研究生: |
吳明 Wu, Ming |
---|---|
論文名稱: |
離散型全程擬滑動模式控制器設計及其應用 Toward the Discrete-time Global Quasi-Sliding Mode Controller Design and Its Application |
指導教授: |
陳建祥
Chen, Jian Shiang |
口試委員: |
陳永平
Chen, Yon Ping 葉廷仁 Yeh, Ting Jen 呂有勝 Lu, Yu Sheng 吳尚德 Wu, Shang Teh |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 中文 |
論文頁數: | 101 |
中文關鍵詞: | 全程擬滑動模式 、滑動平面 、平滑飽和函數 、強制函數 、D2小波函數 |
外文關鍵詞: | global quasi-sliding mode control scheme, sliding surface, smooth saturation function, augmented forcing function, D2 wavelet function |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文主要目的在於推廣全程滑動模式至離散時間,因為在有限取樣時間下,必須放寬滑動模式為擬滑動模式,因此提出全程擬滑動模式之想法,提出廣義強制函數設計之三條件,使能夠全程沿著滑動平面作zigzag運動以擬滑動之行為朝相空間原點收斂,其次,為了改善zigzag運動所造成輸出控制力產生顫震現象,改用連續近似法取代傳統理想切換函數,並且針對傳統連續近似法所具有之缺點加以改善,用廣義平滑飽和函數取代,並提出一套利用等效D2小波濾波器以迫近濾波器的觀點根據系統取樣時間決定平滑區間。另外,為了探究全程滑動模式控制實際之可行性,本文將全程擬滑動模式控制器應用於不同硬體平台中,實驗驗證顯示,全程擬滑動行為與理論相符,系統狀態軌跡確實能夠全程沿著滑動平面以zigzag型式運動,最後採用廣義平滑飽和函數為基礎之連續近似法來替換傳統的線性飽和函數。從本文推廣的邊界層滑動模式理論顯示,廣義平滑飽和函數總是能夠覆蓋線性飽和函數,能夠使切換控制項輸出更多控制力,使得系統狀態軌跡收斂速率比採用線性飽和函數更快,並降低因全程擬滑動所產生的跳切現象,因此,廣義平滑飽和函數是平衡輸出控制力與系統響應速度之較佳選擇,使得全程擬滑動模式控制器能夠應用於實際硬體平台上。
A novel concept of global quasi-sliding mode control scheme which is extended from a global sliding mode control to establish a quasi-sliding motion that ensures a zigzag motion, which will directly move forward to the original phase portrait throughout the entire sliding dynamic response in discrete-time. The new design of an augmented forcing function is followed by three conditions extended from global sliding mode control. In order to reduce chattering phenomenon from zigzag motion, we also propose a redesign of continuous approximation with smooth saturation and utilize an equivalent D2 wavelet filter to decide smooth interval according to sampling time in system. Finally, in discrete time, we propose a global quasi-sliding mode approach for the different hardware platforms. The experimental results show that it matches global quasi-sliding mode theory and maintain zigzag motion throughout the entire response. And then generalized smooth saturation is adopted to ensure that switching control term will output more force and state response will be converge faster. Therefore, the switching function adopted generalized smooth function gsat(.) would be a balance between control force response and state response.
[1] S.V. Emelyanov, Variable Structure Control Systems. Moscow: Nauka (in Russian), 1967.
[2] V.I. Utkin, “Sliding Mode Control Design Principles and Applications to Electric Drives,” IEEE Transactions on Industrial Electronics, vol. 40, 1993, pp.23-36.
[3] V.I. Utkin, “Variable structure systems with sliding mode: a survey,” IEEE Transactions Automatic Control, vol. AC-22, no. 2, pp. 212-222, 1977
[4] E. Baily and A. Arapostathis, “Simple sliding mode control scheme applied to robot manipulator,” International Journal of Control, vol. 45, pp. 234-237, 1998.
[5] J. Wang, H.V. Brussel and J. Swevers, “Robust Perfect Tracking Control With Discrete Sliding Mode Controller,” Journal of Dynamic Systems, Measurement, and Control, vol. 125, no. 1, pp. 27, 2003.
[6] W.C. Yu, G.J. Wang and C.C. Chang,“Discrete sliding mode control with forgetting dynamic sliding surface” Mechatronics, vol. 14, no. 7, pp. 737-755, 2004.
[7] Y.C. Chang and B.S. Chen,“Adaptive Tracking Control Mechanical Design of Nonholonomic Systems” Decision and Control, Proceedings of the 35th IEEE, vol. 4, pp. 4739-4744, 1996.
[8] R.J. Wai, M.A. Kuo, J.D. Lee, “Design of Cascade Adaptive Fuzzy Sliding-Mode Control for Nonlinear Two-Axis Inverted-Pendulum Servomechanism,” IEEE Transactions on Fuzzy Systems, vol. 16, no. 5, pp. 1232-1244, 2008.
[9] Y. Zhang, W.T. Ang, J. Jin, S. Zhang and Z. Man,“Nonlinear Adaptive Sliding Mode Control for a Rotary Inverted Pendulum,” Advances in Industrial Engineering and Operations Research, vol. 5, pp. 345-360, 2008.
[10] Z. Hendzela and M. Szuster, “Discrete neural dynamic programming in wheeled mobile robot control,” Communications in Nonlinear Science and Numerical Simulation, vol. 16, no. 5, pp. 2355-2362, 2011.
[11] Y.H. Jo, Y.H. Lee and K.B. Park,“Sliding Mode Controller with Circular Sliding Surface for 2-link Robot Manipulator,” International Conference on Control Automation and Systems, pp. 1519-1521, 2010.
[12] J.W. Liang, H.Y. Chen and Y.T. Tsu, “FAT-based Adaptive Sliding-Mode Control for a Piezoelectric-actuated System,” Journal of Vibration and Control, vol. 17, no. 2, 279-289, 2011.
[13] J.J. Slotine and J.A. Coestee, “Adaptive sliding controller synthesis for nonlinear systems,” International Journal of Control., vol. 43, no. 6, pp. 1631-1651, 1986.
[14] A.G. Bondarev, S.A. Bondarev, N. E. Kostyleva and V.I. Utkin, “Sliding modes in systems with asymptotic state observers,” Automation and Remote Control, vol. 46, no. 6, pp. 676-684, 1985.
[15] A. Benchaib, A. Rachid and E. Audrezet, “Sliding mode input-output linearization and field orientation for real-time control of induction motors,” IEEE Transactions on Automatic Control, vol. 14, no. 1, pp. 3-13, 1999.
[16] S. Janardhanan and V. Kariwala, “Multirate-Output-Feedback-Based LQ-Optimal Discrete-Time Sliding Mode Control,” IEEE Transactions on Automatic Control, vol. 53, no. 1, pp. 367-373, 2008.
[17] C.F. Yung and S.D. Lin, “New smooth approximation of variable structure systems with application to tracking control,” Journal of Control Systems and Technology, vol. 3, pp. 213-220, 1995.
[18] J.J.E. Slotine and W. Li, Applied Nonlinear Control, Prentice-Hall, New Jersey, 1991.
[19] J.J.E. Slotine and S.S. Sastry, “Tracking control of non-linear systems using sliding surface, with application to robot manipulators,” International Journal of Control, vol. 38, pp. 465-492,1983.
[20] K.R. Buckholtz, “Approach Angle-Based Switching Function for Sliding Mode Control Design,” Proceedings of the American Control Conference Anchorage, pp. 2368-2373, 2002.
[21] S.L. Chen and W.C. Hsu, “Fuzzy sliding mode control for ship roll stabilization,” Asian Journal of Control, vol. 5, pp. 187-194, 2003.
[22] M. Falahpoor, M. Ataei and A.Kiyoumarsi, “A chattering-free sliding mode control design for uncertain chaotic systems”, Chaos, Solitons & Fractals, vol. 42, pp. 1755-1765, 2009.
[23] A.K. Ayman, N. Essounbouli, A. Hamzaoui, F. Nollet, and J. Zaytoon, “Type-2 fuzzy sliding mode control without reaching phase for nonlinear system,” Engineering Applications of Artificial Intelligence, vol. 24, no. 1, pp. 23-38, 2011.
[24] M.C. Pai, “Discrete-time sliding mode control for uncertain systems with state and input delays,” International Journal of Systems Science, vol. 41, pp. 1501-1510, 2010.
[25] S. Yu, B.Y. Ma, J.X. Du and X.C. Duan, “Optimal Switching Function Discrete Sliding-mode Control Based on Unmatched Uncertainties States Observer,” WSEAS Transactions on Systems and Control, vol. 5, no. 5, 2010.
[26] G. Golo and C. Milosavljevi,“Robust discrete-time chattering free sliding mode control,” Systems & Control Letters, vol. 41, no. 1, pp. 19-28, 2000.
[27] Y.S. Lu and J.S. Chen, “Design of global sliding-mode controller for a motor drive with bounded control.” International Journal of Control, vol. 62, pp. 1001-1019, 1995.
[28] Y.S. Lu and J.S. Chen, “Design of a perturbation estimator using the theory of variable-structure systems and its application to magnetic levitation systems,” IEEE Transactions on Industrial Electronics, vol. 42, pp. 281-289, 1995.
[29] Y.S. Lu, “Sliding-Mode Disturbance Observer With Switching-Gain Adaptation and Its Application to Optical Disk Drives”, IEEE Transactions on Industrial Electronics, vol. 56, no. 9, pp. 3743-3750, 2009.
[30] Y.S. Lu, C.W. Chiu and J.S. Chen, “Time-varying sliding-mode control for finite-time convergence,” ELECTRICAL ENGINEERING, vol. 92, no. 7-8, pp. 257-268, 2010.
[31] Y. Xia, M. Fu, P. Shi and M. Wang, “Robust sliding mode control for uncertain discrete-time systems with time delay,” Control Theory & Applications, IET, vol. 4, no. 4, pp. 613-624, 2010.
[32] A. F. Filippov, "Differential equations with discontinuous right-hand sides", Mathematicheskii Sbornik, vol. 51, pp. 199-231, 1960.
[33] J.P.F. Garcia, J.M.S. Ribeiro, J.J.F. Silva and E.S. Martins,“Continuous-time and discrete-time sliding mode control accomplished using a computer,” Iee Proceedings-control Theory and Applications, vol. 152, no. 2, 2005.
[34] S. Sarpturk, Y. Istefanopulos and O. Kaynak, “On the Stability of Discrete-Time Sliding Mode Control Systems,” IEEE Transactions on Automatic Control, vol. 32, no. 10, pp. 930-932, 1987.
[35] K. Ogota, Discrete-time control system, Prentice-Hall, New Jersey, 1995.
[36] G.F. Franklim, J.D. Powell and M.L. Workman, Digital control of dynamic systems, Anddison-Wesley, United States of America, 1990.
[37] V.S. Viktorova, “Digital variable structure controllers,” in PETROV, B.N. and EMELYANOV, S.V. (Eds): “Variable structure systems and their use in flight control,”, pp. 198-207, (Nauka, Moscow, 1968).
[38] C. Milosavljevic, Some problems of the discrete variable structure systems control law realization, Ph.D. Thesis, University of Sarajevo (YU), 1982.
[39] S. Z. Sarpturk, Y. Istcfanopulos and O. Kaynak, “On the stability of discrete-time sliding mode control systems,” IEEE Trans. Automat. Contr., vol. AC-32, no.10, pp. 930-932, 1987.
[40] W. Gao, Y. Wang and A. Homaifa, “Discrete-time variable structure control systems,” IEEE Transactions on Industrial Electronics, vol. 42, pp. 117-122, 1995.
[41] J. Hung, W. Gao, and J. Hung, “Variable Structure Control: A Survey,” IEEE Transactions on Industrial Electronics, vol. 40, pp. 2-21, 1993.
[42] C. Vivekanandan and R. Prabhakar,“A Redefined Discrete Quasi-Sliding Mode Strategy,” International Journal of Recent Trends in Engineering, vol. 1, no. 3, 2009.
[43] X. Yu, B. Wang, Z. Galias and G. Chen,“Discretization effect on equivalent control based multi-input sliding mode control systems,” IEEE Transactions on Automatic Control, vol. 53, no. 6, pp. 1563-1569, 2008.
[44] I. Daubechies,“Orthonormal bases of compactly supported wavelets,” Communications on Pure and Applied Mathematics, vol. 41, no. 7, pp. 909-996, 1988.
[45] S. Mallat, A Wavelet Tour of Signal Processing Third Edition, Academic Press, 2008.
[46] H. Yang, S.X. Yang and G.S. Mittal, “Tracking Control of a Nonholonomic Mobile Robot by Integrating Feedback and Neural Dynamics Techniques,” International Conference on Intelligent Robots and Systems Proceedings, vol. 3, pp. 3522-3527, 2003.
[47] K.H. Su, Y.Y. Chen and S.F. Su, “Design of neural-fuzzy-based controller for two autonomously driven wheeled robot,” Neurocomputing, vol.73, 2010, pp. 13-15.
[48] K. Pathak, J. Franch and S.K. Agrawal,“Velocity and Position Control of a Wheeled Inverted Pendulum by Partial Feedback Linearization,” IEEE Transactions on Robotics, vol. 21, no. 3, 2005.
[49] R. Gupta, R. Lamba and S. Padhee, “ Thyristor Based Speed Control Techniques of DC Motor: A Comparative Analysis,” International Journal of Scientific and Research Publications, vol. 2, no. 6, 2012.
[50] J.J. Rubio and W. Yu, “A new discrete-time sliding-mode control with time-varying gain and neural identification,” International Journal of Control, Vol. 97, pp. 338-348 , 2006.
[51] B. Wang, X. Yu, and G. Chen, “ZOH discretization effect on single-input sliding mode control systems with matched uncertainties,” Automatica, Vol. 45, pp. 118-125 , 2009.
[52] Y. Ni and J. Xu, “Study of Discrete Global-Sliding Mode Control for Switching DC-DC Converter,” Journal of Circuits, Systems, and Computers, Vol. 20, pp. 1197-1209 , 2011.
[53] M.L. Corradini, G. Ippoliti, S. Longhi, D. Marchei, and G. Orlando,“A Quasi-Sliding Mode Observer-Based Controller for PMSM Drives,” Asian Journal of Control, Vol. 15, No. 2, pp. 380-390, 2013
[54] 吳明、陳建祥,2010,“A Global Quasi-Sliding Mode Control Scheme with Time-Varying QSMB,” 中國機械工程學會第二十七屆全國學術研討會,台北
[55] Ming Wu and Jian-Shiang Chen,“On The Redesign of Continuous Approximation in Sliding Mode Control,” 11th International Conference on Control, Automation and Systems, Korea, 2011.
[56] Ming Wu and Jian-Shiang Chen,“The design of chattering alleviated sliding mode control using wavelet approach,” Automatic Control Conference (CACS) , Taiwan, 2013.
[57] Ming Wu and Jian-Shiang Chen,“A Discrete-Time Global Quasi-Sliding Mode Control Scheme with Bounded External Disturbance Rejection,” Asian Journal of Control, vol. 16, no. 6, pp.1839-1848, 2014.