簡易檢索 / 詳目顯示

研究生: 郭祥吉
Kuo, Hsiang-Chi
論文名稱: Dosimetric and biological impact of respiratory organ motion in the delivery of IMRT techniques and the corresponding margin design for intra-hepatic tumor
呼吸運動對肝內腫瘤調控放射治療的影響
指導教授: 莊克士
口試委員:
學位類別: 博士
Doctor
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 123
中文關鍵詞: 形變配準技術呼吸運動強度調控輻射生物效應
外文關鍵詞: equivalent uniform dose, IMRT, respiratory organ motion, convolution method, deformation
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文探討呼吸運動對放射調控技術(非旋轉式與旋轉式)之劑量與輻射生物效應之影響.研究方法其一以呼吸運動與準直儀之運動(非旋轉式IMRT)作旋積.對旋轉式IMRT則應用4DCT影像配準之□果評估呼吸運動對劑量之誤差.

    旋積方式產生等效強度分佈以代表呼吸運動對原強度分佈之扭曲.此方法對108個強度分佈受扭曲後之結果作統計分析,結果發現扭曲之大小與呼吸運動範圍d,強度梯度G,與d*G有較大之相關性(相關係數分別為0.6,0.56,0.9).

    以4DCT的形變配準技術對旋轉式調強分析劑量誤差,結果顯示在呼吸運動範圍1.5公分內,劑量誤差非常有限.以高調強計畫而言,1.5公分之呼吸運動僅造成最大3%的期望誤差偏離.此結果顯示旋轉式調強技術同時適用單次與多次放射治療.

    論文以等效均勻劑量方法評估呼吸運動的輻射生物效應.透過肝內腫瘤細胞對輻射線之存活率分析,本論文研究臨床肝內腫瘤治療之適應治療照野大小.


    This dissertation investigates the dosimetric and radiobiological impact of respiratory organ motion on the delivery of IMRT techniques for intra-hepatic tumor. There are two methods applied in two different IMRT techniques. Convolution incorporated motion trajectory was performed to study motion impact in fixed-beam IMRT technique. A method incorporated 4DCT data was utilized to evaluate motion impact in rotational IMRT technique. The 4DCT method used a diffeoremorphic registration as framework to construct deformation field in three dimensions.

    The convolution method generates effective fluence which is the fluence distorted by the motion function. By analyzing 108 fluence generated from fixed field IMRT, this study found there are strong correlation of intensity error with motion displacement d (0.6), fluence gradient G (0.56), and their multiplication d*G (0.9). To keep the average intensity error below 0.05 and 0.03, the maximum motion displacement should be smaller than 1.3 cm and 0.7 cm, respectively.

    With 4DCT data, dosimetric error due to deformation is intrinsically included. Study from two cases showed that the dosimetric error due depth changes alone were 3% and 1%, respectively. Comparing the motion effect on the delivered dose between the moderately modulated plans and the highly modulated plans for the two cases in this study, the latter only increases the maximum dose deviation from the expected dosimetric error by 2% (from 1% to 3%). Method was applied at single-arc IMAT in this study, the same scheme can be applied at multiple-arc IMAT as well.

    Radiobiological impact of the respiratory motion was evaluated with the concept of equivalent uniform dose. Through the correlation between the survival fraction and different clinical cell type or stage of intra-hepatic tumor, appropriate margins were designed to account for the biological impact from respiratory motion in IMRT delivery.

    Contents Figures viii I: Background Study Chapter 1 Introduction 1 • 1.1 Overview of the study and the structure of this dissertation 1 • 1.2 Intra-hepatic disease 3 • 1.3 Tumor dose response: biological model 4 • 1.4 Treatment uncertainty and margin design 5 Chapter 2 IMRT techniques 8 • 2.1 Fixed-Gantry IMRT 8 o 2.1.1 Step-and-shoot MLC leaf sequencing 8 o 2.1.2 Dynamic MLC leaf sequencing 9 • 2.2 Rotational IMRT 11 o 2.2.1 Tomotherapy and IMAT 11 o 2.2.2 Intensity and modulation of rotational IMRT technique 12 Chapter 3 Review of methods regarding dosimetric impact due to organ motion in the delivery of IMRT 15 • 3.1 Analytical method 15 • 3.2 Statistical method 16 • 3.3 Convolution method 19 • 3.4 4DCT study 21 o 3.4.1 Motion detector 21 o 3.4.2 4DCT protocol 22 o 3.4.3 Planning with 4DCT 23 Chapter 4 Tumor response to non-uniform dose 24 • 4.1 Modeling tumor response 24 o 4.1.1 Classical dose response relationships 24 o 4.1.2 Volume dependence of dose response models 25 o 4.1.3 Responses for heterogeneous tumor and dose distributions 25 • 4.2 Reporting and analyzing dose distribution with equivalent uniform dose (EUD) 26 o 4.2.1 The simplest models 27 o 4.2.2 Absolute volume effect 28 o 4.2.3 Nonuniform spatial distribution of clonogens 28 o 4.2.4 Dose-per-fraction effect 28 o 4.2.5 Proliferation effect 29 II Dosimetric and Biologic Impact due to respiratory motion in intra-hepatic IMRT Chapter 5 Analysis of the organ motion effects on the effective influences for liver IMRT 31 • 5.1 Introduction 31 • 5.2 Method and materials 32 o 5.2.1. Algorithm for generating the fluence map that incorporates organ motion 33 o 5.2.2. Test patterns for phantom studies 33 o 5.2.3. Evaluation of motion and blurred fluence on the test fluence map 35 o 5.2.4. Evaluation of effects of motion on the fluence map generated from IMRT plans of liver patients 36 • 5.3 Results 36 o 5.3.1. Analysis of motion from test patterns 36 □ 5.3.1.a Phantom studies 37 □ 5.3.1.b Effects of extent of motion 39 □ 5.3.2. Effect of organ motion on liver IMRT: Analysis of fluence maps 40 • 5.4 Discussion 45 Chapter 6 Multi-scale regularization approaches of non-parametric deformable registration 48 • 6.1 Introduction 48 • 6.2 Method and materials 49 o 6.2.1 Experimental Data 50 o 6.2.2 Non-parametric Deformation Registration 50 □ 6.2.2.a Demons Algorithm 50 □ 6.2.2.b Diffeomorphic Algorithm 51 o 6.2.3 Multi-scale Smoother Scheme 51 o 6.2.4 Evaluation 52 □ 6.2.4.a Mean Squared Error 53 □ 6.2.4.b Normalized Correlation 53 □ 6.2.4.c Jacobian Determinant of the Displacement Vector Field 53 □ 6.2.4.d Residual Vector Field 54 • 6.3 Results and discussion 54 Chapter 7 A method incorporated 4DCT data for evaluating the dosimetric effects of respiratory motion in single arc IMAT 67 • 7.1 Introduction 67 • 7.2 Method and materials 69 o 7.2.1 4D CT acquisition 69 o 7.2.2 Deformable registration 69 o 7.2.3 Plan with 4D data 70 □ 7.2.3.a Description of RapidArc IMAT 70 □ 7.2.3.b Partition of RapidArc plan and 4D dose calculation 71 □ 7.2.3.c Moderately modulated vs. highly modulated plans 73 □ 7.2.3.d Motion impact evaluation 73 • 7.3 Results 74 o 7.3.1 Deformable registrations 74 o 7.3.2 RapidArc plans and 4D partition 76 o 7.3.3 Dosimetric impact 78 □ 7.3.3.1 Case one: MLC moved perpendicular with organ motion 79 • 7.3.3.1.a Dosimetric impact of moderately modulated plan 79 • 7.3.3.1.b Dosimetric impact of highly modulated plan 80 • 7.3.3.1.c Plan at different phases 82 □ 7.3.3.2 Case two: MLC moved parallel with organ motion 83 • 7.4 Discussion 85 Chapter 8 Biological impact of geometrical uncertainties: what margin is needed for intra-hepatic tumors? 89 • 8.1 Introduction 89 • 8.2 Method and materials 92 o 8.2.1 Data acquisition 92 o 8.2.2 Margin design 93 o 8.2.3 Incorporation of geometric errors: Two step convolution 95 o 8.2.4 Systematic Error 97 o 8.2.5 Plan Evaluation: biological impact 97 o 8.2.6 Statistical Analysis 98 o 8.2.7 Comparison with 4D study 98 • 8.3 Results 98 • 8.4 Discussion 105 III Conclusion and Future work Chapter 9 Conclusion and Future work 110 • Summary and conclusion 110 • Future work 112 References 114

    Alasti H, Cho Y B, Vandermeer A D, Abbas A, Norrlinger B, Shubbar S, Bezjak A 2006 A novel four-dimensional radiotherapy method for lung cancer: imaging, treatment planning and delivery Phys. Med. Biol. 51 3251-67

    Bakai A, Alber M and Nusslin F 2003 A revision of gamma-evaluation concept for the comparison of dose distribution Phys. Med. Biol. 48 3543-53

    Balter JM, Lam KL, McGinn CJ, Lawrence TS, and Ten Haken RK 1998 Improvement of CT-based treatment-planning models of abdominal targets using static exhale imaging. Int J Radiat Oncol Biol Phys 41 939–943

    Balter JM, Dawson LA, Kazanjian S, McGinn C, Brock KK, Lawrence T, Ten Haken R 2001 Determination of ventilatory liver movement via radiographic evaluation of diaphragm position Int. J. Radiat. Oncol. Biol. Phys. 51 267-70

    Balter J, Brock K, Lam K, Tatro D, Dawson L, McShan D, Ten Haken R 2005 Evaluating the influence of setup uncertainties on treatment planning for focal liver tumors. Int J Radiat Oncol Biol Phys 63 610-614

    Bedford J, Nordmark H V, McNair H, Aitken A, Brock J, Warrington A, Brada M 2008 Treatment of lung cancer using volumetric modulated arc therapy and image guidance: a case study. Acta Oncol 47 1830-41

    Ben-Josef E, Normolle D, Ensminget W D, et al 2005 Phase II trial of high-dose conformal radiation therapy with concurrent hepatic artery floxuridine for unresectable intrahepatic malignancies J. Clin. Oncol. 23 8739-8747

    Bortfeld TR, Kahler DL, Waldron TJ, et al. 1994 X-ray field compensation with multileaf collimators . Int. J. Radiat. Oncol. Biol. Phys. 28 723-30

    Bortfeld T, Jokivarsi K, Goitein M, Kung J and Jiang S B 2002 Effects of intra-fraction motion on IMRT dose delivery: statistical analysis and simulation Phys. Med. Biol. 47 2203-20

    Bortfeld T and Webb S 2009 Single-Arc IMRT? Phys. Med. Biol. 54 N9-N20

    Bro-Nielsen M, Florack L, Deriche R 1994 Regularization and Scale Space, INRIA Tech. Rep. RR-2352, 1-40, September

    Bro-Nielsen M, Gramkow C 1996 Fast fluid registration of medical images VBC ’96: Proc. Visualization in Biomedical Computing (Hamburg, Germany, September) (Springer Lecture Notes in Computer Science vol 1131) 267–76

    Brock K K, McShan D L, Ten Haken R K, Hollister S J, Dawson LA and Balter JM. 2003 Inclusion of organ deformation in dose calculation Med. Phys. 30 290-295

    Burnet NG, Jena R, Jefferies SJ et al. 2006 Mathematical modeling of survival of glioblastoma patients suggests a role for radiotherapy dose escalation and predicts poorer outcome after delay to start treatment. Clinical Oncol 18 93-103

    Cao D, Holmes T W, Afghan M K N and Shepard D M. 2007 Comparison of plan quality provided by intensity modulated arc therapy and helical tomotherapy Int. J. Radiat. Oncol. Biol. Phys. 69 240–50

    Castadot P, Lee J, Parraga A, Geets X, Macq B, Gr□goire V 2008 Comparison of 12 deformable registration strategies in adaptive radiation therapy for the treatment of head and neck tumors, Radio. Oncol. 88 1-12

    Chi Y, Liang J, Yan D 2006 A material sensitivity study on the accuracy of deformable organ registration using linear biomechanical models, Med. Phys. 33 421-33

    Chuang K S, Kuo H C, Huang D 2002 A numerical simulation method for incorporating respiratory organ motion into 3D dose calculations using serial imaging data, AAPM, Montreal

    Christensen G, Rabbitt R, Miller M 1996 Deformable templates using large deformation kinematics. IEEE Transactions on Image Processing 10 1435-47

    Chui CS, Yorke E and Hong L 2003 The effects of intra-fraction organ motion on the delivery of intensity-modulated field with a multileaf collimator Med. Phys. 30 1736-46

    Chui CS, LOSasso T, Spirou S 1994 Dose calculation for photon beams with intensity modulation generated by dynamic jaw or multileaf collimations Med. Phys. 21 1237-44

    Colgan R, McClelland, Mcquaid D, Evans P M, Hawkes D, Brock J, Landau D, and Webb S 2008 Planning lung radiotherapy using 4D CT and a motion model Phys. Med. Biol. 53 5815-30

    Convery DJ, Rosenbloom ME 1992 Generation of intensity modulated fields by dynamic collimators Phys. Med. Biol. 39 1359-74

    Coolens C, Evans P M, Seco J, Webb S, Blackall J M, Rietzel E and Chen G T Y 2006 The susceptibility of IMRT dose distributions to intrafraction organ motion: An investigation into smoothing filters derived from four dimensional computed tomography data Med. Phys. 33 2809-18

    Cozzi L, Dinshaw K, Shrivastava S, Mahantshetty U, Engineer R, Deshpande D, Jamema S, Vanetti E, Clivio A, and Nicolini 2008 A treatment planning study comparing volumetric arc modulation with RapidArc and fixed field IMRT for cervix uteri radiotherapy Radioter. Oncol. 89 180–91

    Cuadra M B 2006 Dense deformation field estimation for atlas-based segmentation of pathological MR brain images. Computer Method and Programs in Biomedicine. 84 66-75

    Davies S C, Hill A L, Holmes R B, Halliwell M, Jackson P C 1994 Ultrasound quantization of respiratory organ motion in the upper abdomen Br. J. Radiol. 67 1096-102

    Dawson LA 2000 Escalated focal liver radiation and concurrent hepatic artery fluorodexyuridine for unresectable intrahepatic malignancies J. Clin. Oncol. 18 2210-8

    Duan J, Shen S, Fiveash J B, Brezovich I A, Popple R A and Pareek P N 2003 Dosimetric effect of respiration-gated beam on IMRT delivery Med. Phys. 30 2241-52

    Earl M A, Shepard D M, Naqvi S, Li X A, Yu C X. 2003 Inverse planning for intensity-modulated arc therapy using directive aperture optimization Phys. Med. Biol. 48 1075-89

    El-Serag HB, Mason AC 1999 Rising incidence of hepatocellular carcinoma in the United States. N Engl J Med 340 745-750

    Flampouri S, Jiang S, Sharp G, Wolfgang J, Patel A, Choi N 2006 Estimation of the delivered patient dose in lung IMRT treatment based on deformable registration of 4D-CT data and Monte Carlo simulations Phys. Med. Biol. 51 2763-99

    Florack L, Duits R, Bierkens J 2004 Tikhonov regularization versus scale space: a new result [image processing applications]: Image Processing, ICIP International Conference on 2004 V1:271-74

    Fogliata A, Clivio A, Nicolini G, Vanetti E and Cozzi L. 2008 Intensity modulation with photons for benign intracranial tumors: A planning comparison of volumetric single arc, helical arc and fixed gantry techniques Radiother. Oncol. 89 254–62

    Galvin JM, Smith AR, Lally B. 1993 Characterization of a multileaf collimator system. Int. J. Radiat. Oncol. Biol. Phys. 25 181-192

    Gierga D P and Jiang S B 2002 A monte Carlo study on the interplay effect between MLC leaf motion and respiration-induced tumor motion in lung IMRT delivery, AAPM, Montreal.

    Gierga D, Chen G T. Y., Kung J, Betke M., Lombardi J, Willet C 2004 Quantification of respiration-induced abdominal tumor motion and its impact on IMRT dose distributions Int. J. Radiat. Oncol. Biol. Phys. 58 1584-95

    Goitein M 2004 Organ and tumor motion. Seminars in Radiation Oncology 14 2-9

    Herfarth K K, Debus J 2000 Stereotactic single-dose radiation therapy of liver tumor: results of a phase I/II trial J. Clin. Oncol. 19 164-70.

    Hugo G D, Agazaryan N and Solberg T D 2002 An evaluation of gating window size, delivery method, and composite field dosimetry of respirator-gated IMRT Med. Phys. 29 2517-25

    Hugo G D, Agazaryan N and Solberg T D 2003 The effect of tumor motion on planning and delivery of respiratory-gated IMRT Med. Phys. 30 1052-66

    ICRU Report 29. Dose specification for reporting external beam therapy with photons and electrons. Bethesda, MD, International Commission on Radiation Units and Measurement, 1978

    ICRU Report 50. Prescribing, recording, and reporting photon beam therapy. Bethesda, MD, International Commission on Radiation Units and Measurement, 1993

    ICRU Report 62. Prescribing, recording, and reporting photon beam therapy (supplement to ICRU Report 50). Bethesda, MD, International Commission on Radiation Units and Measurement, 1999

    Jiang S B, Pope C, Jarrah K M A, Kung J H Borfeld T and Chen G T Y 2003 An experimental investigation on intra-fractional organ motion effects in lung IMRT treatment Phys. Med. Biol. 48 1773-84

    Kallman P, Agren A, Brahme A 1994 Tumor and normal tissue responses to fractionated non-uniform dose delivery IAEA-TECDOC 734 9-25

    Keall P J, Beckham W A, Booth J T, Zavgorodni S F, Oppelaar M 1999 A method to predict the effect of organ motion and set-up variations on treatment plans Australas. Phys. Eng. Sci. Med. 22, 48–52

    Keall P 2004 4-dimensional computed tomography imaging and treatment planning Seminars in Radiation Oncology 14 81-90

    Keall P J, Joshi S, Vedam S S, Siebers J V, Kini V R and Mohan R 2005 Four-dimensional radiotherapy planning for DMLC-based respiratory motion tracking Med. Phys. 32 942-51

    Kim DY, Park W, Lim DH et al.2005 Three-dimensional conformal radiotherapy for portal vein thrombosis of hepatocellular carcinoma. Cancer 103 2419–26

    Kissick M. W., Boswell S. A., Jeraj R., Mackie T. R. 2005 Confirmation, refinement, and extension of a study in intrafraction motion interplay with sliding jaw motion Med. Phys. 32 2346-50

    Kohlrausch J, Rohr K, Stiehl HS: A new class of elastic body splines for nonrigid registration of medical images. J Mathematical Imaging and Vision. 23 253-280,

    Korin H W, Ehman R L, Riederer S T, Felmlee J P, Grimm R C 1992 Respiratory kinematics of the upper abdominal organs: a quantitative study Mag. Reson. Med. 23 172-8

    Kung J H, Zygmanski P, Choi N and Chen G T 2003 A method of calculating a lung clinical target volume DVH for IMRT with intrafractional motion Med. Phys. 30 1103-9

    Kuo HC, Liu WS, Chuang KS, Wu A, Lalonde R 2005 Studies of merits on IMRT with gating technique for treatment of intrahepatic cancer AAMP, Seattle

    Kuo HC, Chuang K S, Liu W S, Wu A and Lalonde R 2007 Analysis of the organ motion effects on the effective influences for liver IMRT Phys. Med. Biol. 52 4227-44

    Kuo HC, Mah D, Wu A, Chuang KS, Hong L, Yaparpalvi R, Sperier M, Kalniki S 2010a A method incorporating 4D data for evaluating the dosimetric effects of respiratory motion in single arc IMAT, Phys. Med. Biol. 55 3479-3497,

    Kuo HC, Liu WS, Wu A, Mah D, Chuang KS, Hong L, Yaparpalvi R, Guha C, Kalniki S 2010b Biological impact of geometric uncertainties: what margin is needed for intra-hepatic tumors? Radiation Oncology. June

    Kuo HC, Chuang KS, Mah D, Wu A, Hong L, Yaparpalvi R, Kalniki S 2010c Multi-cale regularization approaches of non-parametric deformable registrations J. Dig. Imag. In Press

    Kuijper I T, Dahele M, Senan S, Verbakel W F.A.R. 2010 Volumetric modulated arc therapy versus conventional intensity modulated radiation therapy for stereotactic spine radiotherapy: A planning study and early clinical data Radiother. Oncol. 94 224-228

    Langen KM, Jones DTL 2001 Organ motion and its management. Int J Radiat Oncol Biol Phys 50 265-278

    Leong J 1987 Implementation of random positioning error in computerised radiation treatment planning systems as a result of fractionation Phys. Med. Biol. 32 327-

    Liu ZZ, Huang WY, Lin JS et al.2005 Cell survival curve for primary hepatic carcinoma cells and relationship between SF2 of hepatic carcinoma cells and radiosensitivity. World J Gastroenterol 11(44) 7040-7043

    Low D A and Dempsey J F 1998 A technique for the quantitative evaluation of dose distribution Med. Phys. 25 656-60

    Low D A, Parikh P J, Lu W, Dempsey J F, Wahab S H and Hubenschmidt J P 2005 Novel breathing motion model for radiotherapy Int. J. Radiat. Oncol. Biol. Phys. 63 921-9

    Lujan A E, Balter J M, Ten Haken R K 2003 A method for incorporating organ motion due to breathing into 3D dose calculations in liver: sensitivity to variation in motion Med. Phys. 30 2643-9

    Ma L 2001 Optimized intensity-modulated arc therapy for prostate cancer treatment Int. J. Cancer 96 379-84

    Mackie T R, Holmes T, Swerdloff S, Reckwerdt P, Deasy J O, Yang J, Paliwal B, Kinsella T 1993 Tomotherapy: a new concept for the delivery of dynamic conformal radiotherapy Med. Phys. 20 1709–1719

    Mancosu P, Navarria P, Bignardi M, Cozzi L, Fogliata A, Lattuada P, Santoro A, Urso G, Vigorito S, Scoretti M 2010 Re-irradiation of metastatic spinal cord compression: A feasibility study by volumetric-modulated arc radiotherapy for in-field recurrence creating a dosimetric hole on the central canal Radiother. Oncol. 94 67-70

    Matsumoto H, Takahashi A, Ohnishi T 2004 Radiation-induced adaptive response and bystander effects Jpn. Soc. Biol. Sci. Space, 18 247-254

    McGrath S D, Matuszak M M, Yan Di, Kestin LL, Martinez A A, Grills I S Volumetric modulated arc therapy for delivery of hypofractionated stereotactic lung radiotherapy: A dosimetric and treatment efficiency analysis Radiother. Oncol. 95 153-157

    McClelland J R, Blackall J M, Tarte S, Chandler A C, Hughes S, Ahmad S, Landau D B and Hawkes D J. 2006 A continuous 4D motion model from multiple respiratory cycles for use in lung radiotherapy Med. Phys. 33 3348-58

    Molinelli S, Pooter J, Romero AM et al.; Simultaneous tumor dose escalation and liver sparing in stereotactic body radiation therapy (SBRT) for liver tumours due to CTV to PTV margin reduction. Radiother Oncol. 2008; 87:432-438

    Mckenzie AL: How should breathing motion be combined with other errors when drawing margins around clinical target volumes? British J Radiology 2000, 73:973-977

    McCarter SD, Beckham WA: Evaluation of the validity of a convolution method for incorporating tumor movement and set-up variations into the radiotherapy treatment planning system. Phys Med Biol 2000, 45:923–931

    Niemierko: A. Reporting and analyzing dose distributions: A concept of equivalent uniform dose. Med Phys 1997, 24:103–109

    Niemierko A. 1999 A generalized concept of equivalent uniform dose (EUD) Med Phys 26:1100.
    Oliver M, Gagne I, Popescu C, Ansbacher W, Beckham W A 2010 Analysis of RapidArc optimization strategies objective function values and dose-volume histograms J. o. A. C. Med. Phys. 11 10-23, MD, International Commission on Radiation Units and Measurement

    Otto K. 2007 Volumetric Modulated Arc Therapy (VMAT):IMRT in a single arc Proceeding Varian European Users Meeting June 2007

    Otto K. 2008 Volumetric modulated arc therapy: IMRT in a single gantry arc Med. Phys. 35 310-7

    Pan T., Lee T.Y., Rietzel E. and Chen G.T.Y. 2004 4D-CT imaging of a volume influenced by respiratory motion on multi-slice CT Med. Phys. 31 333-340

    Park HC, Seong J, Han KH et al.: Dose-response relationship in local radiotherapy for hepatocellular carcinoma. Int J Radiat Oncol Biol Phys 2002, 54:150–155

    Park W, Lim DH, Paik SW et al.: Local radiotherapy for patients with unresectable hepatocellular carcinoma. Int J Radiat Oncol Biol Phys 2005, 61:1143–50

    Pemler P, Besserer J, Lombriser N, Pescia R and Schneider U 2001 Influence of respiration-induced organ motion on dose distributions in treatment using enhanced dynamic wedges Med. Phys. 28 2234-40

    Rietzel E, Chen G T Y, Choi N C, Willet C G 2005 Four-dimensional image-based treatment planning: target volume segmentation and dose calculation in the presence of respiratory motion Int. J. Radiat. Oncol. Biol. Phys. 61 1535-50

    Rietzel E, Pan T, Chen G T Y 2005 Four-dimensional computed tomography: Image formation and clinical protocol Med. Phys. 32 874-889

    Rietzel E, Liu AK, Doppke KP, Wolfgang JA, Chen AB, Chen GTY and Choi NC. 2006 Design of 4D treatment planning target volumes Int. J. Radiat. Oncol. Biol. Phys. 66 287-295

    Robertson JM, Lawrence TS, Andrews JC et al.: Long-term results of hepatic artery fluorodeoxyuridine and conformal radiation therapy for primary hepatobiliary cancers. Int J Radiat Oncol Biol Phys 1997, 37:325–330

    Ryo T, Ryuji M, Yuji B et al.: Conformal radiation therapy for portal vein tumor thrombosis of hepatocellular carcinoma. Radiother Oncol. 2007, 84:266-271

    Rietzel E, Liu AK, Doppke KP, Wolfgang JA, Chen AB, Chen GTY and Choi NC: Design of 4D treatment planning target volumes. Int J Radiat Oncol Biol Phys 2006, 66:287-295

    Schaefer M et al 2004 Influence of intra-fractional breathing movement in step-and shoot IMRT Phys. Med. Biol. 49 N175-9

    Sdtroom JC, Heijmen BJ. Geometrical uncertainties, radiotherapy planning margins, and the ICRU-62 report. Radiother Oncol. 2002;64:75-83

    Shepard D M, Cao D, Afghan M K N and Earl M A. 2007 An arc-sequencing algorithm for intensity modulated arc therapy Med. Phys. 34 464-70

    Shimizu S, Shirato H, Xo B, Kagei K, Nishioka T, Hashimoto S, Tsuchiya K, Aoyama H, Miyasaka K 1999 Three-dimensional movement of a liver tumor detected by high-speed magnetic resonance imaging Radioth. Oncol. 50 367-70

    Song W, Battista J, Dyk JV: Limitations of a convolution method for modeling geometric uncertainties in radiation therapy: the radiobiological dose-per-fraction effect. Med Phys 2004;31:3034-3045

    Spirou SV, Chui CS 1994 Generation of arbitrary intensity profiles by dynamic jaws or multileaf collimators Med. Phys. 21 1031-41

    Spirou S V and Chui C S 1996 Generation of arbitrary intensity profiles by combining the scanning beam with dynamic multileaf collimation Med. Phys. 23 1–8

    Stausbol-Gron B, Overgaard J: Relationship between tumor cell in vitro radiosensitivity and clinical outcome after curative radiotherapy for squamous cell carcinoma of the head and neck. Radiother Oncol 1999, 50:47-55.

    Stein J, Bortfeld T, Doerschel B and Schlegel W 1994 Dynamic x-ray compensation for conformal radiotherapy by means of multi-leaf collimation Radiother. Oncol. 32 163–73

    Suh Y, Sawant A, Venkat R and Keall P 2009 Four-dimensional IMRT treatment planning using a DMLC motion-tracking algorithm Phys. Med. Biol. 54 3821-35

    Suramo I, Paivansalo M, and Myllyla V 1984 Cranio-Caudal movements of the liver, pancreas and kidneys in respiration Acta. Radiol. 25 129-31

    Svensson R, Kallman P, Brahme A 1994 An analytical solution for the dynamic jaws or multileaf collimators Phys. Med. Biol. 39 37-61

    Tang G, Earl M A and Yu C X. 2009 Variable dose rate single-acr IMAT delivered with a constant dose rate and variable angular spacing Phys. Med. Biol. 53 6439-6456

    Ten Haken R K, Balter J M, Marsh L H, Robertson J M and Lawrence T S 1997 Potential benefits of eliminating planning target volume expansions for patient breathing in the treatment of liver tumors Int. J. Radiat. Oncol. Biol. Phys. 38 613-617

    Thirion TJ 1996 Non-rigid matching using demons, Proc. Int. Conf. Computer Vision and Pattern Recognition (CVPR'96), 245-251

    Thirion J P 1998 Image matching as a diffusion process: An analogy with Maxwell’s demons, Medical Image Analysis, 2 243-260

    Tournel K, Verellen D, Linthout N, Van Acker S and Storme G 2004 Evaluation of Gamma-related Algorithms used in the comparison of 2D-dose distributions; ed Yi BY, Ahn SD, Choi EK and Ha SW XIVth ICCR, 318-21

    Van Dyk J, Barnett R B, Cygler J E, Shragge P C 1993 Commissioning and quality assurance of treatment planning computers.; Int. J. Radiat. Oncol. Biol. Phys. 26 261-73

    Vanetti E, Clivio A, Nicolini G, Fogliata A, Ghosh-Laskar S, Agarwal JP, Upreti RR, Budrukar A, Murthy V, Deshpanse DD, Shivastava SK, Dinshaw KA, Cozzi L 2009 Volumetric modulated arc radiotherapy for carcinomas of the oro-pharynx, hypo-pharynx and larynx: a treatment planning comparison with fixed field IMRT Radioter. Oncol. 92 111-7

    Vercauteren T, Pennec X, Perchant A, Ayache N 2007 Non-parametric diffeomorphic image registration with the demons algorithm. In: Proc. MICCAI

    Van Herk M 2004 Error and Margins in Radiotherapy. Seminars in Radiation Oncology 14 52-64

    Van Herk M, Witte M, Geer JVD et al. 2003 Biologic and Physical fractionation effects of random geometric errors. Int J Radiat Oncol Biol Phys. 57 1460-1471

    Varian 2007 Eclipse Algorithm Reference Guide

    Wagman R, Yorke E, Ford E, Giraud P, Mageras G, Minsky B and Rosenzweig K 2003 Respiratory gating for liver tumors: Use in dose escalation Int. J. Radiat. Oncol. Biol. Phys. 55 659-68

    Wang H, Dong L, O’Daniel J, Mohan R, Garden A S, Ang K K, Kuban D A, Bonnen M, Chang J Y and Cheung R 2005 Validation of an accelerated ‘demons’ algorithm for deformable image registration in radiation therapy, Phys. Med. Biol. 50: 2887-2905

    Wang C, Luan S, Tang G, Chen D Z, Earl M A and Yu C X. 2008 Arc-modulated radiation (AMRT): a single-arc form of intensity-modulated arc therapy Phys. Med. Biol. 53 6291-6303

    Webb S 2005 The effect on IMRT conformality of elastic tissue movement and a practical suggestion for movement compensation via the modified dynamic multileaf collimator (dMLC) technique Phys. Med. Biol. 50 1163-90

    Webb , McQuaid D 2009 Some considerations concerning volume-modulated
    arc therapy: a stepping stone towards a general theory Phys. Med. Biol. 54 4345-4360

    West CML, Davison SE, Burt PA et al: 1995 The intrinsic radiosesitivity of cervical carcinoma: correlations with clinical data. Int J Radiat Oncol Biol Phys 31 841–846

    Wolthaus J, Sonke J, van Herk M, Belderbos J, Rossi M, Lebesque J and Damen E 2008 Comparison of different strategies to use four-dimensional computed tomography in treatment planning for lung cancer patients J. Radiat. Oncol. Biol. Phys. 70 1229-38

    Xia P, Verhey LJ 1998 Mulitleaf collimator leaf sequencing algorithm for intensity modulated beam with multiple static segments Med. Phys. 25 1424-34

    Yu C X 1995 Intensity-modulated arc dynamic multileaf collimation: an alternative to tomotherapy Phys. Med. Biol. 40 1435-49

    Yu C X, Jaffray D A and Wong J W 1998 The effects of intra-fraction organ motion on the delivery of dynamic intensity modulation Phys. Med. Biol. 43 91–104

    Zhong H, Peters T, Siebers JV: FEM-based evaluation of deformable image registration for radiation therapy, Phys. Med. Biol. 52:4721-38, 2007.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE