研究生: |
黃伯欽 |
---|---|
論文名稱: |
電漿輔助化學氣相沈積二氧化矽之1x4分光器製作與設計 |
指導教授: | 王立康 |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2004 |
畢業學年度: | 92 |
語文別: | 中文 |
論文頁數: | 49 |
中文關鍵詞: | 光波導 、多模干涉 |
外文關鍵詞: | PECVD, TEOS, TMP |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來網路的普及,各種線上服務也不斷地增加,如網路電話、視訊...等雙向互動式通訊,頻寬需求將大於以往的靜態網路服務,此時傳統的同軸電纜線將被光纖取代,光通訊將邁入新的里程碑。而與半導體製程類似的積體光學元件(integrated-optic components)在這裡佔了舉足輕重的地位,它的元件尺寸大小通常為光波長的數倍,它具備有尺寸小、強固、價位低的潛力。積體光學元件的架構通常為光波導的型態,它的結構可以分為: 緩衝層(buffer layer)、導光層(core layer)、披覆層(cladding layer),導光層折射率大於其他兩層。根據司乃耳定律(Snell’s Law),光將被侷限在導光層中而不會被洩漏掉。
本論文為根據多模干涉(multimode interference)原理製作1x4分光器,利用單一模態波導(single mode waveguide)入射至多模波導(multimode waveguide)而激發了許多的模態。而適當控制多模波導長度與寬度,可以選擇出成像的位置,最後由四個單模波導將光給導引出來。製作上利用機台PECVD (Plasma-Enhancement Chemical Vapor Deposition 電漿輔助化學氣相沈積)沈積薄膜,其優點在於薄膜具有低應力、沈積速率快、階梯覆蓋(Step Coverage)能力好,很適合製作光波導元件。首先在矽基板上TEOS(Tetra-Ethyl-Ortho-
Silicate Si(OC2H5)4)有機材料沈積一層折射率較低的SiO2為緩衝層,避免光從矽基底漏出去,之後再以 TEOS(Tetra-Ethyl-
Ortho-Silicate Si(OC2H5)4) 參雜TMP(Tri-Methyl-Phosphate P(OCH3)3)的方式增加SiO2的折射率,在緩衝層上面沈積一導光層。由於在蝕刻SiO2時,以光阻做為遮罩其選擇比為1:1.5,可能會出現光阻已被蝕刻完而SiO2卻未蝕刻到所想要的深度;如果以厚光阻為遮罩,光波導線寬將會變小,側璧粗糙度不是很好,側璧垂直角度也不好。因此將以DC Sputter沈積約1350Å金屬鉻做為遮罩其選擇比為1:70,將有效地改善上述的缺點。接下來經過黃光後定義出要蝕刻的圖案,以RIE蝕刻SiO2後為一個脊狀波導(ridge waveguide),再沈積不參雜TMP(Tri-Methyl-Phosphate P(OCH3)3)之SiO2為披覆層,最後製作完成的元件為一個高度與寬度約5μm的通道型波導(channel waveguide),由於形狀、結構大小與光纖類似,可預期會有不錯的光纖耦合效率。
此論文為製作一個1x4分光器,在章節安排上,第二章說明自成像原理,及如何形成光干涉元件,最後介紹一些干涉機制:一般干涉、成對干涉、對偁干涉;第三章一一地介紹光波導製程,並將呈現實際製作出元件的圖片,指出一些製程因素所出現的現象;第四章將量測1x4分光器所量測的功率,探討能量損耗產生的原因;第五章為結論。
[1] M. Kawachi, M. Yasu, and T. Edahiro, “Fabrication of SiO2-TiO2 glass planar optical waveguides by flame hydrolysis deposition,” Electronics Letters, Vol. 19, No. 15, pp 583-584, 21st July 1983
[2] M. Kawachi, “Silica waveguides on silicon and their application to integrated-optic components,” Optical and Quantum Electronics, Vol. 22, pp 391-416, 1990
[3] R. Bellerby, B. Bhumbra, G.J. Cannell, S. Day, M. Grant and M. Nelson, “Low cost silica-on-silicon single mode 1:16 optical power splitter for 1550 nm,” Proc EFOC’90, Munich, June 1990, pp 100-103
[4] G. Grand, S. Valette, G.J. Cannell, J. Aarnio, M. del Giudice et al, “Fibre pigtailed silicon based passive optical components,” Proc. ECOC’90, Amsterdam, September 1990, pp 525-528
[5] G. Grand, J.P. Jadot, H. Denis, S. Valette, A. Fournier and A.M. Grouillet, “Low-loss PECVD silica channel waveguides for optical communications,” Electronics Letters, Vol. 26, No. 25, pp 2135-2137, 6 December 1990
