall, and M. Feychting, “Mobile phone use and the risk of acoustic neuroma,” Epidemiol., vol. 15, pp. 653-659,Nov. 2004.
    [4] "IARC classifies radiofrequency electromagnetic fields as possibly carcinogenic to humans," Lyon, France, IARC press release no.208, May 31, 2011.
    [5] T. S. Aldad, G. Gan, X. B. Gao and H. S. Taylor, ”Fetal radiofrequency radiation exposure from 800-1900 MHz-rated cellular telephones affects neurodevelopment and behavior in mice,” Sci. Rep. 2, Article number:312, Mar. 2012.
    [6] D. A. A. Mat, K. W. T. Franky, A. Joseph, K. Kipli, K.Lias, A.S.W. Marzuki and S.Sahrani,“Electromagnetic radiation towards adult human head from handheld mobile phones,” International Journal of Network and Mobile Technologies ISSN :1832-6758, Nov. 2010.
    [7] J. R. Long, “Monolithic transformers for silicon RF IC design,” IEEE J.Solid-State Circuits, vol. 35, pp.1368- 1382, Sep. 2000.
    [8] C. C. Lim, K. S. Yeo, K. W. Chew, S. F. Lim, C. C. Boon, M. A. Do, and L. Chan, “An area efficient high turn ratio monolithic transformer for silicon RFIC,” in Proc. IEEE Radio Freq. Integr. Circuits Symp., pp. 167-170, Jun. 2008.
    [9] I. Aoki, S. D. Kee, D. B. Rutledge, and A. Hajimiri, “Distributed active transformer – A new power combining and impedance transformation technique,” IEEE Trans. Microw. Theory Tech., vol. 50, pp. 316-331, Jan. 2002.
    [10] P. J. van Wijnen, H. R. Claessen, and E. A. Wolsheimer, “A new straightforward calibration and correction procedure for ‘on wafer’ high frequency S-parameter measurements (45 MHz–18 GHz),” in Proc. IEEE Bipolar/BiCMOS Circuits and Technology Meeting, pp. 70-73, Sept. 1987.
    [11] A. Fraser, R. Gleason, and E. W. Strid,“GHz on-silicon-wafer probing calibration methods,” in Proc. IEEE Bipolar/BiCMOS Circuits and Technology Meeting, pp. 154-158, Sept. 1988.
    [12] M. C. A. M. Koolen, J. A. M. Geelen, and M. P. J. G. Versleijen, “An improved de-embedding technique for on-wafer high-frequency characterization,” in Proc. IEEE Bipolar/BiCMOS Circuits and Technology Meeting, pp. 188-191, Sept. 1991.
    [13] T. Ytterdal, Y. Cheng, and T. A. Fjeldly, “Device modeling for analog and RF CMOS circuit design.” New York: Wiley, 2003, ch. 3.
    [14] S. Mandal, and R. Sarpeshkar, “Low-Power CMOS rectifier design for RFID applications,” IEEE Trans. Circuits and Systems-I,, vol. 54, no. 6, pp. 1177-1188, July, 2007.
    [15] K. Rongsawat, A. Thanachayanont, “Ultra low power analog Front-End for UHF RFID Transponder.” IEEE ISCIT, pp. 1195-1198, Sept. 2006.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE