研究生: |
帕努達 Bhanudas Dattatray Mokar |
---|---|
論文名稱: |
過渡金屬催化新轉變為高度官能有機骨架的合成 Transition Metal Catalyzed New Transformations for the Synthesis of Highly Functionalized Organic Frameworks |
指導教授: |
劉瑞雄
Liu,Rai-Shung |
口試委員: |
蔡易州
Tsai, Yi Chou 鄭建鴻 Cheng, Chien-Hong 謝仁傑 Hsieh, Jen-Chieh |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2016 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 707 |
中文關鍵詞: | 過渡金屬催化 、金催化 、鉑催化 、銅金屬 |
外文關鍵詞: | Transition Metal Catalyzed, Highly Functionalized Organic Frameworks |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文描述了利用金、鉑以及銅金屬鹽來開發新型的有機合成方式,利用這些金屬可以針對一般現成的基質進行溫和、具有選擇性以及高效的氧化轉換,進而取得可廣泛應用在合成上的含氮、氧或是硫的複雜有機分子。為了便於作更詳細的說明,本文將分為四個章節。
第一章論述了利用一價金與二價鉑來進行可區域控制的催化使1-aryl-3-en-1-ynes產生水和反應,進而選擇性地取得3-en-1-ones 或 2-en-1-ones。在此,我們也發展了一鍋化合成方式,對於酮類產物3-en-1-ones 或 2-en-1-ones直接進行還原,進一步取得烯丙基醇(allylic alcohols)及高烯丙基醇(homoallylic alcohols),而我們的實驗結果也顯示了催化劑的大小在這裡扮演相當重要的角色。
第二章論述了1,6-enynes與苯羥胺(N-hydroxyanilines)透過金催化產生動力學尚不穩定的三取代硝酮,我們利用碳鍊上的烯基可以有效地捕捉這種短暫形成的化合物,進一步行具有立體特異性的環加成反應。值得注意的是,此類的環化牽涉了一個非典型的羥胺基氮對金配位炔基鍵進行攻擊,我們的資料顯示對於多數的炔丙基醚(propargyl ethers),苯羥胺會以氧進行攻擊,然而對於烯炔丙基醚(allyl propargyl ether)則以氮進行攻擊。我們假設這種烯基導向的化學選擇性反應是由於烯基配位到金上時可以加速protodeauration的發生
第三章描述了金催化酮炔與苯羥胺(N-hydroxyanilines)進行分子間氧化的一個非典型途徑,此類的氧化反應初始包含了氧鎓化物(oxonium species)的形成,隨即為苯羥胺攻擊,進一步得到氧胺化產物。這個途徑可透過18O標誌實驗得到強力的支持,在一個控制實驗中,我們的產物2-胺基茚酮(2-aminoindenones)也可以經由酮炔與8-甲基喹啉氧化物(8-methylquiniline oxide)及苯胺(aniline)反應得到,但效率很差。
第四章展示了四氫異喹啉(tetrahydroisoquinolines)與環醚類化合物(cyclic ethers)的銅催化氧化耦合反應,此反應是經由四級胺產生的SET,形成亞胺離子(iminium ion)來啟動,亞胺離子會與烷自由基耦合形成C1-醚化四氫異喹啉(C1-etherized tetrahydroisoquinoline)。這個方法可以供作設計耦合反應,應用在低親核性但對碳自由基有活性的基質上。
This dissertation describes development of new synthetic organic transformations by using gold, platinum or copper metal salts. The use of these metals enables mild, selective and efficient oxidative transformations of readily available substrates to wide range of synthetically useful nitrogen, oxygen and sulfur containing complex organic molecules. For better understanding the thesis is divided into four chapters.
The first chapter deals with the regiocontrolled hydrations of 1-aryl-3-en-1-ynes with suitable Au(I) and Pt(II), giving 3-en-1-ones and 2-en-1-ones selectively. Herein, we also develop one-pot synthesis of allylic and homoallylic alcohols from these 3-en-1-ynes, through in situ reductions of two ketone products. Our experimental data indicates that the sizes of catalysts play an important role.
The second chapter deals with the gold-catalyzed reactions of 1,6-enynes with N-hydroxyanilines to generate kinetically unstable trisubstituted nitrones. Such transient species are efficiently trapped with tethered alkenes to achieve stereospecific cycloadditions. Notably, these annulations involve an atypical N-attack of hydoxyamines at gold--alkynes. Our data reveal that most propargyl ethers show the O-attack selectivity, whereas allyl propargyl ether proceeds exclusively through the N-attack selectivity. This alkene-directed chemoselectivity is postulated to accelerate the protodeauration by an alkene coordination to gold.
The third chapter describes an atypical pathway in the gold-catalyzed intermolecular oxidations of ketonylalkynes with N-hydroxyanilines; this oxidation initially involves formation of an oxonium species that is subsequently attacked by N-hydroxyaniline, further leading to oxoamination products. This path is strongly supported by 18O-labeling experiments. In one control experiment, our resulting 2-aminoindenones were alternatively produced from the same ketonylalkynes, 8-methylquiniline oxide and aniline, but the efficiency was low.
The fourth chapter presents copper-catalyzed oxidative coupling reactions of tetrahydroisoquinolines with cyclic ethers. These reactions are initiated by SET from a tertiary amine to form an iminium ion which is coupled with alkyl radical to form C1-etherized tetrahydroisoquinoline. This method could open the possibility to design coupling reactions with substrates of low nucleophilicity but reactivity toward carbon radicals.
[1] (a) Green, M. L. H.; Davies, S. G. Philos. Trans. R. Soc. London A 1988, 326, 501. (b) Collman, J. P.; Hegedus, L. S.; Norton, J. R.; Finke, R. G. Principles and Applications of Organotransition Metal Chemistry, University Science Books: Mill Valley, California, 1987. (c) Tsuji, J. Transition Metal Reagents and Catalysts; John Wiley & Sons Ltd.: New York, 2000. (d) Seebach, D. Angew. Chem. Int. Ed. Engl. 1990, 29, 1320. (e) Yet, L. Chem. Rev. 2000, 100, 2963.
[2] (a) Trost, B. M. Acc. Chem. Res. 2002, 35, 695. (b) Trost, B. M. Angew. Chem. Int. Ed. Engl. 1995, 34, 259. (c) Nakamura I.; Yamamoto Y. Chem. Rev. 2004, 104, 2127.
[3] (a) Anastas, P.; Warner, J. C. in Green Chemistry, Theory and Practice, Oxford University Press, Oxford, 1998. (b) Anastas, P. T.; Kirchhoff, M. M. Acc. Chem. Res. 2002, 35, 686. (c) Anastas, P. T.; Zimmerman, J. B. Environ. Sci. Technol. 2003, 37, 94. (d) Poliakoff, M.; Fitzpatrick, J. M.; Farren, T. R.; Anastas, P. T. Science 2002, 297, 807. (e) Trost, B. M.; Toste, D. F.; Pinkerton, A. B. Chem. Rev. 2001, 101, 2067.
[4] Metal-acid catalyzed alkyne hydration: Reviews: (a) Petrov, A. D.; Usp. Khim. 1952, 21, 250. (b) Miocque, M. et al., Ann. Chim. (Paris) 1963, 8, 157. (c) Khan, M. M.; Martell, A. E. Homogeneous Catalysis by Metal Complexes (Academic Press, New York) 1974, 2, 1974. (d) Krupin, B. S.; Petrov, A. A. J. Gen. Chem. USSR 1963, 33, 3799. (e) Budde, W. L.; Dessy, R. E. Tetrahedron Letters J. Am. Chem. Soc. 1963, 85, 3964. (f) Golodova, K. G.; Yakimovich, S. I.; Zh. Org. Khim. 1972, 8, 2015. (g) Extension to allenes: Fedorova, A. V.; Petrov, A. A. J. Gen. Chem. USSR 1962, 32, 1740. (h) Thomas, R. J.; Campbell, K. N.; Hennion, G. F. J. Am. Chem. Soc. 1938, 60, 718. (i) Stacy, G. W.; Mikulec, R. A. Organic Syntheses, Coll. 1963, 4, 13. (j) Olah, G. A.; Meider, D. Synthesis 1978, 671.
[5] (a) Trost, B. M.; Rudd, M. T. J. Am. Chem. Soc. 2003, 125, 11516. (b) Trost, B. M.; Rudd, M. T. Org. Lett. 2003, 5, 4599. (c) Trost, B. M.; Rudd, M. T. J. Am. Chem. Soc. 2005, 127, 4763. (d)Trost, B. M.; Rudd, M. T. Org. Lett. 2003, 5, 1467. (e) Odedra, A.; Wu, C.-J.; Pratap, T. B.; Huang, C.-W.; Ran, Y.-F.; Liu, R.-S. J. Am. Chem. Soc. 2005, 127, 3406.
[6] (a) Aubert, C.; Buisine, O.; Malacria, M. Chem. Rev. 2002, 102, 813. (b) Lloyd-Jones, G. C. Org. Biomol. Chem. 2003, 1, 215. (c) Diver, S. T.; Giessert, A. J. Chem. Rev. 2004, 104, 1317. (d) Hoffmann, R. A.; Krause, N. Org. Biomol. Chem. 2005, 3, 387. (e) Ma, S.; Yu, S.; Gu, Z. Angew. Chem. Int. Ed. 2006, 45, 200. (f) Bruneau, C. Angew. Chem. Int. Ed. 2005, 44, 2328. (g) Hashmi, A. S. K.; Hutchings, G. J. Angew. Chem. Int. Ed. 2006, 45, 7896. (h) Hashmi, A. S. K. Chem. Rev. 2007, 107, 3180.
[7] (a) Echavarren, A. M.; Nevado, C. Chem. Soc. Rev. 2004, 33, 431. (b) Echavarren, A. M.; Mendez, M.; Munoz, M. P.; Nevado, C.; Martın, M. B.; Nieto, O. C.; Cardenas, D. J. Pure Appl. Chem. 2004, 76, 453. (c) Jimenez, N. E.; Echavarren, A. M. Chem. Commun. 2007, 333. (d) Zhang, L.; Sun, J.; Kozmin, S. A. Adv. Synth. Catal. 2006, 348, 2271. (e) Furstner, A.; Davies, P. W. Angew. Chem. Int. Ed. 2007, 46, 3410. (f) Gorin, D. J.; Toste, F. D. Nature 2007, 446, 395.
[8] (a) Dewar, M. J. S. Bull. Soc. Chim. Fr. 1951, 18, 71. (b) Chatt, J.; Duncanson, L. A. J. Chem. Soc. 1953, 2939.
[9] D. M. P. Mingos in Comprehensive Organometallic Chemistry, Wilkinson, G. F.; Stone, G. A.; Abel, E. W. Pergamon, Oxford, 1982, 3, 1-88. (b) Frenking, G.; Frohlich, N. Chem. Rev. 2000, 100, 717. (c) Dedieu, A. Chem. Rev. 2000, 100, 543, and references therein.
[10] Modern carbonyl chemistry selected reviews; (a) Otera, J. Ed.; Wiley-VCH; Weinheim, Germany, 2000. (b) Trost, B. M. Science 1991, 254, 1471. (c) Beller, M.; Seayad, J.; Tillack A.; Jiao, H. Angew. Chem. Int. Ed. 2004, 43, 3368. (d) Bruneau, C.; Dixneuf, P. H. Angew. Chem. Int. Ed. 2006, 45, 2176¬. (e) Hintermann, L.; Labonne, A. Synthesis, 2007, 1121. (f) Abu Sohel S. M.; Liu, R.-S. Chem. Soc. Rev. 2009, 38, 2269. (g) Xu, B.; Wang, W.; Liu, L. P.; Han, J.; Jin, Z.; Hammond, G. B. J. Organomet. Chem. 2011, 696, 269. (h) Brenzovich,W. E. Angew. Chem. Int. Ed. 2012, 51, 8933.
[11] (a) Kucherov, M. Chem. Ber. 1881, 14, 1540. (b) Kucherov, M. Chem. Ber. 1884, 17, 13.
[12] (a) Schrohe, A. Chem. Ber. 1875, 8, 367. (b) Baeyer, A. Ber. 1882, 15, 2705. (c) Perkin, W. H. Jr. J. Chem. Soc. 1884, 45, 170. (d) Tsuchimoto, T.; Joya, T.; Shirakawa, E.; Kawakami, Y. Synlett 2000, 12, 1777. (e) Izumi, Y. Catal. Today 1997, 33, 371. (f) Kozhevnikov, I. V. Chem. Rev. 1998, 98, 171.
[13] (a) Drenth, W.; Hogeveen, H.; Recl. Trav. Chim. Pays-Bas 1960, 79, 1002. (b) Allen, A. D.; Chiang, Y.; Kresge, A. J.; Tidwell, T. T. J. Org. Chem. 1982, 47, 775, and references therein.
[14] Selected examples for Au-catalyzed alkyne hydrations: (a) Norman, R. O. C.; Parr, W. J. E.; Thomas, C. B. J. Chem. Soc. Perkin trans. I. 1976, 1983. (b) Fukuda, Y.; Utimoto, K. J. Org. Chem. 1991, 56, 3729. (c) Casado, R.; Contel, M.; Romero, P.; Sanz, S. J. Am. Chem. Soc. 2003, 125, 11925. (d) Roembke, P.; Schmidbaur, H.; Cronje, S.; Raubenheimer, H. J. Mol. Cat. A: Chem. 2004, 212, 35.
[15] Selected examples for Pt-catalyzed alkyne hydrations: (a) Hartman, J. W.; Hiscox, W. C.; Jennings, P. W. J. Org. Chem. 1993, 58, 7613. (b) Yang, D.; Huang, J.; Liu, B. Eur. J. Org. Chem. 2010, 4185.
[16] (a) Chevallier, F.; Breit, B. Angew. Chem. Int. Ed. 2006, 45, 1599. (b) Boeck, F.; Kribber, T.; Xiao, L.; Hinterman, L. J. Am. Chem. Soc. 2011, 133, 8138. (c) Grotjahn, D. B.; Lev, D. A. J. Am. Chem. Soc. 2004, 126, 12232. (d) Suzuki, T.; Tokunaga, M.; Wakatsuki, Y. Org. Lett 2001, 3, 735. (e) Labonne, A.; Kribber, T.; Hintermann, L. Org. Lett. 2006, 8, 5853. (f) Kribber, T.; Labonne, A.; Hintermann, L. Synthesis 2007, 18, 2809.
[17] (a) Li, X.; Hu, G.; Luo, P.; Tang, G.; Gao, Y.; Xu, P.; Zhao, Y. Adv. Synth. Catal. 2012, 354, 2427. (b) Thuong, M. B. T.; Mann, A.; Wagner, A. Chem. Commun. 2012, 48, 434. (c) Das, R.; Chakraborty, D. Appl. Organomet. Chem. 2012, 26, 722. (d) Chen, Z. W.; Ye, D. N.; Qian, Y. P.; Ye, M.; Liu, L. X. Tetrahedron 2013, 69, 6116. (e) Bezier, X. F. D.; Darcel, C. Adv. Synth. Catal. 2009, 351, 367. (f) Tachinami, T.; Nishimura, T.; Ushimaru, R.; Noyori, R.; Naka, H. J. Am. Chem. Soc. 2013, 135, 50. (g) Budde, W. L.; Dessy, R. E. J. Am. Chem. Soc. 1963, 85, 3964. (h) Janout, V.; Regen, S. L. J. Org. Chem. 1982, 47, 3331.
[18] Selected examples for internal alkynes: (a) Mukherjee, A.; Liu, R.-S. Org. Lett. 2011, 13, 660. (b) Das, A.; Chang, H. K.; Yang, C. H.; Liu, R.-S. Org. Lett. 2007, 10, 4061. (c) Tang, J. M.; Liu, T. A.; Liu, R.-S. J. Org. Chem. 2008, 73, 8479. (d) Nun, P.; Ramon, R. S.; Gaillard, S.; Nolan, S. P. J. Organomet. Chem. 2011, 696, 7. (e) Xu, C. F.; Xu, M.; Jia, Y. X.; Li, C. Y. Org. Lett. 2011, 13, 1556. (f) Xu, B.; Wang, W.; Hammond, G. B. J. Fluorine Chem. 2011, 132, 804.
[19] Mizushima, E.; Sato, K.; Hayashi, T.; Tanaka, M. Angew. Chem. Int. Ed. 2002, 41, 4563.
[20] Teles, J. H.; Brode, S.; Chabanas, M. Angew. Chem. Int. Ed. 1998, 37, 1415.
[21] Marion, N.; Ramon, R. S.; Nolan, S. P. J. Am. Chem. Soc. 2009, 131, 448.
[22] Hiscox, W.; Jennings, P. W. Organometallics 1990, 9, 1997.
[23] Baidossi, W.; Lahav, M.; Blum, J. J. Org. Chem. 1997, 62, 669.
[24] (a) Weiss, R. J. Chem. Eng. Data 1966, 11, 375 and references cited therein. (b) Donnelly, D. M. X.; Meegan, M. J. In Comprehensive Heterocyclic Chemistry. Katritzky, A. R.; Rees, C. W. Eds. Pergamon Press: Oxford, 1984, 4, 659 and references cited therein. (c) Duus, F. Tetrahedron 1976, 32, 2817.
[25] Tokunaga, M.; Larrow, J. F.; Kakiuchi, F.; Jacobsen, E. N. Science 1997, 277, 936.
[26] Tokunaga, M.; Wakatsuki, Y. Angew. Chem. Int. Ed. 1998, 37, 2867.
[27] Tokunaga, M.; Suzuki, T.; Koga, N.; Fukushima, T.; Horiuchi, A.; Y. Wakatsuki, J. Am. Chem. Soc. 2001, 123, 11917.
[28] Grotjahn, D. B.; Incarvito, C. D.; Rheingold, A. L. Angew. Chem. Int. Ed. 2001, 40, 3884.
[29] Trost, B. M.; Portnoy, M.; Kurihara, H. J. Am. Chem. Soc. 1997, 119, 836.
[30] Trost, B. M.; Brown, R. E.; Toste, F. D. J. Am. Chem. Soc. 2000, 122, 5877.
[31] (a) Hartwig, J. F.; Andersen, R. A.; Bergman, R. G. J. Am. Chem. Soc. 1990, 112, 5670. (b) Hartwig, J. F.; Bergman, R. G.; Andersen, R. A. Organometallics 1991, 10, 3326.
[32] Chang, H.-K.; Datta, S.; Das, A.; Odedra A.; Liu, R.-S. Angew. Chem. Int. Ed. 2007, 46, 4744.
[33] Xu, B.; Wang, W.; Hammond, G. B. J. Org. Chem. 2009, 74, 1640.
[34] Wang, W.; Jasinski, J.; Hammond, G. B.; Xu, B. Angew. Chem. Int. Ed. 2010, 49, 7247.
[35] Liu, L. P.; Xu, B.; Mashuta, M. S.; Hammond, G. B. J. Am. Chem. Soc. 2008, 130, 17642.
[36] Jadhav, A. M.; Gawade, S. A.; Vasu, D.; Dateer, R. B.; Liu, R.-S. Chem. Eur. J. 2014, 20, 1813.
[37] Wang, Y.; Wang, Z.; Li, Y.; Wu, G.; Cao, Z.; Zhang, L. Nat. Commun. 5:3470 doi: 10.1038/ncomms4470 (2014).
[38] Reviews for the reactions of 2-en-1-ones and 3-en-1-ones: (a) Tang, W.; Zhang, X. Chem. Rev. 2003, 103, 3029. (b) Dateer, R. B.; Pati, K.; Liu, R.-S. Chem. Commun. 2012, 48, 7200. (c) Davies, P. W.; Cremonesi, A.; Martin, N. Chem. Commun. 2011, 47, 379.
[39] Reviews for allylic and homoallylic alcohols: (a) Molander, G. M. Chem. Rev. 1992, 92, 29. (b) Walker, E. R. H. Chem. Soc. Rev. 1976, 5, 23. (c) Brown, H. C.; Krishnamurthy, S. Tetrahedron 1979, 35, 567. (d) Pour, E. M.; Cederbaum, F. E.; Kotora, M. Tetrahedron 1998, 54, 7057. (e) Lumbroso, A.; Cooke, M. L.; Breit, B. Angew. Chem. Int. Ed. 2013, 52, 1890. (f) Sydnes, L.; Holmelid, K. B.; Kvernenes, O. H.; Valdersnes, S.; Hodne, M.; Boman, K. ARKIVOC 2008, 14, 242. (g) Sundararaju, B.; Achard, M.; Bruneau, C. Chem. Soc. Rev. 2012, 41, 4467.
[40] We envisage that initial gold allyl intermediates D undergoes a rapid equilibrium with the other gold allyl species D’; the latter was more active toward protonation reaction to give observed 3-en-1-one 1-2m in both E and Z isomers.
[41] The mechanism for the transformation of 3-en-1-one 1-2q to indanone species 1-2q’ is postulated below, involving a prior isomerization to 2- en-1-one, followed by a Nazarov-type cyclization.
[42] Different reaction outcome for Au and Pt, see selected examples: (a) Almendros, P.; Campo, T. M. D.; Soriano, E.; Constelles, J. L. M.; Alcaide, B. Chem. Eur. J. 2009, 15, 9127. (b) Torre, M. C. D.; Sierra, M. A.; Munoz, M. P. Chem. Eur. J. 2012, 18, 4499. (c) Almendros, P.; Fernandez, I.; Campo, T. M. D.; Naranjo, T.; Alcaide, B. Adv. Synth. Catal. 2013, 355, 2681.
[1] (a) Nunez, J. E.; Echavarren, A. M. Chem. Rev. 2008, 108, 3326. (b) Gorin, D. J.; Sherry, B. D.; Toste, F. D. Chem. Rev. 2008, 108, 3351. (c) Hashmi, A. S. K.; Rudolph, M.; Chem. Soc. Rev. 2008, 37, 1766. (d) Furstner, A.; Davies, P. W. Angew. Chem. Int. Ed. 2007, 46, 3410. (e) Zhang, L.; Sun, J.; Kozmin, S. A. Adv. Synth. Catal. 2006, 348, 2271.
[2] For Au- and Pt-catalyzed cycloisomerizations of 1,n-enynes (n = 5-7), see selected examples: (a) Nunez, J. E.; Molawi, K.; Echavarren, A. M. Chem. Commun. 2009, 7327. (b) Furstner, A.; Hannen, P. Chem. Eur. J. 2006, 12, 3006. (c) Linghu, X.; Kennedy-Smith, J. J.; Toste, F. D. Angew. Chem. Int. Ed. 2007, 46, 7671. (d) Hashmi, A. S. K.; Ding, L.; Bats, J. W.; Fischer, P.; Frey, W. Chem. Eur. J. 2003, 9, 4339. (e) Zhang, L.; Kozmin, S. A.; J. Am. Chem. Soc. 2005, 127, 6962. (f) Tang, J. M.; Bhunia, S.; Sohel, S. M. A.; Lin, M. Y.; Liao, H. Y.; Datta, S.; Das, A.; Liu, R.-S. J. Am. Chem. Soc. 2007, 129, 15677. (g) Gagosz, F. Org. Lett. 2005, 7, 4129. (h) Nieto-Oberhuber, C.; Munoz, M. P.; Bunuel, E.; Nevado, C.; Cardenas, J.; Echavarren, A. M. Angew. Chem. Int. Ed. 2004, 43, 2402.
[3] For reviews for gold and platinum catalyzed enyne cycloisomerization, see: (a) Aubert, C.; Buisine, O.; Malacria, M. Chem. Rev. 2002, 102, 813. (b) Bruneau, C. Angew. Chem. Int. Ed. Engl. 2005, 44, 2328. (c) Ma, S.; Yu, S.; Gu, Z. Angew. Chem. Int. Ed. Engl. 2006, 45, 200. (d) Michelet, V.; Toullec, P. Y.; Genet, J.-P. Angew. Chem.. Int. Rd. Engl. 2008, 47, 4268. (e) Lee, S. I.; Chatani, N. C. Chem. Commum. 2009, 371.
[4] For reviews, see: (a) Trost, B. M.; Toste, F. D.; Pinkerton, A. B. Chem. Rev. 2001, 101, 2067. (b) Trost, B. M.; Krische, M. J. Synlett. 1998, 1. (c) Lloyd-Jones, G. C. Org. Biomol. Chem. 2003, 1, 215. (d) Trost, B. M. Chem. Eur. J. 1998, 4, 2405. (e) Ojima, I.; Tzamarioudaki, M.; Li, Z. Y.; Donovan, R. J. Chem. Rev. 1996, 96, 635.
[5] For reviews, see: (a) Templeton, J. L. Adv. Organomet. Chem. 1989, 29, 1. (b) Baker, P. B. Adv. Organomet. Chem. 1996, 40, 45. for an Os complex with an η4-alkyne ligand as an exception, see: (c) Carbo, J. J.; Crochet, P.; Esteruelas, M. A.; Jean, Y.; Lledos, A.; Lopez, A. M.; Onate, E. Organometallics 2002, 21, 305.
[6] Greaves, E. O.; Lock, J. L.; Maitlis, P. M. Can. J. Chem. 1968, 46, 3879.
[7] (a) Pyykko, P.; Desclaux, J.-P. Acc. Chem. Res. 1979, 12, 276. (b) Pyykko, P. Science 2000, 290, 64. (c) Pyykko, P. Angew. Chem. Int. Ed. 2002, 41, 3573. (d) Gorin, D. J.; Toste, F. D. Nature 2007, 446, 395.
[8] Pauling, L. The Nature of the Chemical Bond and the Structure of Molecules and Crystals; an Introduction to Modern Structural Chemistry, 3rd edn., Cornell University Press: Ithaca, N. Y., 1960.
[9] (a) Chisholm, M. H.; Clark. H. C. Acc. Chem. Res. 1973, 6, 202. (b) Mezailles, N.; Ricard, L.; Mathey, F.; Floch, P. L. Eur. J. Inorg. Chem. 1999, 2233. (c) Willner, H.; Schaebs, J.; Hwang, G.; Mistry, F.; Jones, R.; Trotter, J.; Aubke, F. J. Am. Chem. Soc. 1992, 114, 8972.
[10] For selected examples, see: (a) Trost, B. M.; Lautens, M. J. Am. Chem. Soc. 1985, 107, 1781. (b) Trost, B. M.; Lautens, M. Tetrahedron Lett. 1985, 26, 4887. (c) Trost, B. M. Acc. Chem. Res. 1990, 23, 34. (d) Trost, B. M.; Tanoury, G. J. J. Am. Chem. Soc. 1988, 110, 1636. (e) Trost, B. M.; Lautens, M.; Chan, C.; Jebaratnam, D. J.; Mueller, T. J. Am. Chem. Soc. 1991, 113, 636. (f) Trost, B. M.; Pedregal, C. J. Am. Chem. Soc. 1992, 114, 7292. (g) Trost, B. M.; Tanoury, G. J.; Lautens, M.; Chan, C.; MacPherson, D. T. J. Am. Chem. Soc. 1994, 116, 4255. (h) Trost, B. M.; Romero, D. L.; Rise, F. J. Am. Chem. Soc. 1994, 116, 4268.
[11] Chatani, N.; Morimoto, T.; Muto, T.; Murai, S. J. Am. Chem. Soc. 1994, 116, 6049.
[12] Reviews: (a) Diver, S. T.; Giessert, A. J. Chem. Rev. 2004, 104, 1317. (b) Echavarren, A. M.; Nevado, C. Chem. Soc. Rev. 2004, 33, 431.
[13] (a) Mendez, M.; Munoz, M. P.; Nevado, C.; Cardenas, D. J.; Echavarren, A. M. J. Am. Chem. Soc. 2001, 123, 10511. (b) Nevado, C.; Cardenas, J.; Echavarren, A. M. Chem. Eur. J. 2003, 9, 2627. (c) Munoz, M. P.; Adrio, J.; Carretero, J. C.; Echavarren, A. M. Organometallics 2005, 24, 1293.
[14] Oi, S.; Tsukamoto, I.; Miyano, S.; Inoue, Y. Organometallics 2001, 20, 3704.
[15] (a) Nunez, E. J.; Claverie, C. K.; Oberhuber, C. N.; Echavarren, A. M. Angew. Chem. Int. Ed. 2006, 45, 5452. (b) Overman, L. E.; Pennington, L. D. J. Org.Chem. 2003, 68, 7143. (c) Jasti, R.; Anderson, C. D.; Rychnovsky, S. D. J. Am. Chem. Soc. 2005, 127, 9939. (d) Alder, R. W.; Harvey, J. N.; Oakley, M. T. J. Am. Chem. Soc. 2002, 124, 4960. (e) Rychnovsky, S. D.; Marumoto, S.; Jaber, J. J. Org. Lett. 2001, 3, 3815.
[16] Schelwies, M.; Dempwolff, A. L.; Rominger, F.; Helmchen, G. Angew. Chem. Int. Ed. 2007,
46, 5598.
[17] (a) Amijs, C. H. M.; Ferrer, C.; Echavarren, A. M. Chem. Commun. 2007, 698. (b) Witham, C. A.; MauleOn, P.; Shapiro, N. D.; Sherry, B. D.; Toste, F. D. J. Am. Chem. Soc. 2007, 129, 5838. (c) Padwa, A.; Weingarten, M. D. Chem. Rev. 1996, 96, 223. (d) Padwa, A. Fryxell, G. E.; Zhi, L. J. Am. Chem. Soc. 1990, 112, 3100.
[18] (a) Hashmi, A. S. K.; Rudolph, M.; Weyrauch, J. P.; Wolfle, M.; Frey, W.; Bats, J. W. Angew.Chem. Int. Ed. 2005, 44, 2798. (b) Hashmi, A. S. K.; Blanco, M. C.; Kurpejovic, E.; Frey, W.; Bats, J. W. Adv. Synth. Catal. 2006, 348, 709.
[19] Gawade, S. A.; Bhunia, S.; Liu, R.-S. Angew. Chem. Int. Ed. 2012, 51, 7835.
[20] Aschwanden, P.; Frantz, D. E.; Carreira, E. M. Org. Lett. 2000, 2, 2331.
[21] Yeom, H. S.; So, E.; Shin, S. Chem. Eur. J. 2011, 17, 1764.
[22] Zeng, Q.; Zhang, L.; Yang, J.; Xu, B.; Xiao, Y.; Zhang, J. Chem. Commun. 2014, 50, 4203.
[23] (a) Bongers, N.; Krause, N. Angew. Chem. Int. Ed. 2008, 47, 2178. (b) Krause, N.; Belting, V.; Deutsch, C.; Erdsack, J.; Fan, H. T.; Gockel, B.; Hoffmann, A. R,; Morita, N.; Volz, F. Pure Appl. Chem. 2008, 80, 1063. (c) Widenhoefer, R. A. Chem. Eur. J. 2008, 14, 5382. (d) Gandon, V.; Lemiere, G.; Hours, A.; Fensterbank, L.; Malacria, M. Angew. Chem. Int. Ed. 2008, 47, 7534.
[24] Winter, C.; Krause, N. Angew. Chem. Int. Ed. 2009, 48, 6339.
[25] Wang, Y.; Ye, L.; Zhang, L. Chem. Commun. 2011, 47, 7815.
[26] Wang, Y.; Liu, L.; Zhang, L. Chem. Sci. 2013, 4, 739.
[27] CCDC 1415998 (2-5e) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre.
[28] Jung, M. E.; Piizi, G. Chem. Rev. 2005, 105, 1735.
[29] Selected reviews: (a) Synthetic Applications of 1,3-Dipolar Cycloaddition Chemistry Toward Heterocyclic and Natural Products (Eds.: Padwa, A.; Pearson, W. H.), Wiley, N ew York, 2002. (b) Stanley, L. M.; Sibi, M. P. Chem. Rev. 2008, 108, 2887. (c) Gothelf, K. V.; Jogensen, K. A. Chem. Rev. 1998, 98, 863. (d) Cardona, F.; Goti, A. Angew.Chem. Int. Ed. 2005, 44, 7832.
[30] Obradors, C. Echavarren, A. M. Acc.Chem. Res. 2014, 47, 902.
[31] Cuesta, A. E.; Carrillo, V. L.; Janssen, D.; Echvarren, A. M. Chem. Eur. J. 2009, 15, 5646.
[32] Chen, C. H.; Tsai, Y. C.; Liu, R.-S. Angew. Chem. Int. Ed. 2013, 52, 4599.
[33] The formation of compound 2-8c’ can be rationalized by the following mechanism. After an initial O-attack, portions of the resulting species F undergoes an olefin isomerization to form species G. LAu+ coordination of the amino group of species G forms oxonium species H that is attacked by PhNHAuL to give observed 2-8c’.
[34] See Ref. [25, 26] and other examples: (a) Sibi, M. P.; Liu, M. Org. Lett. 2001, 3, 4181. b) Ibrahem, I.; Rios, R.; Vesely, J.; Zhao, G. L.; Cyrdova, A. Chem. Commun. 2007, 849.
[35] Protodeauration reactions are greatly favorable for bulky and electron-rich phosphine-containing LAu+ catalysts that can reduce formation of inactive di-gold alkenyl species. See: (a) Ahmadi, R. B.; Ghanbari, P.; Rajabi, N. A.; Hashmi, A. S. K.; Yates, B. F.; Afiafard, A. Organometallics 2015, 34, 3186. (b) Wang, W.; Hammond, G. B.; Xu, B.; J. Am. Chem. Soc. 2012, 134, 5697. (c) Malhotra, D.; Mashuta, M. S.; Hammond, G. B.; Xu, B. Angew. Chem. Int. Ed. 2014, 53, 4456.
[1] (a) Hudlicky, T.; Natchus, M. G. In Organic Synthesis: Theory and Applications; Hudlicky, T. Ed.; JAI: Greenwich, CT, 1993; Vol. 2, pp 1. (b) Yamashita, K.; Yamamoto, Y.; Nishiyama, H. J. Am. Chem. Soc. 2012, 134, 7660.
[2] (a) Kobayashi, S.; Jorgensen, K. A. Cycloaddition Reactions in Organic Synthesis; Wiley-VCH: Weinheim, Germany, 2002. (b) Lautens, M.; Klute, W.; Tam, W. Chem. Rev. 1996, 96, 49. (c) Gorin, D. J.; Sherry, B. D.; Toste, F. D. Chem. Rev. 2008, 108, 3351. (d) Hashmi, A. S. K. Chem. Rev. 2007, 107, 3180.
[3] (a) Jiménez-Núñez, E.; Echavarren, A. M. Chem. Rev. 2008, 108, 3326. (b) Echavarren, A. M.; Nevado, C. Chem. Soc. Rev. 2004, 33, 431. (c) Fürstner, A. Chem. Soc. Rev. 2009, 38, 3208.
[4] (a) Miki, K.; Ohe, K.; Uemura, S. J. Org. Chem. 2003, 68, 8505. (b) Johansson, M. J.; Gorin, D. J.; Staben, S. T.; Toste, F. D. J. Am. Chem. Soc. 2005, 127, 18002. (c) Gorin, D. J.; Dube, P.; Toste, F. D. J. Am. Chem. Soc. 2006, 128, 14480. (d) López, S.; Herrero-Gómez, E.; Pérez-Galán, P.; Nieto-Oberhuber, C.; Echavarren, A. M. Angew. Chem. Int. Ed. 2006, 45, 6029. (e) Hashmi, A. S. K. Angew. Chem. Int. Ed. 2005, 44, 6990. (f) For cyclization of allenynes with nucleophiles, see: Lemie´re, G.; Gandon, V.; Agenet, N.; Goddard, J.; de.Kozak, A.; Aubert, C.; Fensterbank, L.; Malacria, M. Angew. Chem. Int. Ed. 2006, 45, 7596.
[5] (a) Smidt, J.; Hafner, W.; Jira, R.; Sieber, R.; Sedlmeier, J.; Sabel, J. Angew. Chem. Int. Ed. 1962, 1, 80. (b) Fukuda, Y.; Utimoto, K. Bull. Chem. Soc. Jpn. 1991, 64, 2013. (c) Hashmi, A. S. K.; Schward, L.; Choi, J.-H.; Frost, T. M. Angew. Chem. Int. Ed. 2000, 39, 2285.
[6] (a) Fukuda, Y.; Utimoto, K.; Nozaki, H. Heterocycles 1987, 25, 297. (b) Fukuda, Y.; Utimoto, K. Synthesis 1991, 975. (c) Lok, R.; Leone, R. E.; Williams, A. J. J. Org. Chem. 1996, 61, 3289. (d) Arcadi, A.; Giuseppe, S. D.; Marinelli, F.; Rossi, E. Adv. Synth. Catal. 2001, 343, 443.
[7] (a) Hutchings, G. J. Gold Bull. 1996, 29, 123. (b) Hutchings, G. J. Catal. Today 2002, 72, 11.
[8] (a) Organic Chemistry Morrison, R. T.; Boyd, R.N. pp. 473. (b) Fischer, E. O.; Maasböl, A. Angew. Chem. Int. Ed. 1964, 3, 580. (c) Hashmi, A. S. K. Angew. Chem. Int. Ed. 2008, 47, 6754. (d) Schubert, U.; Ackermann, K.; Aumann, R. Cryst. Struct. Comm. 1982, 11, 591. (e) Arduengo, A. J.; Harlow, R. L.; Kline, M. J. Am. Chem. Soc. 1991, 113, 361.
[9] For a Review on gold N-heterocyclic carbenes, see: (a) Nolan, S. P. Acc. Chem. Res. 2011, 44, 91. For selected examples on Fischer-type carbene complexes of gold, see: (b) Raubenheimer, H. G.; Esterhuysen, M.W.; Timoshkin, A.; Chen, Y.; Frenking, G. Organometallics 2002, 21, 3173. (c) Fañanás-Mastral, M.; Aznar, F. Organometallics 2009, 28, 666.
[10] For recent examples: see: (a) Ando, K. J. Org. Chem. 2010, 75, 8516. (b) Dudnik, A. S.; Xia, Y.; Li, Y.; Gevorgyan, V. J. Am. Chem. Soc. 2010, 132, 7645. (c) Liu, Y.; Zhang, D.; Bi, S. J. Phys. Chem. A 2010, 114, 12893. (d) Garayalde, D.; Gómez-Bengoa, E.; Huang, X.; Goeke, A.; Nevado, C. J. Am. Chem. Soc. 2010, 132, 4720.
[11] (a) James, M. C. B.; Hashmi, A. S. K. In Modern Gold Catalyzed Synthesis; Hashmi, A. S. K., Toste, F. D., Eds.; Wiley-VCH: Weinheim, Germany, 2012; pp 273. (b) Nevado, C.; de Haro, T. In New Strategies in Chemical Synthesis and Catalysis; Pignataro, B., Ed.; Wiley-VCH: Weinheim, Germany, 2012; pp 247. (c) Xiao, J.; Li, X. Gold α-Oxo Carbenoids in Catalysis: Catalytic Oxygen-Atom Transfer to Alkynes. Angew. Chem. Int. Ed. 2011, 50, 7226. (d) Moss, R. A., Doyle, M. P., Eds. Contemporary Carbene Chemistry; Wiley: New York, 2014; Chapter 16. (e) Davies, H. M. L.; Beckwith, R. E. J. Catalytic Enantioselective C-H Activation by Means of Metal-Carbenoid-Induced C-H Insertion. Chem. Rev. 2003, 103, 2861. (f) Davies, H. M. L.; Denton, J. R. Application of Donor/Acceptor-Carbenoids to the Synthesis of Natural Products. Chem. Soc. Rev. 2009, 38, 3061. For 8-methylquinoline oxides, see selected examples: (g) Li, B.; Li, C.; Zhang, L. J. Am. Chem. Soc. 2010, 132, 14070. (h) Luo, Y.; Ji, K.; Li, Y.; Zhang, L. J. Am. Chem. Soc. 2012, 134, 17412. (i) Dateer, R. B.; Pati, K.; Liu, R.-S. Chem. Commun. 2012, 48, 7200.
[12] (a) Doyle, M. P.; Yan, M.; Hu, W.; Gronenberg, L. J. Am. Chem. Soc. 2003, 125, 4692. (b) Barluenga, J.; Lonzi, G.; Riesgo, L.; López, L. A.; Tomas, M. J. Am. Chem. Soc. 2010, 132, 13200. (c) Reddy, R. P.; Davies, H. M. L. J. Am. Chem. Soc. 2007, 129, 10312. (d) Doyle, M. P.; Hu, W.; Timmons, D. J. Org. Lett. 2001, 3, 3741.
[13] Selected reviews: (a) Davies, H. M. L.; Morton, D. Chem. Soc. Rev. 2011, 40, 1857. (b) Doyle, M. P.; Duffy, R.; Ratnikov, M.; Zhou, L. Chem. Rev. 2010, 110, 704. (c) Manning, J. R.; Davies, H. M. L. Nature 2008, 451, 417. (d) Doyle, M. P.; McKervy, M. A.; Ye, T. Modern Catalytic Method for Organic Synthesis with Diazo Compounds; John Wiley & Sons: Wiley; New York, 1998. (e) Padwa, A.; Weingarten, M. D. Chem. Rev. 1996, 96, 223. (f) Davies, H. M. L.; Denton, J. R. Chem. Soc. Rev. 2009, 38, 3061. (g) Zhang, Z.; Wang, J. Tetrahedron 2008, 64, 6577.
[14] Shapiro, N. D.; Toste, F. D. J. Am. Chem. Soc. 2007, 129, 4160.
[15] Cui, L.; Zhang, G.; Peng, Y.; Zhang, L. Org. Lett. 2009, 11, 1225.
[16] Ye, L.; Cui, L.; Zhang, G.; Zhang, L. J. Am. Chem. Soc. 2010, 132, 3258.
[17] Ye, L.; He, W.; Zhang, L. J. Am. Chem. Soc. 2010, 132, 8550.
[18] Li, C.-W.; Pati, K.; Lin, G.-Y.; Hung, H.-H.; Liu, R.-S. Angew. Chem. Int. Ed. 2010, 49, 9891.
[19] He, W.; Li, C.; Zhang, L. J. Am. Chem. Soc. 2011, 133, 8482.
[20] Mukherjee, A.; Dateer, R. B.; Chaudhuri, R.; Bhunia, S.; Karad, S. N.; Liu, R.-S. J. Am. Chem. Soc. 2011, 133, 15372.
[21] Yeom, H. S.; So, E.; Shin, S. Chem. Eur. J. 2011, 17, 1764.
[22] Wang, Y.; Ye, L.; Zhang, L. Chem. Commun. 2011, 47, 7815.
[23] Huple, D. B.; Mokar, B. D.; Liu, R.-S. Angew. Chem. Int. Ed. 2015, 54, 14924.
[24] For gold catalyzed reactions of nitrones with alkynes, see: (a) Yeom, H.-S.; Lee, Y.; Lee, J.-E.; Shin, S. Org. Biomol. Chem. 2009, 7, 4744. (b) Quin, D.; Zhang, J. Chem. Eur. J. 2013, 19, 6984. (c) Yeom, H.-S.; Lee, Y.; Jeong, J.; So, E.; Hwang, S.; Lee, J.-E.; Lee, S. S.; Shin, S. Angew. Chem. Int. Ed. 2010, 49, 1611.
[25] (a) Diana, P.; Stagno, A.; Barraja, P.; Montalbano, A.; Carbone, A.; Parrino, B.; Cirrincione, G. Tetrahedron 2011, 67, 3374. (b) Lisowski, V.; Enguehard, C.; Lancelot, J.-C.; Caignard, D.-H.; Lambel, S.; Leonce, S.; Pierre, A.; Atassi, G.; Renard, P.; Rault, S. Bioorg. Med. Chem. Lett. 2001, 11, 2205. (c) Lisowski, V.; Leonce, S.; Kraus-Berthier, L.; Sopkova-de Oliveira, S. J.; Pierre, A.; Atassi, G.; Caignard, D.; Renard, P.; Rault, S. J. Med. Chem. 2004, 47, 1448.
[26] (a) Sticozzi, C.; Aiello, F.; Andreasi, R. B.; Nuresan, X. M.; Belmonte, G.; Cervellati, F.; Maellaro, E.; Maioli, E.; Valacchi, G. Anti-Cancer Agents in Medicinal Chemistry 2016, 16, 601. (b) Rochais, C.; Dallemagne, P. Anti-Cancer Agents in Medicinal Chemistry 2009, 9, 369.
[27] (a) Cavalla, J. F.; Simpson, I. R.; White, A. C. USA patent, 3, 703, 529, Nov. 21, 1972. (b) Newton, C. G.; Ollis, W. D.; Rowson, G. P. Tetrahedron 1992, 48, 8127. (c) Mor, S.; Nagoria, S. Syn. Comm. 2016, 46, 169.
[28] Crystallographic data of compounds 3-3a, 3-4a and 3-12a were deposited at Cambridge Crystallographic Center: 3-3a, CCDC 1480847; 3-4a, CCDC 1480848; 3-12a, 1481886.
[29] We prepared a cyclohexyl phenylketone 3-11 to test the reactivity of nitrones that are known to be isolable.30 In the presence of gold catalyst, this alkyl derivative afforded isoindole product 3-12a in 72% yield; its molecular structure was confirmed by x-ray diffraction. This pathway suggests that nitrone intermediates undergo 7-endo-dig cyclizations, consistent with Shin’s report.24a
[30] Pfeiffer, J. Y.; Beauchemin, A. M. J. Org. Chem. 2009, 74, 8381.
[31] This 5-exo-dig cyclization is noted for 3-en-1-yn-2-ones see selected examples: (a) Kato, Y.; Miki, K.; Nishino, F.; Ohe, K.; Uemura, S. Org. Lett. 2003, 5, 2619. (b) Miki, K.; Nishino, F.; Ohe, K.; Uemura, S. J. Am. Chem. Soc. 2002, 124, 5260. (c) Miki, K.; Yokoi, T.; Nishino, F.; Ohe, K.; Uemura, S. J. Organometal. Chem. 2002, 645, 228.
[32] For other types of gold carbenes, see selected papers: (a) Qian, D.; Zhang, J. Chem. Soc. Rev. 2015, 44, 677. (b) Manzano, R.; Wurn, T.; Rominger, F.; Hashmi, A. S. K. Chem. Eur. J. 2014, 20, 6844. (c) Wetzel, A.; Gagosz, F. Angew. Chem. Int. Ed. 2011, 50, 7354.
[1] Textbooks (a) Backvall, J. E.; Normant, J. F.; Overman, L. E.; Knochel, P.; Sonogashira, K.; de Meijere, A.; Suzuki, A.; Mitchel, T. N.; Tsuji, J.; Negishi, E. Metal-Catalyzed Cross-Coupling Reactions, Vol. 1 – 2 (Eds.: A. de Meijere, F. Diederich), Wiley-Interscience, Weinheim, 1998. (b) Handbook of Organopalladium Chemistry for Organic Synthesis, Vol. 1 and 2 (Eds.: Negishi, E.; de Meijere, A.; Backvall, J. E.; Cacchi, S.; Hayashi, T.; Ito, Y.; Kosugi, M.; Murahashi, S. I.; Oshima, K.; Yamamoto Y.), Wiley-Interscience, New York, 2002. reviews: (c) Surry, D. S.; Buchwald, S. L. Chem. Sci. 2010, 1, 13. (d) Magano, J.; Dunetz, J. R. Chem. Rev. 2011, 111, 2177. (e) Vasilevich, I.; Kombarov, R. V.; Genis, D. V.; Kirpichenok, M. A. J. Med. Chem. 2012, 55, 7003. (f) Johansson Seechurn, C. C. C.; Kitching, M. O.; Colacot, T. J.; Snieckus, V. Angew. Chem. Int. Ed. 2012, 51, 5062.
[2] For representative reviews, see: (a) Himes, R. A.; Karlin, K. D. Curr. Opin. Chem. Biol. 2009, 13, 119. (b) Que, L.; Tolman, W. B. Nature 2008, 455, 333. (c) Chufan, E. E.; Puiu, S. C.; Karlin, K. D. Acc. Chem. Res. 2007, 40, 563. (d) Rosenzweig, A. C.; Sazinsky, M. H. Curr. Opin. Struct. Biol. 2006, 16, 729. (e) Mirica, L. M.; Ottenwaelder, X.; Stack, T. D. P. Chem. Rev. 2004, 104, 1013. (f) Lewis, E. A.; Tolman, W. B. Chem. Rev. 2004, 104, 1047. (g) Solomon, E. I.; Chen, P.; Metz, M.; Lee, S. K.; Palmer, A. E. Angew. Chem. Int. Ed. 2001, 40, 4570. (h) Mahadevan, V.; Gebbink, R. J. M. K.; Stack, T. D. P. Curr. Opin. Chem. Biol. 2000, 4, 228. (i) Klinman, J. P. Chem. Rev. 1996, 96, 2541. (j) Solomon, E. I.; Sundaram, U. M.; Machonkin, T. E. Chem. Rev. 1996, 96, 2563.
[3] Wendlandt, A. E.; Suess, A. M.; Stahl, S. S. Angew. Chem. Int. Ed. 2011, 50, 11062.
[4] Monnier F.; Taillefer, M. Angew. Chem. Int. Ed. 2009, 48, 6954.
[5] Gamez, P.; Aubel, P. G.; Driessen W. L.; Reedijk, J. Chem. Soc. Rev. 2001, 30, 376.
[6] Schmittel, M.; Burghart, A. Angew. Chem. Int. Ed. 1997, 36, 2550.
[7] Klussmann, M.; Sureshkumar, D. Synthesis 2011, 353.
[8] (a) Scheuermann, C. J. Chem. Asian J. 2010, 5, 436. (b) Yoo, W.-J.; Li, C.-J. Curr. Chem. 2010, 292, 281.
[9] Li, C.-J. Acc. Chem. Res. 2009, 42, 335.
[10] For selected examples, see: (a) Li, Z.; Li, C.-J. J. Am. Chem. Soc. 2004, 126, 11810. (b) Li, Z.; Li, C.-J. J. Am. Chem. Soc. 2005, 127, 6968. (c) Yang, F.; Li, J.; Xie, J.; Huang, Z.-Z. Org. Lett. 2010, 12, 5214. (d) Li, Z.; Li, C.-J. J. Am. Chem. Soc. 2005, 127, 3672. (e) Li, Z.; Li, C.-J. Org. Lett. 2004, 6, 4997. (f) Basla, O.; Li, C.-J. Org. Lett. 2008, 10, 3661. (g) Li, Z.; Li, C.-J. Eur. J. Org. Chem. 2005, 3173. (h) Li, Z.; Li, C.-J. J. Am. Chem. Soc. 2006, 128, 56.
[11] (a) Nie, J.; Guo, H.-C.; Cahard, D.; Ma, J.-A. Chem. Rev. 2011, 111, 455. (b) Kobayashi, S.; Mori, Y.; Fossey, J. S.; Salter, M. M. Chem. Rev. 2011, 111, 2626. (c) Candeias, N. R.; Montalbano, F.; Cal, P. M. S. D.; Gois, P. M. P. Chem. Rev. 2010, 110, 6169. (d) Kang, Y. K.; Kim, D. Y. Tetrahedron Lett. 2011, 52, 2356. (e) Yang, Y.; Phillips, D. P.; Pan, S. Tetrahedron Lett. 2011, 52, 1549. (f) Handa, S.; Gnanadesikan, V.; Matsunaga, S.; Shibasaki, M. J. Am. Chem. Soc. 2010, 132, 4925. (g) Hashimoto, T.; Kimura, H.; Nakatsu, H.; Maruoka, K.; J. Org. Chem. 2011, 76, 6030. (h) Colpaert, F.; Mangelinckx, S.; Kimpe, N. D. Org. Lett. 2010, 12, 1904. (i) Shibasaki, M.; Kanai, M. Chem. Rev. 2008, 108, 2853. (j) Notz, W.; Tanaka, F.; Watanabe, S.; Chowdari, N. S.; Turner, J. M.; Thayumanavan, R.; Barbas III, C. F. J. Org. Chem. 2003, 68, 9624.
[12] Tourè, B. B., Chem. Rev. 2009, 109, 4439.
[13] (a) Murahashi, S.-I.; Komiya, N. Ruthenium-catalyzed oxidation for organic synthesis. In Modern Oxidation Methods, 2nd Ed.; Backvall, J. E. Ed. Wiley-VCH: Weinheim, Germany, 2010; pp 241. (b) Li, Z.; Bohle, D. S.; Li, C.-J. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 8928.
[14] Li, Z.; Li, C.-J. J. Am. Chem. Soc. 2005, 127, 3672.
[15] Zhang, Y.; Li, C.-J. Angew. Chem. Int. Ed. 2006, 45, 1949.
[16] Yoo, W.-J.; Correia, C.; Zhang, Y.; Li, C.-J. Synlett 2009, 138.
[17] Xie, J.; Huang, Z.-Z. Angew. Chem. Int. Ed. 2010, 49, 10181.
[18] Kharaschan, M. S.; Fono, A. J. Org. Chem. 1959, 24, 72.
[19] Wei, W.- T.; Song, T.-J; Li, J.-H. Adv. Synth. Catal. 2014, 356, 1703.
[20] (a) Li, Z.; Li, C.-J. Eur. J. Org. Chem. 2005, 3173 and references therein. (b) Murahashi, S.-I. Angew. Chem. Int. Ed. 1995, 34, 2443.
[21] (a) Murahashi, S.-I.; Imada, Y. In Transition Metals for Organic Synthesis; Beller, M., Bolm, C., Eds; Wiley- VCH: Weinheim, Germany, 2004; Vol. 2, p 497. (b) Murahashi, S.-I.; Komiya, N. In Modern Oxidation Methods; Backvall, J.-E., Ed.; Wiley-VCH: Weinheim, Germany, 2004; p 165. (c) Murahashi, S.-I.; Komiya, N.; Terai, H. Angew. Chem. Int. Ed. 2005, 44, 6931.
[22] Boess, E.; Schmitz, C.; Klussmann, M. J. Am. Chem. Soc. 2012, 134, 5317.
[23] Zhao, J.; Fang. H.; Zhou, W.; Han, J.; Pan, Y. J. Org. Chem. 2014, 79, 3847.
[24] Liu, D.; Liu, C.; Li, H.; Lei, A. Chem. Commun. 2014, 50, 3623.
[25] (a) Lee, D.-U. Bull. Korean Chem. Soc. 2002, 23, 1548. (b) Ni, J.; Xiao, H.; Weng, L.; Wei, X.; Xu, Y. Tetrahedron 2011, 67, 5162. and references therein.
[26] (a) Perkin, W. H. Jun.; Robinson, R. J. Chem. Soc. 1911, 99, 775. (b) Hope, E.; Robinson, R. J. Chem. Soc. 1914, 105, 2085.
[27] Shamma, M.; Georgiev, V. St. Tetrahedron Lett. 1974, 2339.
[28] For representative papers on the radical reaction with ethers (often THF), see: (a) Matthews, D. P.; McCarthy, J. R. J. Org. Chem. 1990, 55, 2973. (b) Ishida, A.; Sugita, D.; Takamuku, S.; J. Photochem. Photobiol. A 1992, 65, 197. (c) Ishida, A.; Sugita, D.; Itoh, Y.; Takamuku, S. J. Am. Chem. Soc. 1995, 117, 11687. (d) Gong, J.; Fuchs, P. L. J. Am. Chem. Soc. 1996, 118, 4486. (e) Xiang, J.; Fuchs, P. L. J. Am. Chem. Soc. 1996, 118, 11986. (f) Xiang, J.; Jiang, W.; Gong, J.; Fuchs, P. L. J. Am. Chem. Soc. 1997, 119, 4123.
[29] Ratnikov, M. O.; Doyle, M. P. J. Am. Chem. Soc. 2013, 135, 1549.
[30] (a) Jack, D.; Williams, R. Chem. Rev. 2002, 102, 1669. (b) Bentley, K. W. Nat. Prod. Rep. 2006, 23, 444. (c) Zhang, Q. Y.; Tu, G. Z.; Zhao, Y. Y.; Cheng, T. M. Tetrahedron 2002, 58, 6795. (d) Aladesanmi, A. J.; Kelly, C. J.; Leary, J. D. J. Nat. Prod. 1983, 46, 127. (e) Zhang, A.; Neumeyer, J. L.; Baldessarini, R. J. Chem. Rev. 2007, 107, 274. (f) Ye, K.; Ke, Y.; Keshava, N.; Shanks, J.; Kapp, J. A.; Tekmal, R. R.; Petros, J.; Joshi, H. C. Proc. Natl. Acad. Sci. USA 1998, 95, 1601. (g) Kelleher, C. J.; Cardozo, L.; Chapple, C. R.; Haab, F.; Ridder, A. M. BJU Int. 2005, 95, 81.
[31] Ernst, A. M. Psychopharmacologia 1967, 10, 316.
[32] Shono, T.; Hamaguchi, H.; Sasaki, M.; Fujita, S.; Nagami, K. J. Org. Chem. 1983, 48, 1621.
[33] Xie, Z.; Cai, Y.; Hu, H.; Lin, C.; Jiang, J.; Chen, Z.; Wang, L.; Pan, Y. Org. Lett. 2013, 15, 4600.
[34] Zubkov, F. I.; Ershova, J. D.; Orlova, A. A.; Zaytsev, V. P.; Nikitina, E. V.; Peregudev, A. S.; Gurbanov, A. V.; Borisov, R. S.; Khrustalev, V. N.; Maharramov, A. M.; Varlamov, A. V. Tetrahedron 2009, 65, 3789.
[35] (a) Valencia, E.; Freyer, A. J.; Shamma, M.; Fajardo, V. Tetrahedron Lett. 1984, 25, 599. (b) Alonso, R.; Castedo, L.; Dominguez, D. Tetrahedron Lett. 1985, 26, 2925. (c) Wakchaure, P. B.; Easwar, S.; Puranik, V. G.; Argade, N. P. Tetrahedron 2008, 64, 1786. (d) Moreau, A.; Couture, A.; Deniau, E.; Grandclaudon, P.; Lebrun, S. Tetrahedron 2004, 60, 6169.
[36] (a) Ahmad, V. U.; Rahman, A.; Rasheed, T.; Rehman, H. Heterocycles 1987, 26, 1251. Structural elucidation of -Jamtine: (b) Ahmad, V. U.; Iqbal, S. Phytochemistry 1993, 3, 735. (c) Ahmad, V. U.; Iqbal, S. Nat. Prod. Lett. 1993, 2, 105. (d) Rao, K. V. J.; Rao, L. R. C. J. Sci. Ind. Res. 1981, 20B, 125. (e) Chopra, R. N.; Chopra, I. C.; Handa, K. L.; Kapoor, L. D. Indigenous Drugs of India; U.N. Dhar and Sons: Calcutta, India, 1958; p 501.
[37] (a) Rasheed, T.; Khan, M. N.; Zhadi, S. S.; Durrani, S. J. Nat. Prod. 1991, 54, 582. (b) Brown, R. T.; Jones, M. F.; Wingfield, M. J. Chem. Soc. Chem. Commun. 1984, 847. (c) Lounasmaa, M.; Miettinen, J.; Hanhinen, P.; Jokela, R. Tetrahedron Lett. 1997, 38, 1455. (d) Deiters, A.; Pettersson, M.; Martin, S. F. J. Org. Chem. 2006, 71, 6547.
[38] Chang, M.; Li, W.; Zhang, X. Angew. Chem. Int. Ed. 2011, 50, 10679.