[6] B.H. Verbeek, C.H. Henry, N.A. Olsson, K.J. Orlowski, R.F. Kazarinov and B.H. Johnson, “Integrated four-channel Mach-Zehnder multi/demultiplexer fabricated with phosphorous doped SiO2 waveguides on silicon,” Journal of Lightwave Technology, Vol.6, No.6, June 1988
[7] C.H. Henry, G.E. Blonder and R.F. Kazarinov, “Glass waveguides on silicon for hybrid optical packaging,” Journal of Lightwave Technology, Vol. 7, No. 10, October 1989
[8] N.I. Morimoto and J.W. Swart, Material Research Society. Symposim Proceedings, pp. 263, 1996
[9] Lucas B. Soldano and Erick C. M. Pennings, Member, IEEE, “Optical multi-mode interference devices based on self-imaging: principles and applications,” Journal of Lightwave Technology, Vol. 13, No. 4, April 1995
[10] Richard Syms John Cozens, Optical guide wave and devices, New York, McGraw-Hill, 1992
[11] 莊達人 , VLSI 製造技術, 高立出版社, 2001
[12] D. A. P. Bulla, B. V. Borges, M. A. Romero, N. I. Morimoto, L. G. Neto and A. L. Cortes, “Design and Fabrication of SiO2/Si3N4 CVD Optical Waveguides,” SBMO/IEEE MTT-S IMOC’99 Proceedings
[13] K. J. An, D. H. Lee, J. B. Yoo, J.Lee, and G.. Y. Yeon, J. Vac. Sci. Technol. A17(4), Jul, Aug 1999, Etch characteristics of optical waveguides using inductively coupled plasma with multidipole magnets
[14] H. F. Talbot, “Facts relating to optical science No. IV, ”London, Edinburgh Philosophical Mag.. J. Sci., Vol. 9, pp. 401-407, Dec. 1836
[15] D. Marcuse, Light Transmission Optics. New York: Van Nostrand Reinhold, 1972
[16] O. Bryngdahl, “Image formation using self-imaging techniques,” J. Opt Soc. Amer., Vol. 63, No. 4, pp. 416-419, 1973
[17] R. Ulrich. “Image formation by phase coincidences in optical waveguides, “Optics Commun, Vol. 13, No. 3, pp. 259-264, 1975
[18] ― , “Light-propagation and imaging in planar optical waveguides,” Nouv. Rev. Optique, Vol. 6, No.5, pp. 253-262
[19] R. Ulrich and G. Ankele, “Self-imaging in homogeneous planar optical waveguides, “Appl. Phys. Lett., Vol. 27, No. 6, pp. 337-339, 1975
[20] D. C. Chang and E. F. Kuester, “A hybrid method for paraxial beam propagation in multimode optical waveguides,” Trans. Microwave Theory Tech., Vol. MTT-29, No. 9, pp. 923-933, 1981
[21] N. S. Kapany and J. J. Burke, Optical Waveguides. New York: Academic, 1972
[22] 吳彥鋒, 以參雜磷之SiO2製作光波導及其模擬分析, 碩士論文(2002), 國立清華大學
[23] 林浦如, 電漿輔助化學氣象沈積氮氧化矽陣列波導光柵設計與製作, 碩士論文(2003), 國立清華大學
[24] Hirosh Nishihara, Masamtisu Haruna, Toshiaki Suhara, Optical Integrated Circuits, P28
[25] 董德國與陳萬清譯, 光纖通訊, 東華出版社, 2000
[26] 楊國裕, 全彩雷射顯示器之三色混光元件製作,碩士論文(2002), 國立清華大學