研究生: |
吳 坦 Patil, Uttam |
---|---|
論文名稱: |
設計與建構互補單鏈去氧核醣核酸之「功能化奈米碳管」暨 發展羅氏光裂解酮酸酯之新反應 Design and Study of Functionalized Carbon Nanotubes as Complimentary Strand of ssDNA and Norrish Type Photo-degradation of β-Ketoester |
指導教授: |
胡紀如
Hwu, Jih-Ru |
口試委員: |
彭之皓
Peng, Chi-How 王聖凱 Wang, Sheng-Kai 謝發坤 SHIEH, FA-KUEN 許銘華 Hsu, Ming-Hua 蔡淑貞 Tsay, Shwu-Chen |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 英文 |
論文頁數: | 118 |
中文關鍵詞: | 光降解 、單層壁奈米碳管 、去氧核糖核酸纏繞 、酮酸酯 、光降解 |
外文關鍵詞: | SWCNT, SWCNT, DNA entwinement, ketoesters, photodegradation |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著奈米技術之進步,應用於人類疾病之奈米醫學領域隨之蓬勃發展。近十年來,奈米碳管(CNTs)及其支架,已被應用於數個領域,如材料科學,生物傳感,成像,紡織工業,藥物輸送,及診斷應用。小尺寸,強度,以及顯著物理特性,使奈米碳管成為一種非常獨特的材料。如何減少單壁奈米碳管(SWCNTs)於人體中之毒性一直被廣為研究。本篇論文中利用表面改性以減輕單壁奈米碳管的毒性,並同時賦與其生物辨識功能。雖然SWCNTs曾被用於傳遞單鏈DNA (ssDNA),其能經由非共價結合與ssDNA相互作用。但根據文獻,SWCNTs欲與ssDNA連結目前還是一門困難的技術。
本論文中首次利用“醫療之神所持蛇杖”的概念設計ssDNA修飾之SWCNT,其中SWCNT似“杖”,而單鏈DNA(ssDNA)像“蛇”。利用核鹼基官能化後之SWCNT做為DNA單鏈,可模擬DNA雙螺旋之共軛互補性質。 本實驗室設計並合成了四個(聚dN)-SWCNT(N = A,T,G和C)。 這些SWCNT經由纏繞ssDNA形成“擬DNA雙股螺旋”。其上之ssDNA可以藉由調整溫度或pH值,以可控方式脫離SWCNT。
本論文中所研究之另一種藥物載體材料,為由α-酮酸酯構成,可光降解之聚乳酸-共-乙醇酸(PLGA)共聚物。 PLGA是一類可生物降解和生物相容的聚合物,具極高物理強度,已被廣泛研究並做為藥物、蛋白質、及大分子(如DNA,RNA和肽)之傳遞載體。
聚合物材料現今常被用於可控藥物輸送技術,其易於改造並做工業化大規模生產。 在過去二十年,PLGA被頻繁應用為藥物載體。 PLGA具廣區間之侵蝕時間,易於調整其性質,已被美國食品藥品監督管理局批准用於人體。我們發明一種嶄新方法以合成骨架中包含(甲基)矽烷單元之β-酮酸酯,並成功地以67-81%的效率獲得產物。 該等β-酮酸酯為可光降解PLGA之單體單元。一系列含矽的β-酮酸酯已由酯基團α位進行C-烷基化反應得到。 所得之β-酮酸酯在用紫外線光輻照後,成功經由矽定向Norrish型光裂解反應降解成小片段。
本論文討論並解決了兩個主題。 首先是可用於ssDNA的傳遞之核鹼基官能化納米碳管(聚dN)SWCNT(N = A,C,G和T)。 ssDNA @(poly dN)-SWCNTs之物理、化學、及生化特性與雙螺旋DNA相似。 其可利用SWCNTs為載體,精準傳遞ssDNA至細胞中。 另一方面,我們並研究了“矽基酮酸酯”之“諾氏光降解反應”。 這種新方法可以用於有機矽化合物以及含矽光降解聚合物之合成,未來可應用做為光控藥物載體材料。
Nanomedicine are rapidly developing science where nanoscale materials are engaged to serve as means to deliver therapeutic agents to specific targeted sites in a controlled manner. Carbon nanotubes (CNTs) have been explored over past three decades as handy nanoscaffolds for applications in various fields such as material science, biosensing, imaging, textile industry, drug delivery and diagnostic applications. Their small dimensions, strength and the significant physical properties mark them as a very unique material. Expanded use of single-walled carbon nanotubes SWNTs in living systems requires strategies to diminish their cytotoxicity. Modifications of the surface so that mitigate the toxicity of SWNTs and simultaneously enabling specific biological recognition are highly pursued topics for research. SWCNTs have been used to deliver ssDNA as they tend to interact with ssDNA through non-covalent binding. However, reports suggest that ssDNA are difficult to bind carbon nanotubes with low transferring efficiency to cells.
Herein, this report is the first to link the concept of Rod of Asclepius to the complementary nature of double-stranded DNA wherein SWCNT resembles the “rod” and single-stranded DNA (ssDNA) as the “serpent”. The complementary nature of DNA double helix was emulated by replacement of one DNA strand with nucleobase-functionalized SWCNTs. Our laboratory designed and synthesized four (poly dN)-SWCNTs (N = A, T, G, and C) as a set of biochemical rods. Each of these SWCNTs performed like a complementary strand and formed a “pseudo-double helix” with ssDNA by entwinement. This pseudo form aided the ssDNA to dissociate from the rods in a controlled manner when affected by temperature and pH value.
After successfully achieved the pseudo double helical structure, I focused on to photodegrade -ketoesters that are co-polymers for poly lactic-co-glycolic acid (PLGA). PLGA are a class of biodegradable and biocompatible polymers, which are physically strong and have been comprehensively studied as delivery vehicles for drugs, proteins, and macromolecules such as DNA, RNA, and peptides.
Polymers are another class of materials widely used in controlled drug delivery technology owing to their easy production at industrial scale and potential for additional alteration in a synchronized manner. Over past two decades, PLGA has attracted attention as polymeric candidate for fabrication of devices for drug delivery and tissue engineering applications. PLGA displays a wide range of erosion time, its mechanical properties can be easily tuned and most notably it is a FDA approved polymer.
I designed a new method to synthesize β-ketoesters containing (methyl)silane units in the skeleton and successfully obtained them in 67–81% yields. These β-ketoesters are monomer units to obtain photodegradable PLGA. I have synthesized a series of silicon-containing β-ketoesters by C-alkylation at the α-position of the ester group. These β-ketoesters degraded into fragments after photo-irradiation with UV light, suggesting the degradation followed silicon-directed Norrish type photo-cleavage.
Two major issues has been discussed and solved in this dissertation. The nucleobase-functionalized nanotubes (poly dN)SWCNTs (N = A, C, G and T) were utilized for the delivery of ssDNA. ssDNA@(poly dN)-SWCNTs exhibit similar physical, chemical and biochemical properties to those of the double helical DNA. Their properties deviate from and are even superior to those of DNA-entwined pristine SWCNTs. These findings pave a way to enable ssDNA delivered to the targets in the cells with SWCNTs as a vehicle. On the other hand we have studied the “Norrish Type photo-degradation” of “silicon directed ketoesters”. This new method can serve as reference material for the future synthesis of organosilicon compounds and silicon-containing photodegradable polymers.
1. Ibraheem, D.; Elaissari, A.; Fessi, H. Int. J. Pharm. 2014, 459, 70–83.
2. Murday, J. S.; Siegel, R. W.; Stein, J.; Wright J. F. Nanomedicine: NBM 2009, 5,
251–273.
3. Klumpp, C.; Kostarelos, K.; Prato, M.; Bianco, A. Biochim. Biophys. Acta 2006,
1758, 404–412.
4. McDevitt, M. R.; Scheinberg, D. A. Crit. Rev. Oncog. 2014, 19, 261–268.
5. Iijima, S. Nature 1991, 354, 56-58.
6. Munk, M.; Ladeira, L. O.; Carvalho, B. C.; Camargo, L. S. A.; Raposo, N. R. B.;
Serapião, R. V.; Quintão, C. C. R.; Silva, S. R.; Soares, J. S.; Jorio, A.; Brandão,
H. M. Sci. Rep. 2016, 6, 33588.
7. Jain, A.; Homayoun, A.; Bannister, C. W.; Yum, K. Biotechnol. J. 2015,
10, 447–459.
8. Kaushik, B. K.; Majumder, M. K. Carbon Nanotube: Properties and Applications.
In Carbon Nanotube Based VLSI Interconnects, SpringerBriefs in Applied
Sciences and Technology, Springer: New Delhi, 2015; pp 17–37.
9. Ajayan, P. M.; Zhou, O. Z. Topics Appl. Phys. 2001, 80, 391–425.
10. Fischer, T.; Wetzold, N.; Elsner, H.; Kroll, L.; Hübler, A. C. Nanomater.
Nanotechnol. 2011, 1, 18–23.
11. De Volder, M. F. L.; Tawfick, S. H.; Baughman, R. H.; Hart, A. J. Science 2013,
339, 535–539.
12. He, H.; Pham-Huy, L. A.; Dramou, P.; Xiao, D.; Zuo, P.; Pham-Huy, C. BioMed
Res. Int. 2013; dx.doi.org/10.1155/2013/578290.
13. Vardharajula, S.; Ali, S. Z.; Tiwari, P. M.; Eroglu, E.; Vig, K.; Dennis, V. A.;
Singh, S. R. Int. J. Nanomed. 2012, 7, 5361–5374.
14. Kostarelos, K. Nat. Mater. 2010, 9, 793–795.
15. Baek, Y. K.; Jung, D. H.; Yoo, S. M.; Shin, S.; Kim, J. H.; Jeon, H. J.; Choi, Y.
K.; Lee, S. Y.; Jung, H. T. J. Nanosci. Nanotechnol. 2011, 11, 4210–4216.
16. Zheng, M.; Jagota, A.; Smeke, A. D.; Diner, B. A.; Mclean, R. S.; Lustig, S. R.;
Richardson, R. E.; Tassi, N. G. Nat. Mater. 2003, 2, 196–200.
17. Orecchioni, M.; Bedognetti, D.; Sgarrella, F.; Marincola, F. M.; Bianco, A.;
Delogu, L. G. J. Transl. Med. 2014, 12, 138.
18. Zhang, L.; Rong, P.; Chen, M.; Gao, S.; Zhu, L. Nanoscale 2015, 7, 16204–16213.
19. Liu, Z.; Sun, X.; Nakayama–Ratchfod, N.; Dai, H. ACS Nano 2007, 1, 50–56.
20. Yuan, S.; Zeng, L.; Zhuang, Y.; Hou, Q.; Song, M. Fuller. Nanotub. Car. N. 2016,
24, 13–19.
21. Wang, G.; Zhao, T.; Wang, L.; Hu, B.; Darabi, A.; Lin, J.; Xing, M. M.; Qiu, X.
ACS Appl. Mater. Interfaces 2015, 7, 25733–25740.
22. Tardani, F.; Strobbia, P.; Scipioni, A.; Mesa, C. L. RSC Adv. 2013, 3, 25917–
25923.
23. Alidori, S.; Asqiriba, K.; Londero, P.; Bergkvist, M.; Leona, M.; Scheinberg, D.
A.; McDevitt, M. R. J. Phys. Chem. C 2013, 117, 5982–5992.
24. Enyashin, A. N.; Gemming, S.; Seifert, G. Nanotechnology 2007, 18, 245702.
25. Zheng, M.; Jagota, A.; Semke, E. D.; Diner, B. A.; Mclean, R. S.; Lustig, S. R.;
Richardson, R. E.; Tassi, N. G. Nat. Mater. 2003, 2, 338–342.
26. Di Crescenzo, A.; Ettorre, V.; Fontana, A. Beilstein J. Nanotechnol. 2014, 5,
1675–1690.
27. Tardani, F.; La Mesa, C. Crystals 2015, 5, 74–90.
28. Maji, B.; Samanta, S. K.; Bhattacharya, S. Nanoscale 2014, 6, 3721–3730.
29. Wang, G.; Zhao, T.; Wang, L.; Hu, B.; Darabi, A.; Lin, J.; Xing, M. M. Q.; Qiu,
X. ACS Appl. Mater. Interfaces 2015, 7, 25733–25740.
30. Firme, C. P.; Bandaru, P. R. Nanomedicine: NBM 2010, 6, 245–256.
31. Liu, H.-L.; Zhang, Y.-L.; Yang, N.; Zhang, Y.-X.; Liu, X.-Q.; Li, C.-G.; Zhao,
Y.; Wang, Y.-G.; Zhang, G.-G.; Yang, P.; et al. Cell Death Dis. 2011, 2, e159.
32. Dumortier, H.; Lacotte, S.; Pastorin, G.; Marega, R.; Wu, W.; Bonifazi, D.;
Briand, J.-P.; Prato, M.; Muller, S.; Bianco, A. Nano Lett. 2006, 6, 1522–1528.
33. Pescatori, M.; Bedognetti, D.; Venturelli, E.; Ménard-Moyon, C.; Bernardini, C.;
Muresu, E.; Piana, A.; Maida, G.; Manetti, R.; Sgarrella, F.; et al. Biomaterials
2013, 34, 4395–4403.
34. Chen, X.; Wu, P.; Rousseas, M.; Okawa, D.; Gartner, Z.; Zettl, A.; Bertozzi, C.
R. J. Am. Chem. Soc. 2009, 131, 890–891.
35. Wu, P.; Chen, X.; Hu, N.; Tam, U. C.; Blixt, O.; Zettl, A.; Bertozzi, C. R. Angew.
Chem. Int. Ed. 2008, 47, 5022–5025.
36. Wang, Y.; Iqbal, Z.; Mitra, S. J. Am. Chem. Soc. 2006, 128, 95–99.
37. Shim, M.; Kam, N. W. S.; Chen, R. J.; Li, Y.; Dai, H. Nano Lett. 2002, 2, 285–
288.
38. Yuan, S.; Zeng, L.; Zhuang, Y.; Hou, Q.; Song, M. Fullerenes, Nanotubes,
Carbon Nanostruct. 2016, 24, 13–19.
39. Gebhardt, B.; Hof, F.; Backes, C.; Müller, M.; Plocke, T.; Maultzsch, J.;
Thomsen, C.; Hauke, F.; Hirsch, A. J. Am. Chem. Soc. 2011, 133, 19459–19473.
40. Strano, M. S.; Dyke, C. A.; Usrey, M. L.; Barone, P. W.; Allen, M. J.; Shan, H.;
Kittrell, C.; Hauge, R. H.; Tour, J. M.; Smalley, R. E. Science 2003, 301, 1519–
1522.
41. Zeng, L.; Alemany, L. B.; Edwards, C. L.; Barron, A. R. Nano Res. 2008, 1, 72–
88.
42. O’Connell, M. J.; Boul, P.; Ericson, L. M.; Huffman, C.; Wang, Y.; Haroz, E.;
Kuper, C.; Tour, J.; Ausman, K. D.; Smalley, R. E. Chem. Phys. Lett. 2001, 342,
265–271.
43. Hirsch, A. Angew. Chem. Int. Ed. 2002, 41, 18531859.
44. Tonelli, F. M. P.; Lacerda, S. M. S. N.; Paiva, N. C. O.; Pacheco, F. G.; Scalzo
Junior, S. R. A.; de Macedo, F. H. P.; Cruz, J. S.; Pinto, M. C. X.; Junior, J. D.
C.; Ladeira, L. O.; França, L. R.; Guatimosim, S.; Resende, R. R. Nanoscale
2015, 7, 1803618043.
45. Zeng, L.; Alemany, L. B.; Edwards, C. L.; Barron, A. R. Nano Res. 2008, 1, 72–
88.
46. O’Connell, M. J.; Boul, P.; Ericson, L. M.; Huffman, C.; Wang, Y.; Haroz, E.;
Kuper, C.; Tour, J.; Ausman, K. D.; Smalley, R. E. Chem. Phys. Lett. 2001, 342,
265–271.
47. Zhang, L.; Lu, Z.; Zhao, Q.; Huang, J.; Shen, H.; Zhang, Z. Small 2011, 7, 460–
464.
48. Zhang, L.; Xia, J.; Zhao, Q.; Liu, L.; Zhang, Z. Small 2010, 6, 537–544.
49. Yang, K.; Wan, J.; Zhang, S.; Tian, B.; Zhang, Y.; Liu, Z. Biomaterials 2012,
33, 2206–2214.
50. Kraszewski, S.; Bianco, A.; Tarek, M.; Ramseyer, C. PLOS ONE 2012, 7,
e40703.
51. Tonelli, F. M. P.; Lacerda, S. M. S. N.; Silva, M. A.; Ávila, E. S.; Ladeira, L.
O.; França, L. R.; Resende, R. R. RSC Advances 2014, 4, 3798537987.
52. Anderson, T.; Hu, R.; Yang, C.; Yoon, H. S.; Yong, K.-T. Biomater. Sci 2014,
2, 12441253.
53. Harvey, J.; Dong, L.; Kim, K.; Hayden, J.; Wang, J. Nanotechnol. 2012, 2012,
7.
54. Hwang, Y.; Park, S.-H.; Lee, W. J. Polymers 2017, 9.
55. Munk, M.; Ladeira, L. O.; Carvalho, B. C.; Camargo, L. S. A.; Raposo, N. R.
B.; Serapião, R. V.; Quintão, C. C. R.; Silva, S. R.; Soares, J. S.; Jorio, A.;
Brandão, H. M. Sci. Rep. 2016, 6, 33588.
56. Li, H.; Hao, Y.; Wang, N.; Wang, L.; Jia, S.; Wang, Y.; Yang, L.; Zhang, Y.;
Zhang, Z. Drug Deliv. 2016, 23, 830838.
57. Singh, P.; Kumar, J.; Toma, F. M.; Raya, J.; Prato, M.; Fabre, B.; Verma, S.;
Bianco, A. J. Am. Chem. Soc. 2009, 131, 13555–13562.
58. Blondeau, P.; Rius-Ruiz, F. X.; Düzgün, A.; Riu, J.; Rius, F. X. Mater. Sci. Eng.
C 2011, 21, 1363–1368.
59. Singh, P.; Ménard–Moyon, C.; Battigelli, A.; Toma, F. M.; Raya, J.; Kumar, J.; Nidamanur, N.; Verma, S.; Bianco, A. Chem. Asian J. 2013, 8, 1472–1481.
60. Singh, P.; Venkatesh, V.; Nagapradeep, N.; Verma, S.; Bianco, A. Nanoscale 2012, 4, 1972–1974.
61. Singh, P.; Toma, F. M.; Kumar, J.; Venkatesh, V.; Raya, J.; Prato, M.; Verma, S.; Bianco, A. Chem. Eur. J. 2011, 17, 6772–6780.
62. Ménard-Moyon, C.; Kostarelos, K.; Prato, M.; Bianco, A. Chem. Biol. 2010, 17, 107–115.
63. Hwu, J. R.; Kapoor, M.; Li, R.-Y.; Lin, Y.-C.; Horng, J.-C.; Tsay, S.-C. Chem. Asian J. 2014, 9, 3408–3412.
64. Anderson, J. M.; Shive, M. S. Adv. Drug Deliv. Rev. 1997, 28, 5–24.
65. Leong, K. W.; Zhang, Y.; Chan, H. F. Adv Drug Deliv. Rev. 2013, 65, 104–120.
66. Alexis, F. Polym. Int. 2005, 54, 36–46.
67. Allen, N. S. Photochemistry 2002, 33, 339–404.
68. Swift, G. Degrad. Polym. 2002, 379–412.
69. Hwu, J. R.; Gilbert, B. A.; Lin, L. C.; Liaw, B. R. J. Chem. Soc., Chem. Commun. 1990, 161–163.
70. Mathias, L. J.; Brust, G. J.; Adams, A. Polym. Prepr. 2003, 44, 237.
71. Takahashi, E.; Kataoka, M.; Tsuda, H. Japan Patent JP 63 220 240 A2, 1988.
72. Howarth, G. A. Surf. Coat. Int. Pt B-C 2003, 86, 111–118.
73. Czvikovszky, T. Radiat. Phys. Chem. 2003, 67, 437–440.
74. Sato, M.; Lijima, M.; Takahashi, Y. Thin Solid Films 1997, 308, 90–93.
75. Hwu, J. R.; King, K. Y. Chem. Eur. J. 2005, 11, 3805–3815.
76. Auner, N.; Walsh, R.; Westrup, J. J. Chem. Soc., Chem. Commun. 1986, 207–208.
77. Davidson, I. M. T.; Barton, T. J.; Hughes, K. J.; Ijadi-Maghsoodi, S.; Revis, A.; Paul, G. C. Organometallics 1987, 6, 644–646.
78. Kira, M.; Sugiyama, H.; Sakurai, H. J. Am. Chem. Soc. 1983, 105, 6436–6442.
79. Tietze, L. F.; Beifuss, U. Angew. Chem., Int. Ed. Engl. 1993, 32, 131–163.
80. Okazaki, T.; Laali, K. K. J. Org. Chem. 2003, 68, 1827–1833.
81. Horspool, W. M. Specialist Periodical Report, Photochemistry, eds. D. Bryce–Smith and A. Gilbert, RSC, London, 1988–91, vols. 19–23; W. M. Horspool Specialist Periodical Report, Photochemistry, ed. D. Bryce–Smith, RSC, London, 1970–1987, vols. 1–18; R. F. Newton, Photochemistry in Organic Synthesis, ed. J. D. Coyle, RSC, London, 1986, ch. 3, p. 39.
82. Maheswari, M. A.; Lamshöft, M.; Sukul, P.; Spiteller, P.; Zühlke, S.; Spiteller, M. Chemosphere 2010, 81, 844–852.
83. Dalton, J. C.; Dawes, K.; Turro, N. J.; Weiss, D. S.; Barltrop, J. A.; Coyle, J. D. J. Am. Chem. Soc. 1971, 93, 7213–7221.
84. Hwu, J. R.; Chen, B. L.; Lin, C. F.; Murr, B. L. J. Organomet. Chem. 2003, 686, 198–201.
85. Wierschke, S. G.; Chandrasekhar, J.; Jorgensen, W. L. J. Am. Chem. Soc. 1985, 107, 1496–1500.
86. Lambert, J. B.; Wang, G.; Finzel, R. B.; Teramura, D. H. J. Am. Chem. Soc. 1987, 109, 7838–7845.
87. Kira, M.; Sugiyama, H.; Sakurai, H. J. Am. Chem. Soc. 1983, 105, 6436–6442.
88. Colvin, E. Silicon in Organic Reactions; Butterworth: London, 1981; pp 44–133.
89. Tanino, K.; Hatanaka, Y.; Kuwajima, I. Chem. Lett. 1987, 385–388.
90. Hwu, J. R.; Furth, P. S. J. Am. Chem. Soc. 1989, 111, 8834–8841.
91. Cheesbrough, T. M.; Kolattukudy, P. E. Proc. Natl. Acad. Sci. U.S.A. 1984, 81, 6613–6617.
92. Shafiee, A.; Trzaskos, J. M.; Paik, Y. K.; Gaylor, J. L. J. Lipid Res. 1986, 27, 1–10.
93. Akhtar, M.; Calder, M. R.; Corina, D. L.; Wright, J. N. Biochem. J. 1982, 201, 569–580.
94. March, J. Advanced Organic Chemistry, 3rd revision ed.; Wiley: New York, 1985; pp 655–656.
95. Dawson, D. J.; Ireland, R. E. Tetrahedron Lett. 1968, 1899–1901.
96. Pfenniger, E.; Poel, D. E.; Berse, C.; Wehrli, H.; Schaffner, K.; Jeger, O. Helv. Chim. Acta 1968, 51, 772–803.
97. Tsuji, J.; Ohno, K. Synthesis 1969, 4, 157–169.
98. Gutierrez, C. G.; Stringham, R. A.; Nitasaka, T.; Glasscock, K. J. Org. Chem. 1980, 45, 3393–3395.
99. Furth, P. S.; Hwu, J. R. J. Am. Chem. Soc. 1989, 111, 8842–8849.
100. Hwu, J. R.; Shiao, S. S.; Tsay, S. C. J. Am. Chem. Soc. 2000, 122, 5899–5900.
101. Furth, P. S.; Hwu, J. R. J. Org. Chem. 1989, 54, 3404–3406.
102. Dougherty, R. C. Fortschr. Chem. Forsch. 1974, 45, 93–138.
103. Chuang, H. Design and Synthesis of New Photodegradable Silicon-containing Poly(Lactic-co-glycolic acid) with Applicability. Master’s Dissertation, National Tsing Hua Univeristy, Taiwan, R.O.C. 2013.
104. Campidelli, S.; Ballesteros, B.; Filoramo, A.; Díaz, D. D.; De La Torre, G.; Torres, T.; Rahman, G. M. A.; Ehli, C.; Kiessling, D.; Werner, F.; et al. J. Am. Chem. Soc. 2008, 130, 11503–11509.
105. Frey, J. A.; Müller, A.; Losada, M.; Leutwyler, S. Isomers of the Uracil Dimer: An ab Initio Benchmark Study. J. Phys. Chem. B. 2007, 111, 3534–3542.
106. Grace, T.; Yu, L.; Gibson, C.; Tune, D.; Alturaif, H.; Al Othman, Z.; Shapter, J. Nanomaterials 2016, 6.
107. Dyllick-Brenzinger, C.; Sullivan, G. R.; Pang, P. P.; Roberts, J. D. Proc. Natl. Acad. Sci. U.S.A. 1980, 77, 5580–5582.
108. Dukovic, G.; Balaz, M.; Doak, P.; Berova, N. D.; Zheng, M.; Mclean, R. S.; Brus, L. E. J. Am. Chem. Soc. 2006, 128, 9004–9005.
109. Day, H. A.; Pavlou, P.; Waller, Z. A. E. Bioorg. Med. Chem. 2014, 22, 4407–4418.
110. Chakraborty, S.; Sharma, S.; Maiti, P. K.; Krishnan, Y. Nucleic Acids Res. 2009, 37, 2810–2817.
111. Bang, J. H.; Suslick, K. S. Adv. Mater. 2010, 22, 1039–1059.
112. Sambrook, J.; Russell, D. W. Cold Spring Harb Protoc. 2006; doi: 10.1101/pdb.prot4538.
113. Elsner, H. I.; Lindblad, E. B. DNA 1989, 8, 697–701.
114. Wang, X.; Lim, H. J.; Son, A. Environ. Health Toxicol. 2014, 29, e2014007.
115. Bahr, J. L.; Yang, J.; Kosynkin, D. V.; Bronikowski, M. J.; Smalley, R. E.; Tour, J. M. J. Am. Chem. Soc. 2001, 123, 6536–6542.
116. Liang, F.; Jain, N.; Hutchens, T.; Shock, D. D.; Beard, W. A.; Wilson, S. H.; Chiarelli, M. P.; Cho, B. P. J. Med. Chem. 2008, 51, 6460–6470.
117. Doknic, D.; Abramo, M.; Sutkeviciute, I.; Reinhardt, A.; Guzzi, C.; Schlegel, M. K.; Potenza, D.; Nieto, P. M.; Fieschi, F.; Seeberger, P. H.; et al. Eur. J. Org. Chem. 2013, 5303–5314.
118. Muller, E.; Gasparutto, D.; Lebrun, C.; Cadet, J. Eur. J. Org. Chem. 2001, 2091–2099.
119. Herb, C.; Maier, M. E. A Formal Total Synthesis of the Salicylihalamides. J. Org. Chem. 2003, 68, 8129-8135.
120. Herb, C.; Bayer, A.; Maier, M. E. Total Synthesis of Salicylihalamides A and B. Chem. Eur. J. 2004, 10, 5649-5660.