簡易檢索 / 詳目顯示

研究生: 鄭家欣
Cheng, Chia-Hsin
論文名稱: 環繞閘極無接面電荷捕捉式快閃記憶體元件之捕捉與阻擋層製程研究
Process Study of Trapping and Blocking Layers on Gate-All-Around Junctionless Charge Trapping Flash Memory Devices
指導教授: 張廖貴術
Chang-Liao, Kuei-Shu
口試委員: 趙天生
Chao,Tian Sheng
劉致為
Liu, Chee Wee
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 103
中文關鍵詞: 環繞閘極結構
外文關鍵詞: Gate all around structure
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,隨著製程技術不斷的進步,使得快閃記憶體元件不斷的微縮,但平面元件微縮空間有限,因此要如何增加記憶體元件的密度以及提升操作特性是重要的議題。目前有許多解決方法被提出,如應用高介電常數材料、無接面快閃記憶體元件、多晶矽、環繞閘極結構和三維堆疊等等。本篇論文應用環繞閘極無接面快閃記憶體元件,利用在通道轉角之尖端電場增強效應,來改善操作特性,探討不同電荷捕捉層以及阻擋氧化層的元件操作特性。
    首先,在奈米線與環繞閘極結構的穿隧氧化層是分別使用低溫感應耦合電漿氣相沉積(ICPCVD),以及使用高溫快速熱退火成長,並且使用四氮化三矽/二氧化鉿作為電荷捕捉層。實驗結果得知,藉由環繞閘極結構與奈米線比較,較大的電場增強,使得寫入速度大幅提升。但在元件的可靠度,由於環繞閘極結構在上沉積穿隧氧化層時,使用的ICPCVD其通道覆蓋性不佳,使得耐久力變差。
    第二部分,分別使用四氮化三矽/二氧化鉿以及四氮化三矽/二氧化鋯堆疊的電荷捕捉層分別是由高溫爐管以及原子層沉積技術沉積而成,而穿隧氧化層是由高溫急速升溫氧化形成。我們發現四氮化三矽/二氧化鋯的堆疊元件比四氮化三矽/二氧化鉿的抹除速度還快,而在氮化矽與二氧化鉿或二氧化鋯的中間加入三氧化二鋁,可改善電荷保持力以及耐久力的問題。
    最後一部分,實驗採用不同阻擋氧化層的環繞閘極快閃記憶體元件並對元件的操作特性做分析。結果顯示具有或沒有堆疊阻擋層元件的寫入及抹除速度都差不多。在高溫量測的電荷保持力,才可看到元件特性的差別,電荷保持力可由堆疊多層的阻擋氧化層來改善。


    In recent years, flash memory device can be continuously scaled down by continuous advance in process technology. However, the scale down of planar flash memory device can not be continued due to its limitation of shrinkage. How to increase the density of memory devices and enhance operating characteristics are important issues. Some approaches have been reported to solve these issues, such as high-k material, junctionless (JL) channel, poly-Si channel, nanowire (NW) structure, gate all around (GAA) structure and 3D stack devices. In this thesis, operation characteristics of flash memory GAA devices are improved by enhance electric field at channel cornors. Operation characteristics of GAA device with different charge trapping layers and blocking oxides layers are also studied.
    In the first part, tunneling oxides of devices with NW and GAA structure are formed by low-temperature inductively coupled plasma chemical vapor deposition (ICPCVD) and high-temperature rapid thermal oxidation (RTO) and Si3N4/HfO2 trapping layers are applied. In this work, program speed of gate all around device is faster than that of NW one due to larger enhancement of electric field. Reliabilities of GAA decice are worse than that of NW one due to poor step coverage of tunneling oxide layers are formed by ICPCVD.
    In the second part, Si3N4/HfO2 and Si3N4/ZrO2 stacked trapping layers are deposited by low-pressure chemical vapor deposition (LPCVD) and atomic layer deposition (ALD), and tunneling oxides are formed by RTO. Device with Si3N4/ZrO2 stacked trapping layers shows faster erasing speed are compared to that with Si3N4/HfO2 ones. Additional Al2O3 trapping layer are added between Si3N4 and HfO2 or ZrO2 layer. Results show that both retention and endurance are improved by the additional Al2O3 layer.
    In the last part, effects of stacked blocking oxide layers on operation characteristics of GAA flash memory devices are investigated. Results show that programing and erasing speed of devices with or without stacked blocking layers are similar. Retention characteristics at high-temperature are improved by stacked blocking oxide layers.

    摘要 i Abstract ii 致謝 iv 目錄 vi 第一章 序論 1 1.1快閃記憶體元件 1 1.1.1 浮動閘極式快閃記憶體元件 1 1.1.2 電荷捕陷式快閃記憶體元件 2 1.2多晶矽薄膜電晶體 4 1.3多向式閘極結構與奈米線通道式快閃記憶體元件 5 1.3.1 多向式閘極結構 5 1.3.2 三維結構與奈米線通道 5 1.4高介電係數材料與能帶工程之介紹 6 1.4.1高介電係數材料 6 1.4.2能帶工程 7 1.4.3 不同高介電層材料的阻擋層之能帶工程電荷捕陷式快閃記憶體 8 1.5無接面快閃記憶體元件介紹 10 1.6三維結構可堆疊式NAND快閃記憶體 11 1.7各章摘要 13 第二章 快閃記憶體元件製程與操作方法 19 2.1快閃記憶體元件製程 19 2.1.1 傳統平面式快閃記憶體元件 19 2.1.2 奈米線式通道快閃記憶體元件製程 20 2.1.3 環繞式閘極通道快閃記憶體元件製程 20 2.2 快閃記憶體元件寫入與抹除方法 21 2.2.1 CHEI通道熱電子注入寫入 21 2.2.2 F-N穿隧寫入 22 2.2.3 F-N穿隧抹除 23 2.3 快閃記憶體元件可靠度特性 24 2.3.1 電荷保持力 24 2.3.2 耐久力 25 2.4閘極與汲極之干擾特性 26 第三章 利用高低溫成長二氧化矽的穿隧層於多晶矽無接面環繞閘極快閃記憶體之操作電性研究 37 3.1研究動機與背景 39 3.2實驗 40 3.3結果與討論 41 3.3.1元件汲極電流對閘極電壓圖與成分分析 41 3.3.2元件寫入與抹除特性 41 3.3.3元件可靠度特性 43 3.4結論 44 第四章 利用不同電荷捕捉層之能帶工程於多晶矽無接面環繞閘極快閃記憶體之操作電性研究 53 4.1研究動機與背景 54 4.2實驗 55 4.3結果與討論 55 4.3.1元件汲極電流對閘極電壓圖與成分分析 56 4.3.2元件寫入與抹除特性 56 4.3.3 元件可靠度特性 57 4.4結論 58 第五章 利用不同阻擋氧化層之能帶工程於多晶矽無接面環繞閘極元件快閃記憶體之特性研究 69 5.1研究動機與背景 70 5.2實驗 71 5.3結果與討論 72 5.3.1元件汲極電流對閘極電壓圖與成分分析 72 5.3.2元件寫入與抹除特性 72 5.3.3 元件可靠度特性 73 5.4結論 74 第六章 結論 91 參考文獻 94

    [1] K. San, C. Kaya, and T. Ma, “Effects of Erase Source Bias on Flash EPROM Device Reliability,” in IEEE Trans. Electron Devices, vol. 42, no. 1, pp. 150-159, January 1995.
    [2] M. White, D. Adams, and J. Bu, “on the Go with SONOS,” in IEEE Circuits Devices Mag., vol. 16, no. 4, pp. 22-31, July 2000.
    [3] M. White, Y. Yang, A. Purwar, and M. French, “A Low Voltage SONOS Non-Volatile Semiconductor Memory Technology,”in IEEE Transactions on Components, Packaging, and Manufacturing Technology, vol. 20, issue. 2, pp. 190-195, June 1997.
    [4] J. Bu, and M. White, “Retention Reliability Enhanced SONOS NVSM with Scaled Programming Voltage,” in IEEE Aerospace Conf. Proc., vol. 5, pp. 5-2383-5-2390, 2002.
    [5] K. Kahng, and S. Sze, “A Floating Gate and its Application to Memory Devices,” in IEEE Trans. Electron Devices, vol. 14, no. 9, pp. 629, September 1967.
    [6] A. Wang, and W. D. Woo, “Static Magnetic Storage and Delay Line,” in J. Appl. Phys., vol. 21, no. 1, pp. 49-54, January 1950.
    [7] S. M. Sze, and K. K. Ng, “Physics of Semiconductor Devices,” in 3rd Ed. Wiley Interscience, Hoboken, 2007.
    [8] T. Y. Tseng, and S. M. Sze, “Non-Volatile Memories Materials, Devices, and Applications,” in American Scientific Publishers, Stevenson Ranch, CA, 2012.
    [9] T. H. Hsu, H. T. Lue, E. K. Lai, J. Y. Hsieh, S. Y. Wang, Y. L. Wu, Y. C. King, T. Yang, K. C. Chen, K. Y. Hsieh, R. Liu, and C. Y. Lu, “A High-Speed BE-SONOS NAND Flash utilizing the Field-Enhancement Effect of FinFET,” in IEDM Tech. Dig., pp. 913-916, December 2007.
    [10] M. Heyns, S.Beckx, H. Bender, P. Blomme, W. Boullan, B. Brijs, R. Carter, M. Caymax, M. Claes, T. Cunard, S. De Gendt, R. Degraeve, A. Delabie, W. Deweerdt, G. Groeseneken, K. Henson, T. Kauerauf, S. Kubicek,et al., “Scaling of High-k Dielectrics towards Sub-1nm EOT,” in VLSI Technology, Systems, and Applications, International Symposium on, pp. 247-250, Oct. 2003.
    [11] R. Chau, S. Datta, M. Doczy, B. Doyle, J. Kavalieros, and M. Metz, “High-k Metal-Hate Stack and its MOSFET Characteristics,” in IEEE Electron Device Lett., vol. 25, no. 6, pp. 408-410, June 2004.
    [12] S. C. Lai, H. T. Lue, M. J. Yang, J. Y. Hsieh, S. Y. Wang, T. Wu, G. L. Luo, C. H. Chien, E. K. Lai, K. Y. Hsieh, R. Liu, and C. Lu, “MA BE-SONOS: A Bandgap Engineered SONOS using Metal Gate and Al2O3 Blocking Layer to Overcome Erase Saturation,” in IEEE Non-Volatile Semiconductor Memory Workshop, pp. 88-89, Aug. 2007.
    [13] Yan-Ny Tan, Byung Jin Cho, and Wee-Kiong Choi, “Over-Erase Phenomenon in SONOS-type Flash Memory and its Minimization using a Hafnium Oxide Charge Storage Layer,” in IEEE Trans. Electron Devices, vol. 51, no. 7, pp. 1143-1147, July 2004.
    [14] H. T. Lue, S. Y. Wang, E. K. Lai, Y. H. Shih, S. C. Lai, L. W. Yang, K. Chen, J. Ku, K. Y. Hsieh, R. Liu, and C. Y. Lu, “BE-SONOS: A Bandgap Engineered SONOS with Excellent Performance and Reliability,” in IEDM Tech. Dig., pp. 547-550, December 2005.
    [15] Z. H. Ye, K. S. Chang-Liao, T. C. Liu, T. K. Wang, P. J. Tzeng, C. H. Lin, and M. J. Tsai, “A Novel SONOS-type Flash Device with Stacked Charge Trapping Layer,” in Microelectron. Eng., vol. 86, issues 7-9, pp. 1863-1865, 2009.
    [16] J. P. Colinge, I. Ferain, A. Kranti, C. W. Lee, N. D. Akhavan, P. Razavi, R. Yan, and R. Yu, “Junctionless Nanowire Transistor: Complementary Metal-Oxide- Semiconductor without Junctions,” in Science of Advanced Materials, vol. 3, no. 3, pp. 477-482, June 2011.
    [17] J. P. Colinge, C. W. Lee, A. Afzalian, N. D. Akhavan, R. Yan, I. Ferain, P. Razavi, B. O'Neill, A. Blake, M. White, A. M. Kelleher, B. McCarthy and R. Murphy, “Nanowire Transistors without Junctions,” in Nat.Nanotechnol, vol. 5, pp. 225-229, February 2010.
    [18] Rui Zhang, Takashi Iwasaki, Noriyuki Taoka, Mitsuru Takenaka, and Shinichi Takagi, “High-Mobility Ge pMOSFET with 1-nm EOT Al2O3/GeOx/Ge Gate Stack Fabricated by Plasma Post Oxidation”, in IEEE Trans. Electron Devices, vol. 59, no. 2, pp. 335-341, February 2012.
    [19] Y. Sun, H. Y. Yu, N. Singh, K. C. Leong, E. Gnani, G. Baccarani, G. Q. Lo, and D. L. Kwong, “Vertical-Si-Nanowire-Based Nonvolatile Memory Devices with Improved Performance and Reduced Process Complexity,” in IEEE Trans. Electron Devices, vol. 58, no. 5, pp. 1329-1335, May 2011.
    [20] H. T. Lue, Y. H. Hsiao, P. Y. Du, S. C. Lai, T. H. Hsu, S. P. Hong, M. T. Wu, F. H. Hsu, N. Z. Lien, C. P. Lu, J. Y. Hsieh, L. W. Yang, T. Yang, K. C. Chen, K. Y. Hsieh, R. Liu, and C. Y. Lu, “A Novel Buried-Channel FinFET BE-SONOS NAND Flash with Improved Memory Window and Cycling Endurance,” in VLSI Symp. Tech. Dig., pp. 224-225, June 2009.
    [21] N. Yamauchi, J. J. Hajjar, and R. Reif, “Polysilicon Thin-Film Transistors with Channel Length and Width Comparable to or Smaller than the Grain Size of The Thin Film,” in IEEE Trans. Electron Devices, vol. 38, no. 1, pp. 55-60, January 1991.
    [22]W. Tsai, N. Zous, C. Liu, C. Liu, C. Chen, T. Wang, S. Pan, C.-Y. Lu, and S. Gu, “Data retention behavior of a SONOS type two-bit storage flash memory cell” in Electron Devices Meeting, IEDM, pp. 32.6.1 –32.6.4, 2001.
    [23]Z. H. Ye, K. S. Chang-Liao, C. Y. Tsai, T. T. Tsai and T. K. Wang, “Enhanced Operation in Charge-Trapping Nonvolatile Memory Device With Si3N4/Al2O3/HfO2 Charge-Trapping Layer” in IEEE Electron Device Lett, vol. 33, pp. 1351-1353, 2012.
    [24]T. Yan-Ny, W. K. Chim, C. Wee Kiong, J. Moon-Sig, and B. Jin Cho, “Hafnium aluminum oxide as charge storage and blocking-oxide layers in SONOS-type nonvolatile memory for high-speed operation” in IEEE Trans. Electron Devices, vol. 53, pp. 654-662, 2006.
    [10]M. Heyns, S. Beckx, H. Bender, P. Blomme, W. Boullart, B. Brijs, et al., “Scaling of high-k dielectrics towards sub-1nm EOT” in VLSI Technology, Systems, and Applications, International Symposium on, pp. 247-250, 2003.
    [26] S. Tam, P.-K. Ko, and C. Hu, “Lucky-electron model of channel hot- electron injection in MOSFET’s,” in IEEE Trans. Electron Devices, vol. 31, no. 9, pp. 1116 – 1125, 1984.
    [27] Hsing-Hui Hsu, Horng-Chih Lin , Cheng-Wei Luo, Chun-Jung Su, and Tiao-Yuan Huang, “Impacts of Multiple-Gated Configuration on the Characteristics of Poly-Si Nanowire SONOS Devices, ”in IEEE Trans. Electron Devices, vol. 58, no. 3, pp.641-649, March 2011.
    [28]M. H. White, Y. Yang, P. Ansha, and M. L. French, “A Low Voltage SONOS Nonvolatile Semiconductor Memory Technology” in IEEE Trans. on components, packaging, and manufacture technology – part A, vol. 20, no.2, pp. 190-195, June 1997.
    [29] Y. H. Lu, P. Y. Kuo, Y. H. Wu, Y. H. Chen and T. S. Chao, “Novel GAA Raised Source / Drain Sub-10-nm Poly-si NW Channel TFTs with Self-aligned Corked Gate Structure for 3-D IC Applications,” in VLSI Symp. Tech. Dig., pp. 142-143, June 2011.
    [30] Tzu-Hsiang Hsu, Hsin-Chiang You, Fu-Hsiang Ko, and Tan-Fu Lei, “PolySi-SiO2-ZrO2-SiO2-Si Flash Memory Incorporating a Sol-Gel-Derived ZrO2 Charge Trapping Layer, ” in Journal of The Electrochemical Society, pp.G934-G937, 2006.
    [31] M.K. Bera and C.K. Maiti, “Reliability of Ultra-thin Zirconium Dioxide (ZrO2) Films on Strained-Si, ” in IEEE International Symposium on the Physical and Failure Analysis of Integrated Circuits, pp. 295-300, 2006.
    [32] Seokhwan Bang, Seungjun Lee, Sunyeol Jeon, Semyung Kwon, Wooho Jeong,Seokhoon Kim, and Hyeongtag Jeon, “ Physical and Electrical Properties of Hafnium–Zirconium–Oxide Films Grown by Atomic Layer Deposition, ” in Journal of The Electrochemical Society, pp.H633-H637, 2008.
    [33] Saeed Mohsenifar, M. H. Shahrokhabadi, “ Gate Stack High-κ Materials for Si-Based MOSFETs Past, Present, and Futures, ” in Microelectronics and Solid State Electronics, pp.12-24, 2015.
    [34] Yoon Kim, Jang-Gn Yun, Se Hwan Park, Wandong Kim, Joo Yun Seo, Myounggon Kang, Kyung-Chang Ryoo, “Three-Dimensional NAND Flash Architecture Design Based on Single-Crystalline STacked Array, ” in IEEE Trans. Electron Devices, vol. 59, no. 1, pp. 35–45, January 2012.
    [35] Y. N. Tan, W. K. Chim, W. K. Choi, M. S. Joo, T. H. Ng, and B. J. Cho, “High-k HfAlO Charge Trapping Layer in SONOS-type Nonvolatile Memory Device for High Speed Operation,” in IEDM. Tech. Dig., 2004, pp. 889–892.
    [36] X.Wang and D.-L. Kwong, “A Novel High-k SONOS Memory using TaN/Al2O3/Ta2O5/HfO2/Si Structure for Fast Speed and Long Retention Operation,” in IEEE Trans. Electron Devices, vol. 53, no. 1, pp. 78–82, January 2006.
    [37] S. Maikap, P. J. Tzeng, L. S. Lee, H. Y. Lee, C. C. Wang, P. H. Tsai, K. S. Chang-Liao, W.-J. Chen, K. C. Liu, P. R. Jeng, and M.-J. Tsai, “High-k Hf-based Charge Trapping Layer with A12O3 Blocking Oxide for High-Density Flash Memory,” in VLSI Technol., Syst., Appl., 2006, pp. 1–2.
    [38] C. Y. Tsai, T. H. Lee, and A. Chin, “Arsenic-implanted HfON Charge Trapping Flash Memory with Large Memory Window and Good Retention,” in IEEE Electron Device Lett., vol. 32, no. 3, pp. 381–383, March 2011.
    [39] C. H. Lai, A. Chin, K. C. Chiang, W. J. Yoo, C. F. Cheng, S. P. McAlister, C. C. Chi, and P. Wu, “Novel SiO2/AlN/HfAlO/IrO2 Memory with Fast Erase, Large ΔVth and Good Retention,” in VLSI Symp. Tech. Dig., 2005, pp. 210–211.
    [40] M. Bocquet, G. Molas , L. Perniola, X. Garros, J. Buckley, M. Gely, J.P. Colonna, H. Grampeix, F. Martin, V. Vidal, A. Toffoli, S. Deleonibus, G. Ghibaudo, G. Pananakakis, B. De Salvo, “Impact of A HTO/Al2O3 Bi-layer Blocking Oxide in Nitride-trap Non-Volatile Memories,” in Solid-State Electronics, vol. 53, no. 7, pp. 786-791, July 2009.
    [41] Zong-Hao Ye, Kuei-Shu Chang-Liao, Feng-Wen Shiu, and Tien-Ko Wang, “Improved Retention Characteristic of Charge-trapped Flash Device with Sealing layer/Al2O3 or Al2O3/high-k Stacked Blocking Layers,” in Microelectron. Eng., vol. 88, no. 7, pp. 1194-1197, July 2011.
    [42] Zong-Hao Ye et al., “Applications of Band Engineering and Nitrogen Profiles in Charge-Trapping Flash Memory Devices,” Ph.D dissertation in NTHU, 2015.
    [43] M. L. French, H. Sathianathan, M. H. White, “A SONOS Nonvolatile Memory Cell for Semiconductor Disk Application,” in IEEE Nonvolatile Memory Technology Review, pp.70-73, June 1993.
    [44] K. Kim, “Technology for Sub-50nm DRAM and NAND Flash Manufacturing,” in IEEE IEDM Tech. Digest, pp. 333-336, 2005.
    [45] M.L. French, C. Y. Chen, H. Sathianathan, M. H. White, “Design and Scaling of A SONOS Multidielectric Device for Nonvolatile Memory Applications,” in IEEE Transactions on Components, Packaging, and Manufacturing Technology, vol. 17, no.3, pp. 390-397, September 1994.
    [46] Sanghun Jeon, Jeong Hee Han, Junghoon Lee, Sangmoo Choi, Hyunsang Hwang, and Chungwoo Kim, “Impact of Metal Work Function on Memory Properties of Charge-Trap Flash Memory Devices Using Fowler–Nordheim P/E Mode,” in IEEE Electron Device Letters, vol. 27, no. 6, pp.486-488, June 2006.
    [47] Ping-Hung Tsai, Kuei-Shu Chang-Liao, Chu-Yung Liu, Tien-Ko Wang, P. J. Tzeng, C. H. Lin, L. S. Lee, and M.-J. Tsai, “Novel SONOS-type Nonvolatile Memory Device with Optimal Al Doping in HfAlO Charge-Trapping Layer,” in IEEE Electron Device Letters, vol. 29, no. 3, pp.265-268, March 2008.
    [48] Ping-Hung Tsai, Kuei-Shu Chang-Liao, Dong-Wei Yang, Yuan-Bin Chung, Tien-Ko Wang, P. J. Tzeng, H. Lin, L. S. Lee, M. J. Tsai, and Albert Chin, “Crucial Integration of High Work-Function Metal Gate and High-K Blocking Oxide on Charge-Trapping Type Flash Memory Device,” in Applied Physics Letters, vol. 93, no. 25, 252902-1-3 , December 2008.
    [49] Chang-Hyun Lee, Sung-Hoi Hur, You-Cheol Shin, Jeong-Hyuk Choi, Dong-Gun Park, and Kinam Kim, “Charge-Trapping Device Structure of SiO2/SiN/high-k dielectric Al2O3 for High-Density Flash Memory,” in Applied Physics Letters, vol. 86, no. 15, pp. 152908-152903, April 2005.
    [50] S. Choi, M. Cho, H. Hwang, “Improved Metal–Oxide–Nitride–Oxide–Silicon-Type Flash Device with High- K Dielectrics for Blocking Layer,” in J. Appl. Phys., vol. 94, no.8, pp. 5408-5410, October 2003.
    [51] Wei He, Jing Pu, Chan, D., Byung Jin Cho, “Performance Improvement in Charge-Trap Flash Memory Using Lanthanum-Based High-K Blocking Oxide,” in IEEE Trans. Electron Devices, vol. 56, no. 11, pp. 2746-2751, September 2009.
    [52] Yan Ny Tan, Chim, W.K., Wee Kiong Choi, Moon Sig Joo, Byung Jin Cho, “Hafnium Aluminum Oxide as Charge Storage and Blocking-Oxide Layers in SONOS-Type Nonvolatile Memory for High-Speed Operation,” in IEEE Trans. Electron Devices, vol. 53, no. 4, pp.654-662, April 2006.
    [53] A. Rothschild, L. Breuil, G. Van den bosch, O. Richard, T. Conard, A. Franquet, A. Cacciato, 1. Debusschere, M. Jurczak, J. Van Houdt, J. A. Kittl,”O2 Post Deposition Anneal of Al2O3 Blocking Dielectric for Higher Performance and Reliability of TANOS Flash Memory,” in Solid State Device Research Conference, pp. 272 - 275, 2009.
    [54] M. Bocquet, G. Molas , L. Perniola, X. Garros, J. Buckley, M. Gely, J.P. Colonna, H. Grampeix, F. Martin, V. Vidal, A. Toffoli, S. Deleonibus, G. Ghibaudo, G. Pananakakis, B. De Salvo, “Impact of A HTO/Al2O3 Bi-layer Blocking Oxide in Nitride-trap Non-Volatile Memories,” in Solid-State Electronics, vol. 53, no. 7, pp. 786-791, July 2009.
    [55] J. Buckley, M. Bocquet, G. Molas, M. Gely, P. Brianceau, N. Rochat, E.Martinez, F.Martin, H. Grampeix, JP. Colonna, A.Toffoli, V. Vidal, C. Leroux, G. Ghibaudo, G. Pananakakis, C. Bongiorno, D. Corso, S. Lombardo, B. DeSalvo, S. Deleonibus, “In-depth Investigation of Hf-Based High-K Dielectrics as Storage Layer of Charge-Trap NVMs,” in IEEE IEDM Tech. Digest, pp.1-4,2006.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE