簡易檢索 / 詳目顯示

研究生: 許翔如
Hsiang-Ju Hsu
論文名稱: 利用可適性主體偏壓所設計之超低功耗電流型邏輯電路
Design of Ultra Low Power Current-Mode Logics with Adaptive Body Bias
指導教授: 許雅三
Yarsun Hsu
邱瀞德
Ching-Te Chiu
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2007
畢業學年度: 96
語文別: 中文
論文頁數: 188
中文關鍵詞: 低功耗電流型邏輯電路可適性主體偏壓
外文關鍵詞: low power, current mode logic, adaptive body bias
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於在通訊系統中高速傳輸速率的需求,電流型邏輯電路的使用漸漸成為一項趨勢。雖然電流型邏輯電路擁有高速的傳輸效能,卻因為結構中持續供應的電流源而產生了可觀的靜態功率消耗。然而,在傳統電流型邏輯電路中,功率消耗及延遲時間的乘積並不隨著操作電壓的下降而變小,即:在功率消耗及延遲時間之間比須有所取捨。因此,對傳統的電流型邏輯電路而言,欲使用一般降低功耗的技術來節省耗能並且維持原本的高速傳輸速率是很困難的。
    近年來,有一些針對電流型邏輯電路所研究的低功耗技術被發表。然而,他們不是犧牲了原本差動式輸出訊號的電壓擺幅,就是犧牲了原本應有的傳輸速率,以換取低耗能的電流型邏輯電路。也就是說,這些方法並不能解決電流型邏輯電路本質上的問題。
    在此論文中,提出了一個可適性主體偏壓的輔助電路來實現超低功耗的電流型邏輯電路。在這項設計中,主體偏壓可以依據差動式輸入訊號來自動調整,並且提供給電流型邏輯電路裡的輸入源極耦合對。藉由交替切換主體偏壓,差動式輸出訊號的電壓擺幅增大,進而製造了用來降低操作電壓來節省功耗的空間。
    經由利用時脈電源的觀念所設計的可適性主體偏壓輔助電路,操作電壓可大幅降低,同時電路仍可維持原本差動式輸出訊號的電壓擺幅及原本電路的傳輸速率。本電路結構克服了電流型邏輯電路中,功耗與速度的乘積為常數的限制,並可節省最高60%,平均50%的功率消耗。在內文中將呈現由可適性主體偏壓所設計之超低功耗緩衝器、多工器及鎖存器的設計方法和效能分析。同樣的設計概念也可延伸套用至由差動式輸入訊號所組成的電路。


    With the demand of high transmission rate, there is a tendency toward current-mode logic (CML) circuits in communication systems. Although CML circuits are of high speed performance, the sustained current source consumes static power substantially. However, because the power-delay product (PDP) of the conventional CML circuits is approximate to a constant with varying supply voltage, i.e. the power-delay tradeoff, the conventional CML circuits is difficult to reducing power dissipations while maintaining high speed through the traditional low power techniques.
    In the recent years, there have been some low power methodologies published for CML circuits. However, they save power consumption either by scarifying swing voltage of differential output signals or by losing high speed performance. It means that the intrinsic problem of the conventional CML circuits has not been broken through yet.
    In this thesis, a novel adaptive body biasing (ABB) circuit is proposed for ultra low power CML circuits. In the design, body bias self-adjusts depending on the differential input signals and applies to the source-coupled pairs in CML circuits. By switching body bias alternately, the margin for lowering power through reducing supply voltage VDD is originated from the increased voltage swing of the differential output signals.
    Through the proposed clocked-power ABB circuit, the supply voltage VDD and the dc-level of the differential inputs can be reduced significantly while maintaining the original voltage swing of differential output signals and the original transmission rate. The architecture can reach power saving up to 60%, and 50% on average with the breaking of power-delay tradeoff. The design methodology and performance analysis for the low power ABB CML Buffers, MUXs, and Latches are presented in the thesis. The same design concept can also be extended to circuits composed of differential input pairs.

    1 Introduction 2 Background 3 Principles of Low Power ABB CML Circuits 4 Architecture of Low Power ABB CML Circuits 5 Simulation Results 6 Comparisons 7 Conclusion and Future Work

    [1] St.ephane Badel and Yusuf Leblebici, “Breaking the Power-Delay Tradeoff: Design of Low-Power High-Speed MOS Current-Mode Logic Circuits Operating with Reduced Supply Voltage,” Circuits and Systems, 2007. ISCAS 2007. Proceedings. 2007 IEEE International Symposium on 29 May 2007 Page(s):1871 -1874.
    [2] Kuo-Hsing Cheng, Cheng-Liang Hung and Chia-Wei Su, “A Sub-1V Low-Power High-Speed Static Frequency Divider,” Circuits and Systems, 2007. ISCAS 2007. Proceedings. 2007 IEEE International Symposium on 30 May 2007 Page(s):3848 - 3851.
    [3] Usama, M.; Kwasniewski, T., “New CML latch structure for high speed prescaler design,” Electrical and Computer Engineering, 2004. Canadian Conference on Volume 4, 2-5 May 2004 Page(s):1915 .1918.
    [4] Anis, M.; Allam, M.; Elmasry, M., "Impact of technology scaling on CMOS logic styles," Circuits and Systems II: Analog and Digital Signal Processing, IEEE Transactions on Volume 49, Issue 8, Aug. 2002 Page(s):577 - 588.
    [5] M. Alioto and G. Palumbo, “Power-Aware Design Techniques for Nanometer MOS Current-Mode Logic Gates: A Design Framework,.Circuits and Systems Magazine,” IEEE, Volume 6, Issue 4, Fourth Quarter 2006 Page(s):42 - 61.
    [6] Toprak, Z.; Leblebici, Y., "Low-power current mode logic for improved DPA-resistance in embedded systems," Circuits and Systems, 2005. ISCAS 2005. IEEE International Symposium on 23-26 May 2005 Page(s):1059 - 1062 Vol. 2.
    [7] Jan M. Rabaey and Massoud Pedram, Low power design methodologies, Boston :Kluwer Academic Publishers,c1996 Page(s):5 - 16.
    [8] Soudris, Dimitrios,/Piguet, Christian./Goutis, Costas./edited by Dimit, Designing CMOS circuits for low power, Boston :Kluwer Academic Publishers, c2002 Page(s):3 - 20.
    [9] Lazorenko, D.I.; Chemeris, A.A., "Low-Power Issues for SoC," Consumer Electronics, 2006. ISCE .06. 2006 IEEE Tenth International Symposium on 2006 Page(s):1 - 3.
    [10] Miyazaki, M.; Ono, G.; Ishibashi, K., “A 1.2-GIPS/W microprocessor using speed-adaptive threshold-voltage CMOS with forward bias,” Solid-State Circuits, IEEE Journal of Volume 37, Issue 2, Feb. 2002 Page(s):210 - 217.
    [11] B. P.Wong, A.Mittal, Y. Cao and G. Star, Nano-CMOS circuit and physical design, John Wiley and sons Inc. publications, New Jersey, 2005.
    [12] Shih-Fen Huang; Wann, C.; Yu-Shyang Huang; Chih-Yung Lin; Schafbauer, T.; Shui-Ming Cheng; Yao-Ching Cheng; Vietzke, D.; Eller, M.; Chuan Lin; Quiyi Ye; Rovedo, N.; Biesemans, S.; Nguyen, P.; Dennard, R.; Bomy Chen, “Scalability and biasing strategy for CMOS with active well bias,” VLSI Technology, 2001. Digest of Technical Papers. 2001 Symposium on 12-14 June 2001 Page(s):107 - 108.
    [13] von Arnim, K.; Borinski, E.; Seegebrecht, P.; Fiedler, H.; Brederlow, R.; Thewes, R.; Berthold, J.; Pacha, C., “Efficiency of body biasing in 90-nm CMOS for low-power digital circuits,” Solid-State Circuits, IEEE Journal of Volume 40, Issue 7, July 2005 Page(s):1549 - 1556.
    [14] Chen, T.; Na¤ziger, S., “Comparison of adaptive body bias (ABB) and adaptive supply voltage (ASV) for improving delay and leakage under the presence of process variation,” Very Large Scale Integration (VLSI) Systems, IEEE Transactions on Volume 11, Issue 5, Oct. 2003 Page(s):888 - 899.
    [15] Martin, S.M.; Flautner, K.; Mudge, T.; Blaauw, D, “Combined dynamic voltage scaling and adaptive body biasing for lower power microprocessors under dynamic workloads,” Computer Aided Design, 2002. ICCAD 2002. IEEE/ACM International Conference on 10-14 Nov. 2002 Page(s):721 - 725.
    [16] Ishibashi, K.; Yamashita, T.; Arima, Y.; Minematsu, I.; Fujimoto, T., “A 9/spl mu/W 50MHz 32b adder using a self-adjusted forward body bias in SoCs,” Solid-State Circuits Conference, 2003. Digest of Technical Papers. ISSCC. 2003 IEEE International 2003 Page(s):116 - 482 vol.1.
    [17] schanz, J.W.; Narendra, S.; Nair, R.; De, V., “Effectiveness of adaptive supply voltage and body bias for reducing impact of parameter variations in low power and high performance microprocessors,” Solid-State Circuits, IEEE Journal of Volume 38, Issue 5, May 2003 Page(s):826 - 829.
    [18] Kawahara, T.; Horiguchi, M.; Kawajiri, Y.; Kitsukawa, G.; Kure, T.; Aoki, M., “Subthreshold current reduction for decoded-driver by self-reverse biasing [DRAMs],” Solid-State Circuits, IEEE Journal of Volume 28, Issue 11, Nov. 1993 Page(s):1136 - 1144.
    [19] Kim, C.H.; Jae-Joon Kim; Mukhopadhyay, S.; Roy, K.,”A forward body-biased low-leakage SRAM cache: device, circuit and architecture considerations,” Very Large Scale Integration (VLSI) Systems, IEEE Transactions on Volume 13, Issue 3, March 2005 Page(s):349 - 357.
    [20] Assaderaghi, F.; Parke, S.; Sinitsky, D.; Bokor, J.; Ko, P.K.; Chenming Hu, “A dynamic threshold voltage MOSFET (DTMOS) for very low voltage operation,” Electron Device Letters, IEEE Volume 15, Issue 12, Dec. 1994 Page(s):510 - 512.
    [21] Jimenez-P, A.; De la Hidalga-W, F.J.; Deen, M.J., “Modelling of the dynamic threshold MOSFET,” Circuits, Devices and Systems, IEE Proceedings- Volume 152, Issue 5, 7 Oct. 2005 Page(s):502 - 508.
    [22] Bo-Ting Wang; Kuo, J.B., “A novel low-voltage silicon-on-insulator (SOI) CMOS complementary pass-transistor logic (CPL) circuit using asymmetrical dynamic threshold pass-transistor (ADTPT) technique,” Circuits and Systems, 2000. Proceedings of the 43rd IEEE Midwest Symposium on Volume 2, 8-11 Aug. 2000 Page(s):694 - 697 vol.2
    [23] Geun Rae Cho; Tom Chen, “Comparative assessment of adaptive body-bias SOI pass-transistor logic,” Quality Electronic Design, 2003. Proceedings. Fourth International Symposium on 24-26 March 2003 Page(s):55 - 60.
    [24] Kuroda, T.; Fujita, T.; Mita, S.; Nagamatsu, T.; Yoshioka, S.; Suzuki, K.; Sano, F.; Norishima, M.; Murota, M.; Kako, M.; Kinugawa, M.; Kakumu, M.; Sakurai, T., “A 0.9-V, 150-MHz, 10-mW, 4 mm2, 2-D discrete cosine transform core processor with variable threshold-voltage (VT) scheme,” Solid-State Circuits, IEEE Journal of Volume 31, Issue 11, Nov. 1996 Page(s):1770 - 1779.
    [25] Hyunsik Im; Inukai, T.; Gomyo, H.; Hiramoto, T.; Sakurai, T., “VTCMOS characteristics and its optimum conditions predicted by a compact analytical model,” Very Large Scale Integration (VLSI) Systems, IEEE Transactions on Volume 11, Issue 5, Oct. 2003 Page(s):755 - 761.
    [26] Kawaguchi, H.; Nose, K.; Sakurai, T., “A super cut-off CMOS (SCCMOS) scheme for 0.5-V supply voltage with picoampere stand-by current,” Solid-State Circuits, IEEE Journal of Volume 35, Issue 10, Oct. 2000 Page(s):1498 - 1501.
    [27] Ishida, K.; Kanda, K.; Tamtrakarn, A.; Kawaguchi, H.; Sakurai, T., “Managing subthreshold leakage in charge-based analog circuits with low-VTH transistors by analog T- switch (AT-switch) and super cut-o¤ CMOS (SCCMOS),” Solid-State Circuits, IEEE Journal of Volume 41, Issue 4, April 2006 Page(s):859 - 867.
    [28] Kyeong-Sik Min; Hun-Dae Choi; Choi, H.-Y.; Kawaguchi, H.; Sakurai, T., “Leakage-suppressed clock-gating circuit with Zigzag Super Cut-off CMOS (ZSCCMOS) for leakage-dominant sub-70-nm and sub-1-V-VDD LSIs,” Very Large Scale Integration (VLSI) Systems, IEEE Transactions on Volume 14, Issue 4, April 2006 Page(s):430 - 435.
    [29] Mutoh, S.; Douseki, T.; Matsuya, Y.; Aoki, T.; Shigematsu, S.; Yamada, J., “.1-V power supply high-speed digital circuit technology with multithreshold-voltage CMOS,”. Solid-State Circuits, IEEE Journal of Volume 30, Issue 8, Aug. 1995 Page(s):847 - 854.
    [30] Xin Zhao; Yici Cai; Qiang Zhou; Xianlong Hong, “A novel low-power physical design methodology for MTCMOS,” Circuits and Systems, 2006. ISCAS 2006. Proceedings. 2006 IEEE International Symposium on 21-24 May 2006 Page(s):4 pp.
    [31] X. Wu and M. Pedram, “Low Power CMOS Circuits with Clocked Power,” Circuits and Systems, 2000. IEEE APCCAS 2000. The 2000 IEEE Asia-Pacific Conference on 4-6 Dec. 2000 Page(s):513 - 516.
    [32] Guard-ring drawn guidelines for RF devices, TSMC.
    [33] TSMC 0.18 MM/RF PDK Release Notes, TSMC, 2004.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE