研究生: |
阮氏明春 Nguyen Thi Minh Xuan |
---|---|
論文名稱: |
IN VITRO DEVELOPMENT-DEPENDENT CHANGES IN THE DISTRIBUTION OF 3R AND 4R TAU ISOFORMS IN RAT HIPPOCAMPAL NEURONS |
指導教授: |
張兗君
Chang, Yen-Chung |
口試委員: |
周姽嫄
袁俊傑 |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 分子醫學研究所 Institute of Molecular Medicine |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 英文 |
論文頁數: | 34 |
中文關鍵詞: | tau isoforms, localization |
外文關鍵詞: | tau isoforms, localization |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
ABSTRACT
Six isoforms of Tau proteins bind and stabilize microtubules via either 3- or 4- repeat regions in C-terminal (3R and 4R isoforms, respectively). Some recent researches haven showed that aberrant ratio of 3R and 4R Tau isoforms is involved the formation of tangles, which were found in brain patient with neurodegenerative disorders like Alzheimer’s disease, rather than the hyperphosphorylation of Tau proteins. Besides, this ratio may affect the differentiation, transport dynamics, distribution of mitochondria in axons of neurons. My thesis work focuses on subcellular localization and distribution of 3R and 4R Tau isoforms during the in vitro development of rat hippocampal neurons. I have also used a chip device, which can separate axons from cell bodies and dendrites. As neurons grow older, ratio of 3R to 4R isoforms declined with 3R isoforms diminishing more rapidly than the 4R isoforms increased gradually. I also examine the distribution of 3R- and 4R- Tau isoforms in the various compartments of neurons by means of fluorescence immuocytochemistry using antibodies specially recognizing these Tau isoforms. The results indicate the distribution of 3R and 4R Tau isoforms in hippocampal neurons vary as neurons grow under in vitro conditions along distinct patterns. For 3R isoforms, they appear throughout all compartments of neurons at 7 days in vitro (DIV). Gradually, 3R isoforms disappear from the dendrites and cell bodies and reside only in the axon in 21DIV neurons. On the other hand, the distribution of 4R isoforms is restricted to the cell body and proximal segments of process in 7 DIV neurons. In 14 DIV neurons, 4R isoforms are detected in all parts of neurons. At 21 DIV, 4R isoforms are again confirmed to the cell body and proximal portions of processes. By growing neurons on coverslips that contain a poly-L-lysine coated micropattern on the surface, we find that 3R isoforms residein the shafts and growth cones of the axons of the 14 DIV neurons. Interestingly, we find that 4R isoforms are highly enriched in growth cones of these axons. 4R Tau isoforms maybe play a role in highly dynamic nature of growth cones by
III
controlling the dynamic of microtubule. Taken together, the results may provide us with insight about the various functions of 3R- and 4R-Tau isoforms during the course of in vitro development of rat hippocampal neurons in cultures.
REFERENCES
Adams S. J., DeTure M. A., McBride M., Dickson D. W. and Petrucelli L. (2010) Three repeat isoforms of tau inhibit assembly of four repeat tau filaments. PLoS ONE 5, 10810-10819.
Bamburg J. R., Bray D. and Chapman K. (1986) Assembly of microtubules at the tip of growing axons. Nature 321, 788-790.
Banker G. A. and Cowan W. M. (1977) Rat hippocampal neurons in dispersed cell culture. Brain. Res. 126, 397-342.
Binder L. I., Frankfurter A. and Rebhun L. I. (1985) The distribution of tau in the mammalian central nervous system. Journal of Cell Biology 101, 1371-1378.
Brewer G. J., Torricelli J. R., Evege E. K. and Price P. J. (1993) Optimized Survival of Hippocampal-Neurons in B27-Supplemented Neurobasal(Tm), a New Serum-Free Medium Combination. J. Neurosci. Res. 35, 567-576.
Buck K. B. and Zheng J. Q. (2002) Growth cone turning induced by direct local modification of microtubule dynamics. Journal of Neuroscience 22, 9358-9367.
Buee L., Bussiere T., Buee-Scherrer V., Delacourte A. and Hof P. R. (2000) Tau protein isoforms, phosphorylation and role in neurodegenerative disorders. Brain Research Reviews 33, 95-130.
Bullmann T., Holzer M., Mori H. and Arendt T. (2009) Pattern of tau isoforms expression during development in vivo. International Journal of Developmental Neuroscience 27, 591-597.
Chang C., Hsieh Y.-W., Lesch B. J., Bargmann C. I. and Chuang C.-F. (2011) Microtubule-based localization of a synaptic calcium-signaling complex is required for left-right neuronal asymmetry in C. elegans. Development 138, 3509-3518.
Chang Y. C., Cheng H. H., Huang Z. H., Lin W. H. and Chow W. Y. (2009) Cold-Induced Exodus of Postsynaptic Proteins From Dendritic Spines. J Neurosci. Res. 87, 460-469.
Chen J., Kanai Y., Cowan N. J. and Hirokawa N. (1992) Projection domains of MAP2 and tau determine spacings between microtubules in dendrites and axons. Nature 360, 674-676.
Chien C. T., Lin C. H., Tsai P. I. and Wu R. M. (2010) LRRK2 G2019S Mutation Induces Dendrite Degeneration through Mislocalization and Phosphorylation of Tau by Recruiting Autoactivated GSK3 beta. Journal of Neuroscience 30, 13138-13149.
Conde C. and Caceres A. (2009) Microtubule assembly, organization and dynamics in axons and dendrites. Nature Reviews Neuroscience 10, 319-332.
Dawson H. N., Ferreira A., Eyster M. V., Ghoshal N., Binder L. I. and Vitek M. P. (2001) Inhibition of neuronal maturation in primary hippocampal neurons from tau deficient mice. Journal of Cell Science 114, 1179-1187.
Deshpande A., Win K. M. and Busciglio J. (2008) Tau isoform expression and regulation in human cortical neurons. Faseb Journal 22, 2357-2367.
DiTella M. C., Feiguin F., Carri N., Kosik K. S. and Caceres A. (1996) MAP-1B/TAU functional redundancy during laminin-enhanced axonal growth. Journal of Cell Science 109, 467-477.
Dotti C. G., Banker G. A. and Binder L. I. (1987) The expression and distribution of the microtubule-associated proteins-tau and microtubule-associated protein-2 in hippocampal-neurons in the rat in situ and in cell-culture. Neuroscience 23, 121-130.
Eyster C. A., Duggins Q. S., Gorbsky G. J. and Olson A. L. (2006) Microtubule network is required for insulin signaling through activation of Akt/protein kinase B - Evidence that insulin stimulates vesicle docking/fusion but not intracellular mobility. Journal of Biological Chemistry 281, 39719-39727.
Goedert M. and Jakes R. (1990) Expression of separate isoforms of human tau-protein correlation with the tau-pattern in brain and effects on tubulin polymerization. Embo Journal 9, 4225-4230.
Gorath M., Stahnke T., Mronga T., Goldbaum O. and Richter-Landsberg C. (2001) Developmental changes of tau protein and mRNA in cultured rat brain oligodendrocytes. GLIA 36, 89-101.
Hamre K. M., Hyman B. T., Goodlett C. R., West J. R. and Van Hoesen G. W. (1989) Alz-50 immunoreactivity in the neonatal rat: changes in development and co-distribution with MAP-2 immunoreactivity. Neurosci Lett 98, 264-271.
33
Hanes J., Zilka N., Bartkova M., Caletkova M., Dobrota D. and Novak M. (2009) Rat tau proteome consists of six tau isoforms: implication for animal models of human tauopathies. J. Neurochem. 108, 1167-1176.
Hanger D. P., Gibb G. M., Silva R. d., Boutajangout A., Brion J.-P., Revesz T., Lees A. J. and Anderton B. H. (2002) The complex relationship between soluble and insoluble tau in tauopathies revealed by efficient dephosphorylation and specific antibodies. FEBS Letters 531, 538-542.
Hong M., Zhukareva V., Vogelsberg-Ragaglia V., Wszolek Z., Reed L., Miller B. I., Geschwind D. H., Bird T. D., McKeel D., Goate A., Morris J. C., Wilhelmsen K. C., Schellenberg G. D., Trojanowski J. Q. and Lee V. M. Y. (1998) Mutation-specific functional impairments in distinct Tau isoforms of hereditary FTDP-17. Science 282, 1914-1917.
Ittner L. M., Ke Y. D., Delerue F., Bi M., Gladbach A., Eersel J. v., Wõlfing H., Chieng B. C., Christie M. J., Napier I. A., Eckert A., Staufenbiel M., Hardeman E. and Gotz J. (2010) Dendritic function of tau mediates Amyloid-beta toxicity in Alzheimer's disease mouse models. Cell 142, 387-397.
Janke C., Beck M., Stahl T., Holzer M., Brauer K., Bigl V. and Arendt T. (1999) Phylogenetic diversity of the expression of the microtubule-associated protein tau: implications for neurodegenerative disorders. Molecular Brain Research 68, 119-128.
Jaworski J., Kapitein L. C., Gouveia S. M., Dortland B. R., Wulf P. S., Grigoriev I., Camera P., Spangler S. A., Di Stefano P., Demmers J., Krugers H., Defilippi P., Akhmanova A. and Hoogenraad C. C. (2009) Dynamic Microtubules Regulate Dendritic Spine Morphology and Synaptic Plasticity. Neuron 61, 85-100.
Kempf M., Clement A., Faissner A., Lee G. and Brandt R. (1996) Tau binds to the distal axon early in development of polarity in a microtubule- and microfilament-dependent manner. Journal of Neuroscience 16, 5583-5592.
Kowall N. W. and Kosik K. S. (1987) Axonal Disruption and Aberrant Localization of Tau-Protein Characterize the Neuropil Pathology of Alzheimers-Disease. Annals of Neurology 22, 639-643.
Levy S. F., LeBoeuf A. C., Massie M. R., Jordan M. A., Wilson L. and Feinstein S. C. (2005) Three- and four-repeat tau regulate the dynamic instability of two distinct microtubule subpopulations in qualitatively different manners - Implications for neurodegeneration. Journal of Biological Chemistry 280, 13520-13528.
Mandelkow E. and Mandelkow E. M. (1995) Microtubules and microtubule-associated proteins. Current Opinion in Cell Biology 7, 72-81.
Manders E. M. M., Stap J., Brakenhoff G. J., Vandriel R. and Aten J. A. (1992) Dynamics of 3-Dimensional Replication Patterns during the S-Phase, Analyzed by Double Labeling of DNA and Confocal Microscopy. Journal of Cell Science 103, 857-862.
Manders E. M. M., Verbeek F. J. and Aten J. A. (1993) Measurement of colocalization objects in dual-color confocal images. J. Microsc. 169, 375-382.
McMillan P., Korvatska E., Poorkaj P., Evstafjeva Z., Robinson L., Greenup L., Leverenz J., Schellenberg G. D. and D'Souza I. (2008) Tau Isoform Regulation Is Region- and Cell-Specific in Mouse Brain. Journal of Comparative Neurology 511, 788-803.
Migheli A., Butler M., Brown K. and Shelanski M. L. (1988) Light and electron-microscope localization of microtubule-associated tau protein in rat-brain. Journal of Neuroscience 8, 1846-1851.
Nakamura K., Watakabe A., Hioki H., Fujiyama F., Tanaka Y., Yamamori T. and Kaneko T. (2007) Transiently increased colocalization of vesicular glutamate transporters 1 and 2 at single axon terminals during postnatal development of mouse neocortex: a quantitative analysis with correlation coefficient 26(11):3054-67 Eur J Neurosci 26, 3054-3067.
Panda D., Samuel J. C., Massie M., Feinstein S. C. and Wilson L. (2003) Differential regulation of microtubule dynamics by three- and four-repeat tau: Implications for the onset of neurodegenerative disease. Proceedings of the National Academy of Sciences of the United States of America 100, 9548-9553.
34
Papasozomenos S. C. (1997) The heat shock-induced hyperphosphorylation of tau is estrogen-independent and prevented by androgens: Implications for Alzheimer disease. Proceedings of the National Academy of Sciences of the United States of America 94, 6612-6617.
Porzig R., Singer D. and Hoffmann R. (2007) Epitope mapping of mAbs AT8 and Tau5 directed against hyperphosphorylated regions of the human tau protein. Biochemical and Biophysical Research Communications 358, 644-649.
Sennvik K., Boekhoorn K., Lasrado R., Terwel D., Verhaeghe S., Korr H., Schmitz C., Tomiyama T., Mori H., Krugers H., Joels M., Ramakers G. J. A., Lucassen P. J. and Leuven F. V. (2007) Tau-4R suppresses proliferation and promotes neuronal differentiation in the hippocampus of tau knockin/ knockout mice. FASEB J 21, 2149-2161.
Stoothoff W., Jones P. B., Spires-Jones T. L., Joyner D., Chhabra E., Bercury K., Fan Z., Xie H., Bacskai B., Edd J., Irimia D. and Hyma B. T. (2009) Differential effect of three-repeat and four repeat tau on mitochondrial axonal transport. J Neurosci 111, 417-427.
Suprenant K. A. and Dentler W. L. (1982) Association between endocrine pancreatic secretory granules and in vitro-assembled microtubules is dependent upon microtubule-associated proteins. Journal of Cell Biology 93, 164-174.
Szendrei G. I., Lee V. M. Y. and Otvos L. (1993) Recognition of the minimal epitope of monoclonal-antibody tau-1 depends upon the presence of a phosphate group but not its location. Journal of Neuroscience Research 34, 243-249.
Williamson T., GordonWeeks P. R., Schachner M. and Taylor J. (1996) Microtubule reorganization is obligatory for growth cone turning. Proceedings of the National Academy of Sciences of the United States of America 93, 15221-15226.
Wu H.-I., Cheng G.-H., Wong Y.-y., Lin C.-M., Fang W., Chow W.-Y. and Chang Y.-C. (2010) A lab-on-a-chip platform for studying the subcellular functional proteome of neuronal axons. Lab Chip 10, 647-653.