研究生: |
余政倫 Yu, Cheng-Lun |
---|---|
論文名稱: |
魚類胸鰭張開與收合游動模式之流體動力學研究 Hydrodynamics of Fish Swimming with Pectoral Fins Abducted and Adducted |
指導教授: |
葉孟考
Yeh, Meng-Kao 楊鏡堂 Yang, Jing-Tang |
口試委員: |
許文翰
楊照彥 宋齊有 陳慶耀 葉孟考 楊鏡堂 牛仰堯 |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 116 |
中文關鍵詞: | 滑動數 、史卓荷數 、計算流體動力學 、鰺魚式魚類 、擬穩態游動 、起始渦漩 、流體動力學 、游動能耗 、機動能力 、胸鰭渦漩 、渦漩能量回收 、節能機制 、游動魚類 、低壓核心 、操控式游動 |
外文關鍵詞: | slip number, Strouhal numbers, Computational Fluid Dynamics (CFD), carangiform fish, quasi-steady swimming, proto vortex, hydrodynamics, swimming power, maneuvering capability, pectoral-fin vortices, vortex-energy recycling, energy-saving mechanism, swimming fish, low-pressure kernel, maneuvering swimming |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文分別使用三維與二維的數值模擬來研究鰺魚式魚類胸鰭張開與收合游動模式的流體動力學。數值結果表明魚類胸鰭張開游動於史卓荷數 (St) 0.1–0.8,胸鰭後方會形成一對胸鰭渦漩,胸鰭渦漩與身軀側向擺動之間存在交互作用機制;當St = 0.2–0.8時,身軀側向擺動造成的局部高壓會抑制胸鰭渦漩的剝離,致使胸鰭渦漩留滯且緊貼於胸鰭後方;相反地,當St = 0.1,胸鰭渦漩會剝離並往下游移動,其相應之渦漩的低壓吸力可以輔助身軀側向擺動,以減少游動能耗,此為魚類重要的游動節能機制,因為魚類回收了胸鰭渦漩的能量。
本論文提出魚類胸鰭張開游動與魚類游動於上游D形擋體後方之流體動力學的類比,透過比對魚類使用胸鰭渦漩與上游D形擋體所產生之卡門渦漩的節能機制,結果說明節能機制雖然會以不同形式呈現於大自然中,但是魚類運用渦漩來減少自身游動能耗的概念卻是一樣。
魚類胸鰭收合游動於滑動數(slip) 0.409–0.732,身軀側向擺動引起的起始渦漩會在尾端形成一個貼附的低壓核心,低壓核心可以牽動尾部側向移動,以降低游動能耗;相對地,卻也會增加形狀阻力而不利於游動;當slip = 0.409時,魚類克服阻力游動所花費的能耗,會大於低壓核心輔助身軀側向擺動所減少的能耗。因此,游動能耗還是維持上升,但是此刻的魚類卻可以擁有較佳的機動能力來執行縱向與側向的操控式游動,這點說明魚類游動的能耗與機動能力之間存在一個折衷關係。
魚類在胸鰭收合的直游模式中,數值結果表明於一個身軀側向擺動的週期內,魚類可以擁有四次執行縱向操控式游動的最佳時機,分別為兩次直線加速與兩次直線減速;對照之下,魚類執行側向操控式游動的最佳時機卻只有兩次,分別為一次向右轉彎以及一次向左轉彎。本論文的研究結果對於仿生水下載具於游動節能與機動性能方面,將可以提供一個重要且實用的學理基礎。
In this thesis, the hydrodynamics of a carangiform fish swimming with the pectoral fins abducted and adducted were investigated with three- and two- dimensional simulations, respectively. For Strouhal numbers in a range 0.1–0.8, the numerical results reveal a pair of pectoral-fin vortices is formed behind the abducted pectoral fins of a swimming fish. There exist hydrodynamic interactions between the pectoral-fin vortices and the undulating fish body. For Strouhal numbers in a range 0.2–0.8, the undulating fish body produces a locally high pressure in the region downstream of the pectoral-fin vortices. This downstream high-pressure region adversely suppresses the detachment of pectoral-fin vortices, resulting in vortices closely attached behind the abducted pectoral fins. In contrast, for Strouhal number = 0.1, the pectoral-fin vortices are shed from the pectoral fins and drift downstream. The low-pressure suction force arising from the shed pectoral-fin vortices facilitate lateral movements of the fish body, decreasing the power consumption. We regard this mechanism as significant to harvest energy from the shed pectoral-fin vortices.
We also propose a biohydrodynamic analogy between a fish swimming with the pectoral fins abducted and a fish swimming behind an upstream D-shaped obstacle. Through examination of the energy-saving mechanism pertaining to pectoral-fin vortices and that pertaining to a Kármán vortex street shed by an upstream D-shaped obstacle, we found that, as long as there exist environmental vortices, a fish can readily initiate energy-saving actions. Although the manners of operation of these energy-saving actions vary, the exploitation of environmental vortices is common in fish.
For slip numbers in a range 0.409–0.732, the proto vortex caused by the undulating fish body produces a low-pressure kernel attached to the tail. The low-pressure kernel is beneficial for the decreased energy expenditure because of facilitating the lateral movement of a fish body but still unfavorable in terms of the forward movement of a fish due to an increased form drag. For slip number = 0.409, the enlargement of the energy expenditure to maintain the quasi-steady swimming of a fish is greater than the decrease of the energy expenditure provided by low-pressure kernel, leading to a net increased energy expenditure of a fish. Although a decreased slip number results in an increased energy expenditure of a swimming fish, the maneuvering capability to execute longitudinal and lateral maneuvers is enhanced. This condition indicates that there exists a hydrodynamic compromise between the energy expenditure and maneuvering capability of a swimming fish.
A timing of a fish swimming with the pectoral fins adducted to execute maneuvers from a straight-line swimming state is investigated numerically. In one undulation cycle of the fish, the numerical results reveal there are four time instants preferable for a fish to execute the longitudinal maneuvers–two for the linear acceleration and two for the linear deceleration, whereas only two time instants for the sideway maneuvers–one for turning right and one for turning left.
The energy-saving mechanism and maneuvering capability revealed in this thesis provide a useful biomechanical foundation for the design of future biomimetic vehicles with a view to diminish power consumption and execute maneuver.
Adrian, R. J. 1997. “Dynamic ranges of velocity and spatial resolution of particle image velocimetry,” Meas. Sci. Technol., Vol. 8, pp. 1393-1398.
Ahlborn, B., Chapman, S., Stafford, R., Blake, R. W., and Harper, D. G. 1997. “Experimental simulationa of the thrust phases of fast-start swimming of fish,” J. Exp. Biol., Vol. 200, pp. 2301-2312.
Ahlborn, B., Harper, D. G., Blake, R. W., Ahlborn, D., and Cam, M. 1991. “Fish without footprints,” J. Theor. Biol., Vol. 148, pp. 521-533.
Akhtar, I., Mittal, R., Lauder, G. V., and Drucker, E. 2007. “Hydrodynamics of a biologically inspired tandem flapping foil configuration,” Theor. Comput. Fluid Dyn., Vol. 21, pp. 155-170.
Akilli, H., Sahin, B., and Tumen, N. F. 2005. “Suppression of vortex shedding of circular cylinder in shallow water by a splitter plate,” Flow Meas. Instrum., Vol. 16, pp. 211-219.
Alben, S., Madden, P. G., and Lauder, G. V. 2007. “The mechanics of active fin-shape control in ray-finned fishes,” J. R. Soc. Interface, Vol. 4, pp. 243-256.
Altringham, J. D., and Ellerby, D. J. 1999. “Fish swimming: patterns in muscle function,” J. Exp. Biol., Vol. 202, pp. 3397-3403.
Anderson, J. D. 1995. Fundamentals of Aerodynamics, McGraw-Hill, New York.
Anderson, J. M. 1996. “Vorticity control for efficient propulsion,” Doctoral Thesis, Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution, Cambridge, MA.
Anderson, E. J., McGillis, W., and Grosenbaugh, M. A. 2001. “The boundary layer of swimming fish,” J. Exp. Biol., Vol. 204, pp. 81-102.
Anderson, J. M., Streitlien, K., Barrett, D. S., and Triantafyllou, M. S. 1998. “Oscillating foils of high propulsive efficiency,” J. Fluid Mech., Vol. 360, pp. 41-72.
Aono, H., Liang, F., and Liu, H. 2008. “Research article Near- and far-field aerodynamics in insect hovering flight: an integrated computational study,” J. Exp. Biol., Vol. 211, pp. 239-257.
Barrett, D. S., Triantafyllou, M. S., Yue, D. K. P., Grosenbaugh, M. A., and Wolfgang, M. 1999. “Drag reduction in fish-like locomotion,” J. Fluid Mech., Vol. 392, pp. 183-212.
Beal, D. N., Hover, F. S., Triantafyllou, M. S., Liao, J. C., and Lauder, G. V. 2006. “Passive propulsion in vortex wakes,” J. Fluid Mech. Vol. 549, pp. 385-402.
Blake, R. W. 1983. Fish Locomotion, Cambridge University Press, Cambridge.
Boisaubert, N., and Texier, A. 1998. “Effect of a splitter plate on the near-wake development of a semicircular cylinder,” Exp. Therm. Fluid Sci., Vol. 16, pp. 100-111.
Bomphrey, R. J., Lawson, N. J., Harding, N. J., Taylor, G. K., and Thomas, A. L. R. 2006. “Application of digital particle image velocimetry to insect aerodynamics: measurement of the leading-edge vortex and near wake of a Hawkmoth,” Exp. Fluids, Vol. 40, pp. 546-554.
Borazjani, I., and Sotiropoulos, F. 2008. “Numerical investigation of the hydrodynamics of carangiform swimming in the transitional and inertial flow regimes,” J. Exp. Biol., Vol. 211, pp. 1541-1558.
Borazjani, I., and Sotiropoulos, F. 2009. “Numerical investigation of the hydrodynamics of anguilliform swimming in the transitional and inertial flow regimes,” J. Exp. Biol., Vol. 212, pp. 576-592.
Borazjani, I., and Sotiropoulos, F. 2010. “On the role of form and kinematics on the hydrodynamics of self-propelled body/caudal fin swimming,” J. Exp. Biol., Vol. 213, pp. 89-107.
Bozkurttas, M., Mittal, R., Dong, H., Lauder, G. V., and Madden, P. 2009. “A low-dimensional models and performance scaling of a highly deformable fish pectoral fin,” J Fluid Mech., Vol. 631, pp.311-342.
Brandt, A. 1986. “Algebraic multigrid theory: The symmetric case,” Appl. Math. Comp., Vol. 19, pp. 23-56.
Breder, C. M. 1926. “The locomotion of fishes,” Zoologica, Vol. 4, pp. 159-297.
Brezina, M., Cleary, A. J., Falgout, R. D., Henson, V. E., Jones, J. E., Manteuffel, T. A., McCormick, S. F., and Ruge, J. W. 2000. “Algebraic multigrid based on element interpolation (AMGe),” SIAM J. Sci. Comput., Vol. 22, doi: 10.1137/S1064827598344303.
Brücker, C., and Bleckmann, A. H. 2007. “Vortex dynamics in the wake of a mechanical fish,” Exp. Fluids, Vol. 43, pp. 799-810.
Carling, J., Williams, T. L., and Bowtell, G. 1998. “Self-propelled anguilliform swimming: simultaneous solution of the two-dimensional Navier-Stokes equations and Newton’s law of motion,” J. Exp. Biol., Vol. 201, pp. 3143-3166.
Chakraborty, P., Balachandar, S., and Adrian, R. J. 2005. “On the relationships between local vortex identification schemes,” J. Fluid Mech., Vol. 535, pp. 189-214.
Chartier, T., Falgout, R. D., Henson, V. E., Jones, J., Manteuffel, T., McCormick, S., Ruge, J., and Vassilevski, P. S. 2003. “Spectral AMGe (pAMGe),” SIAM J. Sci. Comput., Vol. 25, pp. 1-26.
Cheng, J. Y., and Blickhan, R. 1994. “Note on the calculation of propeller efficiency using elongated body theory,” J. Exp. Biol., Vol. 192, pp. 169-177.
Colgate, J. E., and Lynch, K. M. 2004. “Mechanics and control of swimming: A review,” IEEE J. Oceanic Eng., Vol. 29, pp. 660-673.
Cortelezzi, L., Chen, Y. C., and Chang, H. L. 1997. “Nonlinear feedback control of the wake past a plate: from a low-order model to a higher-order model,” Phys. Fluids, Vol. 9, pp. 2009-2022.
Deng, J., Shao, X. M., and Yu, Z. S. 2007. “Hydrodynamic studies on two traveling wavy foils in tandem arrangement,” Phys. Fluids, Vol. 19, doi: 10.1063/1.2814259.
Dewar, H., and Graham, J. B. 1994. ”Studies of tropical tuna swimming performance in a large water tunnel–Energetics,” J. Exp. Biol. Vol. 192, pp. 13-31.
Dillon, R. H., and Fauci, L. J. 2000. “An integrative model of internal axoneme mechanics and external fluid dynamics in ciliary beating,” J. Theor. Biol., Vol. 207, pp. 415-430.
Dong, H., Bozkurttas, M., Mittal, R., Madden, P., and Lauder, G. V. 2010. “Computational modelling and analysis of the hydrodynamics of a highly deformable fish pectoral fin,” J. Fluid Mech., Vol. 645, pp. 345-373.
Dong, G. J., and Lu, X. Y. 2005. “Numerical analysis on the propulsive performance and vortex shedding of fish-like travelling wavy plate,” Int. J. Numer. Meth. Fluids, Vol. 48, pp. 1351-1373.
Dong, G. J., and Lu, X. Y. 2007. “Characteristics of flow over traveling wavy foils in a side-by-side arrangement,” Phys. Fluids, Vol. 19, doi: 10.1063/1.2736083.
Drucker, E. G., and Lauder, G. V. 1999. “Locomotor forces on a swimming fish: three-dimensional vortex wake dynamics quantified using digital particle image velocimetry,” J. Exp. Biol., Vol. 202, pp. 2393-2412.
Drucker, E. G., and Lauder, G. V. 2000. “A hydrodynamic analysis of fish swimming speed: wake structure and locomotor force in slowand fast labriform swimmers,” J. Exp. Biol., Vol. 203, pp. 2379-2393.
Drucker, E. G., and Lauder, G. V. 2001. “Locomotor function of the dorsal fin in teleost fishes: experimental analysis of wake forces in sunfish,” J. Exp. Biol., Vol. 204, pp. 2943-2958.
Drucker, E. G., and Lauder, G. V. 2002. “Experimental hydrodynamics of fish locomotion: functional insights from wake visualization,” Integr. Comp. Biol., Vol. 42, pp. 243-257.
Dubuc, L., Cantariti, F., Woodgate, M., Gribben, B., Badcock, K. J., and Richards, B. E. 2000. “A grid deformation technique for unsteady flow computations,” Int. J. Numer. Meth. Fluids, Vol. 32, pp. 285-311.
Ellington, C. P., Van den Berg, C., Willmott, A. P., and Thomas, A. L. R. 1996. “ Leading-edge vortices in insect flight,” Nature, Vol. 384, pp. 626-630.
Falgout, R. D. 2006. “An introduction to algebraic multigrid,” Comput. Sci. Eng., Vol. 8, pp. 24-33.
Farhadi, M., Sedighi, K., and Fattahi, E. 2010. “Effect of a splitter plate on flow over a semi-circular cylinder,” J. Aerospace Eng., Vol. 224, pp. 321-330.
Fauci, L. J. 1996. “A computational model of the fluid dynamics of undulatory and flagellar swimming,” Am. Zool., Vol. 36, pp. 599-607.
Fish, F. E. 1998. “Comparative kinematics and hydrodynamics of odontocete cetaceans: morphological and ecological correlates with swimming performance,” J. Exp. Biol., Vol. 201, pp. 2867-2877.
Fish, F. E., and Lauder, G. V. 2006. “Passive and active flow control by swimming fishes and mammals,” Annu. Rev. Fluid Mech., Vol. 38, pp. 193-224.
Flanagan, P. J. 2004. “Unsteady Navier-Stokes simulation of rainbow trout swimming hydrodynamics,” Master’s thesis, Department of Civil and Environmental Engineering, Washington State University.
Gaitonde, A. L., and Fiddes, S. P. 1993. “A moving mesh system for the calculation of unsteady flows,” AIAA Paper, 93-0461.
Gaitonde, A. L. and Fiddes, S. P. 1995. “A three-dimensional moving mesh method for the calculation of unsteady transonic flows,” Aeronaut. J. R. Aeronaut. Soc., Vol. 99, pp. 150-160.
Gilmanov, A., and Sotiropoulos, F. 2005. “A hybrid Cartesian/immersed boundary method for simulating flows with 3D, geometrically complex, moving bodies,” J. Comput. Phys., Vol. 207, pp. 457-492.
Gray, J. 1933. “Studies in animal locomotion. I. The movement of fish with special reference to the eel,” J. Exp. Biol., Vol. 10, pp. 88-104.
Green, M. A., Rowley, C. W., and Haller, G. 2007. “Detection of Lagrangian coherent structures in three-dimensional turbulence,” J. Fluid Mech., Vol. 572, pp. 111-120.
Gopalkrishnan, R., Triantafyllou, M., Triantafyllou, G., and Barrett, D. 1994. “Active vorticity control in a shear flow using a flapping foil,” J. Fluid Mech., Vol. 274, pp. 1-21.
Hess, F. 1983. “Bending moments and muscle power in swimming fish,” Proceedings of the 8th Australasian Fluid Mechanics Conference, University of Newcastle, NSW 2, 12A, 1-3.
Hu, W. R., Tong, B. G., and Liu, H. 2007. “Dynamics of free straight swimming of Angulla angulla including forward, braking and backward locomotion,” J. Hydrodynamics. Vol. 19, pp. 395-402.
Huang, H., Dabiri, D., and Gharib, M. 1997. “On errors of digital particle image velocimetry,” Meas. Sci. Technol., Vol. 8, pp. 1427-1440.
Hwang, J. Y., and Yang, K. S. 2007. “Drag reduction on a circular cylinder using dual detached splitter plates,” J. Wind Eng. Ind. Aerod., Vol. 95, pp. 551-564.
Jayne, B. C., Lozada, A., and Lauder, G. V. 1996. “Function of the dorsal fin in bluegill sunfish: motor patterns during four locomotor behaviors,” J. Morphol., Vol. 228, pp. 307-326.
Jeong, J., and Hussain, F. 1995. “On the identification of a vortex,” J. Fluid Mech., Vol. 285, pp. 69-94.
Jia, L. B., and Yin, X. Z. 2009. “Response modes of a flexible filament in the wake of a cylinder in a flowing soap film,” Phys. Fluids, Vol. 21, doi: 10.1063/1.3257294.
Kern, S., and Koumoutsakos, P. 2006. “Simulations of optimized anguilliform swimming,” J. Exp. Biol., Vol. 209, pp. 4841-4857.
Koochesfahani, M., and Dimotakis, P. 1988. “A cancellation experiment in a forced turbulent shear layer,” AIAA Tech. Paper, 88-3713-CP.
Lauder, G. V. 2000. “Function of the caudal fin during locomotion in fishes: kinematics, flow visualization, and evolutionary patterns,” Am. Zool., Vol. 40, pp. 101-22.
Lauder, G. V., Anderson, E. J., Tangorra, J., and Madden, P. G. A. 2007. “Fish biorobotics: Kinematics and hydrodynamics of self-propulsion,” J. Exp. Biol., Vol. 210, pp. 2767-2780.
Lauder, G. V., and Drucker, E. G. 2002. “Forces, fishes, and fluids: hydrodynamic mechanisms of aquatic locomotion,” News Physiol. Sci., Vol. 17, pp. 235-240.
Lauder, G. V., Drucker, E. G., Nauen, J., and Wilga, C. D. 2003. “Experimental hydrodynamics and evolution: caudal fin locomotion in fishes,” In Vertebrate Biomechanics and Evolution (eds. Bels, V. L., Gasc, J. P., and Casinos, A.), pp. 117-135. Oxford: Bios Sci. Publ.
Lauder, G. V., and Madden, P. G. A. 2006. “Learning from fish: Kinematics and experimental hydrodynamics for roboticists,” Int. J. Control. Autom., Vol. 3, pp. 325-335.
Lauder, G. V., and Madden, P. G. A. 2008. “Advances in Comparative Physiology from High-Speed Imaging of Animal and Fluid Motion,” Annu. Rev. Physiol., Vol. 70, pp. 143-163.
Lauder, G. V., Madden, P. G. A., Mittal, R., Dong, H., and Bozkurttas, M. 2006. “Locomotion with flexible propulsors: I. Experimental analysis of pectoral fin swimming in sunfish,” Bioinspi. Biomim., Vol. 1, pp. 25-34.
Lauder, G. V., and Tytell, E. D. 2005. “Hydrodynamics of undulatory propulsion,” Fish Biomechanics, Vol. 23, pp. 425-468.
Leroyer, A., and Visonneau, M. 2005. “Numerical methods for RANSE simulations of a self-propelled fish-like body,” J. Fluids Struct., Vol. 20, pp. 975-991.
Liao, J. C. 2004. “Neuromuscular control of trout swimming in a vortex street: implications for energy economy during the Kármán gait,” J. Exp. Biol., Vol. 207, pp. 3495-506.
Liao, J. C. 2006. “The role of the lateral line and vision on body kinematics and hydrodynamic preference of rainbow trout in turbulent flow,” J. Exp. Biol., Vol. 209, pp. 4077-4090.
Liao, J. C. 2007. “A review of fish swimming mechanics and behaviour in altered flows,” Phil. Trans. R. Soc. Lond. B, Vol. 362, pp. 1973-1993.
Liao, J. C., Beal, D. N., Lauder, G. V., and Triantafyllou, M. S. 2003a. “Fish exploiting vortices decrease muscle activity,” Science, Vol. 302, pp. 1566-1569.
Liao, J. C., Beal, D. N., Lauder, G. V., and Triantafyllou, M. S. 2003b. “The Kármán gait: novel body kinematics of rainbow trout swimming in a vortex street,” J. Exp. Biol., Vol. 206, pp. 1059-1073.
Lighthill, M. J. 1960. “Note on the swimming of slender fish,” J. Fluid Mech., Vol. 9, pp. 305-317.
Lighthill, M. J. 1969. “Hydrodynamics of aquatic animal propulsion,” Annu. Rev. Fluid Mech., Vol. 1, pp. 413-446.
Lighthill, M. J. 1970. “Aquatic animal propulsion of high hydromechanical efficiency,” J. Fluid Mech., Vol. 44, pp. 265-301.
Lighthill, M. J. 1971. “Large-amplitude elongated-body theory of fish locomotion,” Proc. R. Soc. Lond. B, Vol. 179, pp. 125-138.
Lighthill, M. J., and Blake, R. W. 1990. “Biofluiddynamics of balistiform and gymnotiform locomotion. Part 1. Biological background, and analysis by elongated-body theory,” J. Fluid Mech., Vol. 212, pp. 183-207.
Linden, P. F., and Turner, J. S. 2004. “‘Optimal’ vortex rings and aquatic propulsion mechanisms,” Proc. R. Soc. Lond. B, Vol. 271, pp. 647-653.
Lindsey, C. C. 1978. “Form, function and locomotory habits in fish,” In Fish Physiology (eds. Hoar, W. S., and Randall, D. J.), pp. 1-100. New York: Academic.
Liu, H. 2002. “Computational Biological Fluid Dynamics: Digitizing and Visualizing Animal Swimming and Flying,” Integr. Comp. Biol., Vol. 42, pp. 1050-1059.
Liu, H., Ellington, C. P., Kawachi, K., Van den Berg, C., and Willmott, A. P. 1998. “A computational fluid dynamic study of hawkmoth hovering, “ J. Exp. Biol., Vol. 201, pp. 461-477.
Liu, H., and Kawachi, K. 1999. “A numerical study of undulatory swimming,” J. Comput. Phys., Vol. 155, pp. 223-247.
Liu, H., Wassersug, R. J., and Kawachi, K. 1996. “A computational fluid dynamics study of tadpole swimming,” J. Exp. Biol., Vol. 199, pp. 1245-1260.
Melling, A. 1997. “Tracer particles and seeding for particle image velocimetry,” Meas. Sci. Technol., Vol. 8, pp. 1406-1416.
Muijres, F., Johansson, L. C., Barfield, R., Wolf, M., Spedding, G. R., and Hedenstrom, A. 2008. “Leading-edge vortex improves lift in slow-flying bats,” Science, Vol. 319, pp. 1250-1253.
Müller, U. K. 2003. “Fish’n Flag,” Science, Vol. 302, pp. 1511-1512.
Müller, U. K., Smit, J., Stamhuis, E. J., and Videler, J. J. 2001. “How the body contributes to the wake in undulatory fish swimming: flow fields of a swimming eel (Anguilla anguilla),” J. Exp. Biol., Vol. 204, pp. 2751-2762.
Müller, U. K., Stamhuis, E. J., and Videler, J. J. 2002. “Riding the Waves: the Role of the Body Wave in Undulatory Fish Swimming,” Integr. Comp. biol., Vol. 42, pp. 981-987.
Müller, U. K., and Van den Boogaart, G. M., and Van Leeuwen, J. L. 2008. “Flow patterns of larval fish: undulatory swimming in the intermediate flow regime,” J. Exp. Biol., Vol. 211, pp. 196-205.
Müller, U. K., Van den Heuvel, B. L. E., Stamhuis, E. J., and Videler, J. J. 1997. “Fish foot prints: morphology and energetics of the wake behind a continuously swimming mullet (Chelon labrosus Risso),” J. Exp. Biol., Vol. 200, pp. 2893-2906.
Müller, U. K., and Van Leeuwen, J. L. 2006. “Undulatory fish swimming: from muscle to flow,” Fish and Fishers, Vol. 7, pp. 84-103.
Nagayama, K., Tanaka, T., Tanaka, K., Hayami, H., and Aramaki, S. 2008. “Visualization of flow and vortex structure around a swimming loach by dynamic stereoscopic PIV,” Exp. Fluids, Vol. 44, pp. 843-850.
Nakamura, Y. 1996. “Vortex shedding from bluff bodies with splitter plates,” J. Fluids Struct., Vol. 10, pp. 147-158.
Nauen, J. C., and Lauder, G. V. 2002. “Quantification of the wake of rainbow trout (Oncorhynchus mykiss) using three-dimensional stereoscopic digital particle image velocimetry,” J. Exp. Biol., Vol. 205, pp. 3271-3279.
Newman, J. N. 1973. “The force on a slender fish-like body,” J. Fluid Mech., Vol. 58, pp. 689-702.
Newman, J. N., and Wu, T. Y. 1973. “A generalized slender-body theory for fish-like forms,” J. Fluid Mech., Vol. 57, pp. 673-693.
Patankar, S. V. 1980. Numerical heat transfer and fluid flow, McGraw-Hill, New York.
Patankar, S. V., and Spalding, D. B. 1972. “A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows,” Int. J. Heat Mass Transfer, Vol. 15, pp. 1787-1806.
Prasad, A, K. 2000. “Stereoscopic particle image velocimetry,” Exp. Fluids, Vol. 29, pp. 103-116.
Ramamurti, R., and Sandberg, W. C. 2007. “A computational investigation of the three-dimensional unsteady aerodynamics of Drosophila hovering and maneuvering,” J. Exp. Biol., Vol. 210, pp. 881-896.
Ramamurti, R., Sandberg, W. C., Löhner, R., Walker, J. A., and Westneat, M. W. 2002. “Fluid dynamics of flapping aquatic flight in the bird wrasse: Three-dimensional unsteady computations with fin deformation,” J. Exp. Biol., Vol. 205, pp. 2997-3008.
Rohr, J. J., and Fish, F. E. 2004. “Strouhal numbers and optimization of swimming by odontocete cetaceans,” J. Exp. Biol., Vol. 207, pp. 1633-1642.
Saffman, P. G. 1992. Vortex Dynamics, Cambridge University Press.
Sfakiotakis, M., Lane, D. M., Bruce, J., and Davies, C. 1999. “Review of fish swimming modes for aquatic locomotion,” IEEE J. Oceanic Eng., Vol. 24, pp. 237-252.
Sheu, T. W. H., and Chen, Y. H. 2007. “Numerical study of flow field induced by a locomotive fish in the moving meshes,” Int. J. Numer. Meth. Engng., Vol. 69, pp. 2247-2263.
Shirgaonkar, A. A., Curet, O. M., Patankar, N. A., and Maclver, M. A. 2008. “The hydrodynamics of ribbon-fin propulsion during impulsive motion,” J. Exp. Biol., Vol. 211, pp. 3490-3503.
Siddiqui, M. H. K. 1997. “Velocity measurements around a freely swimming fish using PIV,” Meas. Sci. Technol., Vol. 18, pp. 96-105.
Spedding, G. R., Rayner, J. M. V., and Pennycuick, C. J. 1984. “Momentum and energy in the wake of a pigeon (Columba livia) in slow flight,” J. Exp. Biol., Vol. 111, pp. 81-102.
Stamhuis, E. J. 2006. “Basics and principles of particle image velocimetry (PIV) for mapping biogenic and biologically relevant flows,” Aquatic Ecology, Vol. 40, pp. 463-479.
Stamhuis, E. J., and Nauwelaerts, S. 2005. “Propulsive force calculations in swimming frogs II: Application of a vortex ring model to DPIV data,” J. Exp. Biol., Vol. 208, pp. 1445-1451.
Stanislasy, M., and Monnierz, J. C. 1997. “Practical aspects of image recording in particle image velocimetry,” Meas. Sci. Technol., Vol. 8, pp. 1417-1426.
Streitlien, K. 1994. “Extracting energy from unsteady flows through vortex control,” Doctoral Thesis, Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution, Cambridge, MA.
Streitlien, K., Triantafyllou, G., and Triantafyllou, M. 1996. “Efficient foil propulsion through vortex control,” AIAA, Vol. 34, pp. 2315-2319.
Sun, M., and Lan, S. L. 2004. “A computational study of the aerodynamic forces and power requirements of dragonfly (Aeschna juncea) hovering,” J. Exp. Biol., Vol. 207, pp. 1887-1901.
Suzuki, H., and Kato, N. 2005. “A numerical study on unsteady flow around a mechanical pectoral fin,” Int. J. Offshore Polar Eng., Vol. 15, pp. 161-167.
Tangorra, J., Anquetil, P., Fofonoff, T., Chen, A., Zio, M. D., and Hunter, I. 2007. “The application of conducting polymers to a biorobotic fin propulsors,” Bioinspi. Biomim., Vol. 2, doi: 10.1088/1748-3182/2/2/S02.
Taylor, G., Nudds, R., and Thomas, A. L. R.. 2003. “Flying and swimming animals cruise at a Strouhal number tuned for high power efficiency,” Nature, Vol. 425, pp. 707-788.
Techet, A. H. 1999. “Flow relaminarization in fish-like propulsion,” Doctoral Thesis, Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution, Cambridge, MA.
Thomas, P. D., and Lombard, C. K. 1979. “Geometric conservation law and its application to flow computations on moving grids,” AIAA, Vol. 17, pp. 1030-1037.
Ting, S. C., and Yang, J. T. 2008. “Pitching stabilization via caudal fin-wave propagation in a forward-sinking parrot cichlid (Cichlasoma citrinellum X Cichlasoma synspilum),” J. Exp. Biol., Vol. 211, pp. 3147-3159.
Ting, S. C., and Yang, J. T. 2009a. “Extracting energetically dominant flow features in a complicated fish wake using singular-value decomposition,” Phys. Fluids, Vol. 21, doi: 10.1063/1.3122802.
Ting, S. C., and Yang, J. T. 2009b. “An innovative technique for simultaneous measurement of three-dimensional kinematics and induced flow of a swimming Fish,” Journal of Mechanics, Vol. 25, pp. 355-362.
Triantafyllou, M. S., and Triantafyllou, G. S. 1995. “An efficient swimming machine,” Sci. Amer., Vol. 3, pp. 64-70.
Triantafyllou, M. S., Triantafyllou, G. S., and Gopalkrishnan, R. 1991. “Wake mechanics for thrust generation in oscillating foils,” Phys. Fluids, Vol. 3, pp. 2835-2837.
Triantafyllou, G. S., Triantafyllou, M. S., and Grosenbauch, M. A. 1993. “Optimal thrust development in oscillating foils with application to fish propulsion,” J. Fluids Struct., Vol. 7, pp. 205-224.
Triantafyllou, M. S., Triantafyllou, G. S., and Yue, D. K. P. 2000. “Hydrodynamics of Fishlike Swimming,” Annu. Rev. Fluid Mech., Vol. 32, pp. 33-53.
Tytell, E. D., and Lauder, G. V. 2004. “The hydrodynamics of eel swimming I. Wake structure,” J. Exp. Biol., Vol. 207, pp. 1825-1841.
Van den Berg, C., and Ellington, C. P. 1997a. “The vortex wake of a “Hovering” model hawkmoth,” Phil. Trans. R. Soc. Lond. B, Vol. 352, pp. 317-328.
Van den Berg, C., and Ellington, C. P. 1997b. “The three-dimensional leading-edge vortex of a “Hovering” model hawkmoth,” Phil. Trans. R. Soc. Lond. B, Vol. 352, pp.329-340.
Van Doormal, J. P., and Raithby, G. G. 1984. “Enhancements of the simple method for predicting incompressible fluid flows,” Numer. Heat Transf., Vol. 7, pp. 147-163.
Vanek, P., Brezina, M., and Mandel, J. 2001. “Convergence of algebraic multigridbased on smoothed aggregation,” Numer. Math., Vol. 88, pp. 559-579.
Vanek, P., Mandel, J., and Brezina, M. 1996. “Algebraic multigrid by smoothed aggregation for second and fourth order elliptic problems,” Computing, Vol. 56, pp. 179-196.
Videler, J. J. 1993. Fish Swimming. Chapman and Hall, London.
Videler, J. J., and Hess, F. 1984. “Fast continuous swimming of two pelagic predators, saithe (Pollachius virens) and mackerel (Scomber scombrus): A kinematic analysis,” J. Exp. Biol., Vol. 109, pp. 209-228.
Videler, J. J., and Wardle, C. S. 1991. “Fish swimming stride by stride: Speed limits and endurance,” Rev. Fish Biol. Fish, Vol. 1, pp. 23-40.
Vogel, S. 1994. Life in Moving Fluids: the physical biology of flow, Princeton University Press, Princeton, NJ USA.
Vogel, S. 2003. Comparative Biomechanics: life’s physical world, Princeton University Press, Princeton, NJ USA.
Wardle, C. S., Videler, J. J., and Altringham, J. D. 1995. “Tuning in to fish swimming waves: body form, swimming mode and muscle function,” J. Exp. Biol., Vol. 198, pp. 1629-1636.
Webb, P. W. 1975. “Hydrodynamics and energetics of fish propulsion,” Bull. Fish Res. Bd. Can. Vol. 190, pp. 1-159.
Webb, P. W. 1978. “Hydrodynamics: Nonscombroid fish,” In Fish Physiology (eds. Hoar, W. S., and Randall, D. J.), pp. 189-237. New York: Academic.
Webb, P. W. 1984. “Form and function in fish swimming,” Sci. Amer., Vol. 251, pp. 58-68.
Webb, P. W. 1988. “Simple physical principles and vertebrate aquatic locomotion,” Amer. Zool., Vol. 28, pp. 709-725.
Webb, P. W. 2002. “Control of posture, depth, and swimming trajectories of fishes,” Integr. Comp. Biol., Vol. 42, pp. 94-101.
Webb, P. W. 2004a. “Response latencies to postural disturbances in three species of teleostean fishes,” J. Exp. Biol., Vol. 207, pp. 955-961.
Webb, P. W. 2004b. “Maneuverability–general issues,” IEEE J. Oceanic Eng., Vol. 29, pp. 547- 555.
Webb, P. W., Kostecki, P. T., and Stevens, E. D. 1984. “The effect of size and swimming speed on locomotor kinematics of rainbow trout,” J. Exp. Biol., Vol. 109, pp. 77-95.
Webster, R. 1994. “An algebraic multigrid solver for Navier-Stokes problems,” Int. J. Numer. Meth. Fluids, Vol. 18, pp. 761-780.
Weihs, D. 1973. “The mechanism of rapid starting of slender fish,” Biorheology, Vol. 10, pp. 343-350.
Weihs, D. 1989. “Design features and mechanics of axial locomotion in fish,” Amer. Zool., Vol. 29, pp. 151-160.
Weihs, D. 1993. “Stability of aquatic animal locomotion,” In: Fluid Dynamics in Biology (eds: Cheer, A. Y. and Van Dam, C. P.), pp. 443-461. Providence, RI: American Mathematical Society.
Weihs, D., and Webb, P. W. 1983. “Optimization of locomotion,” In Fish Biomechanics (eds. Webb, P. W., and Weihs, D.), pp. 339-371. New York: Prager.
Westerweel, J. 1997. “Fundamentals of digital particle image velocimetry,” Meas. Sci. Technol., Vol. 8, pp. 1379-1392.
Wilga, C. D., and Lauder, G. V. 2004. “Hydrodynamic function of the shark’s tail,” Nature, Vol. 430, doi: 10.1038/430850a.
Winterbottom, R. 1974. “A descriptive synonymy of the striated muscles of the Teleostei,” Proc. Acad. Nat. Sci. Philos., Vol. 125, pp. 225-317.
Wolfgang, M. J., Anderson, J. M., Grosenbaugh, M. A., Yue, D. K. P., and Triantafyllou, M. S. 1999a. “Near-body flow dynamics in swimming fish,” J. Exp. Biol., Vol. 202, pp. 2303-2327.
Wolfgang, M., Triantafyllou, M. S., and Yue, D. K. P. 1999b. “Visualization of complex near-body transport processes in flexible-body propulsion,” J. Visualization, Vol. 2, pp. 143-151.
Wu, T. Y. 1960. “Swimming of a waving plate,” J. Fluid Mech., Vol. 10, pp. 321-344.
Wu, T. Y. 1971. “Hydromechanics of swimming propulsion. Part 3. Swimming and optimum movements of slender fish with side fins,” J. Fluid Mech., Vol. 46, pp. 545-568.
Wu, T. Y. 2001. “Mathematical biofuiddynamics and mechanophysiology of fish locomotion,” Math. Meth. Appl. Sci., Vol. 24, pp. 1541-1564.
Wu, T. Y. 2010. “A review on fish swimming and bird/insect flight,” Annu. Rev. Fluid Mech., Vol. 43, pp. 25-58.
Wu, J. Z., Lu, X. Y., and Zhuang, L. X. 2007. “Integral force acting on a body due to local flow structures,” J. Fluid Mech., Vol. 576, pp. 265-286.
Wu, G., Yang, Y., and Zeng, L. 2007a. “Kinematics, hydrodynamics and energetic advantages of burst-and-coast swimming of koi carps (Cyprinus carpio koi),” J. Exp. Biol., Vol. 210, pp. 2181-2191.
Wu, G., Yang, Y., and Zeng, L. 2007b. “Routine turning maneuvers of koi carps (Cyprinus carpio koi): effects of turning rate on kinematics and hydrodynamics,” J. Exp. Biol., Vol. 210, pp. 4379-4389.
Xiao, Q., Sun, K., Liu, H., and Hu, J. 2011. “Computational study on near wake interaction between undulation body and a D-section cylinder,” Ocean Eng., Vol. 38, pp. 673-683.
Yang, Y., Wu, G. H., Yu, Y. L., and Tong, B. G. 2008. “Two-dimensional self-propelled fish motion in medium: an integrated method for deforming body dynamics and unsteady fluid dynamics,” Chin. Phys. Lett., Vol. 25, pp. 597-600.
Zhang, N., and Zheng, Z. C. 2008. “Flow/pressure characteristics for flow over two tandem swimming fish,” Comput. Fluids, Vol. 38, pp. 1059-1064.
Zhu, Q., and Shoele, K. 2008. “Propulsion performance of a skeleton- strengthened fin,” J. Exp. Biol., Vol. 211, pp. 2087-2100.
Zhu, Q., Wolfgang, M. J., Yue, D. K. P., and Triantafyllou, M. S. 2002. “Three-dimensional flow structures and vorticity control in fish-like swimming,” J. Fluid Mech., Vol. 468, pp. 1-28.
王福軍, 2004. 計算流體動力學分析–CFD軟體原理與應用, 清華大學出版社, 中國北京.
郭子凡, 2007. “仿生彈性鰭及血鸚鵡魚推進原理之分析,” 碩士論文, 清華大學 動力機械工程學系, 台灣新竹.
江帆, 黃鵬, 2008. Fluent高級應用與實例分析, 清華大學出版社, 中國北京.
丁上杰, 2009. “魚類操控式游動之流體動力與生物物理學研究,” 博士論文, 清華大學 動力機械工程學系, 台灣新竹.