研究生: |
蘇嬿如 Su, Yan-Ru |
---|---|
論文名稱: |
多壁奈米碳管/氧化鋁/環氧樹脂複合材料之製備與性質研究 Synthesis and Characterization of Multi-Walled Carbon Nanotubes /Al2O3/Epoxy Composites |
指導教授: | 徐文光 |
口試委員: |
許景棟
呂昇益 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 中文 |
論文頁數: | 66 |
中文關鍵詞: | 奈米碳管 、氧化鋁 、環氧樹脂 、電地暖 、自加熱 |
外文關鍵詞: | electric floor heating, self-heating, Aluminium oxide |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由本研究係以三軸滾輪機將環氧樹脂(Epoxy)當作基材,以氧化鋁粉(Al2O3)為主填充材,多壁奈米碳管(MWCNTs)為副填充材,在固定主要填充材與基材的比例下,添加1-5 wt.%之MWCNTs利用機械剪切力混合均勻,在140 oC下固化3小時,製成MWCNTs/Al2O3/Epoxy複合材料。後續利用SEM、Raman、電性量測、熱傳導量測、比熱量測、抗彎測試、溫升測試來分析材料性質。實驗結果顯示,相較於Epoxy,MWCNTs/Al2O3/Epoxy複合材在60 oC和 80 oC的熱傳導係數增加了300 % (1-5 wt.% CNTs),比熱下降了20 % (3-5 wt.% CNTs)。而MWCNTs/Al2O3/Epoxy (50×50×5 mm)之複合材通12/24W電溫升到60 oC只需2分鐘/1分鐘,到80 oC只需3分半/1分半的時間。本研究製作出之MWCNTs/Al2O3/Epoxy複合材通低功率電即能快速且均勻自加熱,未來期許其能夠應用在電地暖及浴室除濕加熱磁磚系統材料上。
In this study, composites are made by epoxy as matrix to blend with the main fillers, Al2O3, as well as with the secondary fillers, mutli-walled carbon nanotubes (MWCNTs), at different ratios. Firstly, epoxy, CNTs and Al2O3 powders are evenly mixed by three-ball milling system to form adhesives. After degassing, the adhesives are cured at 140 oC for 3 h and pristine MWCNTs/Al2O3/epoxy composites are subsequently characterized by SEM and Raman. The glass transition temperature (Tg), mechanical, thermal and electrical properties are also measured, along with resistive heating experiments. The results show that comparing with pure epoxy, the specific heat of MWCNTs/Al2O3/Epoxy composite at 60 oC and 80 oC decrease 20 % (3-5 wt.% CNTs) and the thermal conductivity increase at least 300 % (1-5 wt.% CNTs) respectively. Input of low power (12-24 W) into composites (50×50×5 mm) produces heat and surface temperature reaches 60oC in 60-120 s and 80oC in 100-210 s respectively. Electrical heating of MWCNTs/Al2O3/Epoxy composites is low cost and is highly safety, capable of replacing existing electric floor heating systems.
1. 德浦微電腦恆溫地暖系統. 地暖原理與優勢. 2012; Available from: http://www.e-floors.com.tw/knowledge/.
2. 北京艺诺美家地暖. 电地暖种类哪种好-各种电地暖优缺点分析. 2012; Available from: http://www.jfm668.com/Html/?2908.html.
3. 五陽綠能科技有限公司. 產品應用. 2008; Available from: http://www.ps-greentek.com/Application/.
4. Iijima, S., Helical microtubules of graphitic carbon. nature, 1991. 354(6348): p. 56-58.
5. Collins, P.G. and P. Avouris, Nanotubes for electronics. Scientific American, 2000. 283(6): p. 62-69.
6. Dresselhaus, M.S., G. Dresselhaus, and P.C. Eklund, Science of fullerenes and carbon nanotubes: their properties and applications. 1996: Academic press.
7. Dresselhaus, M.S. and P.C. Eklund, Phonons in carbon nanotubes. Advances in Physics, 2000. 49(6): p. 705.
8. Thostenson, E.T., Z. Ren, and T.-W. Chou, Advances in the science and technology of carbon nanotubes and their composites: a review. Composites Science and Technology, 2001. 61(13): p. 1899-1912.
9. Hamada, N., S.-i. Sawada, and A. Oshiyama, New one-dimensional conductors: graphitic microtubules. Physical Review Letters, 1992. 68(10): p. 1579.
10. Hassanien, A., et al., Geometrical structure and electronic properties of atomically resolved multiwall carbon nanotubes. Applied Physics Letters, 1999. 75(18): p. 2755-2757.
11. Lambin, P., Electronic structure of carbon nanotubes. Comptes Rendus Physique, 2003. 4(9): p. 1009-1019.
12. Mizel, A., et al., Analysis of the low-temperature specific heat of multiwalled carbon nanotubes and carbon nanotube ropes. Physical Review B, 1999. 60(5): p. 3264-3270.
13. Yi, W., et al., Linear specific heat of carbon nanotubes. Physical Review B, 1999. 59(14): p. R9015-R9018.
14. Berber, S., Y.-K. Kwon, and D. Tomanek, Unusually high thermal conductivity of carbon nanotubes. Physical Review Letters, 2000. 84(20): p. 4613.
15. 許景棟, 奈米碳管的聲子,吸附性質及其新穎的合成技術, in 材料科學工程學系. 2008, 國立清華大學: 新竹市. p. 95.
16. Hone, J., et al., Thermal conductivity of single-walled carbon nanotubes. Physical Review B, 1999. 59(4): p. R2514.
17. Treacy, M., T. Ebbesen, and J. Gibson, Exceptionally high Young's modulus observed for individual carbon nanotubes. 1996.
18. Wong, E.W., P.E. Sheehan, and C.M. Lieber, Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes. Science, 1997. 277(5334): p. 1971-1975.
19. Yu, M.-F., et al., Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science, 2000. 287(5453): p. 637-640.
20. Salvetat, J.-P., et al., Elastic modulus of ordered and disordered multiwalled carbon nanotubes. Advanced Materials, 1999. 11(2): p. 161-165.
21. Xie, S., et al., Mechanical and physical properties on carbon nanotube. Journal of Physics and Chemistry of Solids, 2000. 61(7): p. 1153-1158.
22. Iijima, S. and T. Ichihashi, Single-shell carbon nanotubes of 1-nm diameter. 1993.
23. Saito, Y., et al., Carbon nanocapsules and single‐layered nanotubes produced with platinum‐group metals (Ru, Rh, Pd, Os, Ir, Pt) by arc discharge. Journal of applied physics, 1996. 80(5): p. 3062-3067.
24. Guo, T., et al., Self-assembly of tubular fullerenes. The Journal of Physical Chemistry, 1995. 99(27): p. 10694-10697.
25. Mohlala, M.S., et al., Organometallic precursors for use as catalysts in carbon nanotube synthesis. Organometallics, 2005. 24(5): p. 972-976.
26. 阿部弘, et al., Engineering Ceramics. 1984.
27. 林江財, 氧化鋁陶瓷特性及製作. 精密陶科技: 經濟部中小企業處及工業技術研究院工業材料研究所聯合編印.
28. Putnis, A., An introduction to mineral sciences. 1992: Cambridge University Press.
29. 陳平 and 王德忠, 環氧樹脂及其應用. 2004: 化學工業出版社.
30. Hashemi, S., Foundations of Materials Science and Engineering. 4th ed. 2005.
31. 馬振基, 高分子複合材料. 1995, 台北: 國立編譯館.
32. 許明發, 複合材料. 1998, 台北: 高立圖書有限公司.
33. 游錫揚, 纖維複合材料. 1992, 台中: 國彰出版社.
34. PHILIPS'GLOEILAMPENFABRIEKEN, O., A method of measuring specific resistivity and Hall effect of discs of arbitrary shape. Philips research reports, 1958. 13(1).
35. Banaszczyk, J., et al., The Van der Pauw method for sheet resistance measurements of polypyrrole‐coated para‐aramide woven fabrics. Journal of applied polymer science, 2010. 117(5): p. 2553-2558.
36. 王義文. 熱卡計應用於工業危害性物質之失控反應評估. 2010; Available from: http://epaper.yuntech.edu.tw/201002/tech.htm.
37. Fournier, J., et al., Percolation network of polypyrrole in conducting polymer composites. Synthetic metals, 1997. 84(1): p. 839-840.
38. Coleman, J.N., et al., Percolation-dominated conductivity in a conjugated-polymer-carbon-nanotube composite. Physical Review B, 1998. 58(12): p. R7492.
39. Li, S., et al., Electrical properties of soluble carbon nanotube/polymer composite films. Chemistry of materials, 2005. 17(1): p. 130-135.
40. Dettlaff-Weglikowska, U., et al., Conducting and transparent SWNT/polymer composites. physica status solidi (b), 2006. 243(13): p. 3440-3444.
41. Hida, S., et al., Thermal resistance and phonon scattering at the interface between carbon nanotube and amorphous polyethylene. International Journal of Heat and Mass Transfer, 2013. 67: p. 1024-1029.
42. Vassileva, E. and K. Friedrich, Epoxy/alumina nanoparticle composites. I. Dynamic mechanical behavior. Journal of applied polymer science, 2003. 89(14): p. 3774-3785.
43. Putz, K.W., et al., Effect of cross-link density on interphase creation in polymer nanocomposites. Macromolecules, 2008. 41(18): p. 6752-6756.
44. 應用化學系物理化學實驗 實驗4 以微差掃描熱卡計測定物質相變化性質. Available from: lms.ctl.cyut.edu.tw/sys/read_attach.php?id=724970.
45. Satapathy, B.K., et al., Crack toughness behaviour of multiwalled carbon nanotube (MWNT)/polycarbonate nanocomposites. Macromolecular rapid communications, 2005. 26(15): p. 1246-1252.
46. Asi, O., Mechanical Properties of Glass-Fiber Reinforced Epoxy Composites Filled with Al 2O3 Particles. Journal of Reinforced Plastics and Composites, 2009. 28(23): p. 2861-2867.
47. Omrani, A., L.C. Simon, and A.A. Rostami, The effects of alumina nanoparticle on the properties of an epoxy resin system. Materials chemistry and physics, 2009. 114(1): p. 145-150.