研究生: |
曾嘉宏 Tseng, Chia-Hung |
---|---|
論文名稱: |
具三相四象限切換式整流器前級之無位置感測切換式磁阻馬達驅動系統 A POSITION SENSORLESS SWITCHED-RELUCTANCE MOTOR DRIVE WITH THREE-PHASE FOUR-QUADRANT SWITCH-MODE RECTIFIER FRONT-END |
指導教授: |
廖聰明
Liaw, Chang-Ming |
口試委員: |
許源浴
劉添華 趙貴祥 廖聰明 |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 中文 |
論文頁數: | 144 |
中文關鍵詞: | 切換式磁阻馬達 、反轉 、再生煞車 、換相移位 、升壓 、切換式整流器 、功因校正 、無位置感測控制 、電壓窄波注入 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文旨在研製具三相四象限切換式整流器前級之切換式磁阻馬達驅動系統。首先,使用功率模組建構非對稱橋式轉換器電路。經由適當電流及速度控制機構,所建馬達驅動系統具良好驅動特性,包括加/減速、反轉以及再生煞車操作。藉由換相前移及直流鏈電壓升壓增進高速驅動操控性能亦經實驗探究。
接著,建立一個三相四象限切換式整流器並將其當作切換式磁阻馬達驅動系統前級。藉此從市電端汲取具功率因數校正之電力並具備再生煞車能量回充市電能力。而且,為了在較高轉速下有效地提升切換式磁阻馬達驅動性能,所建切換式磁阻馬達驅動系統之直流鏈電壓具調節及升壓特性。為完整化,亦建構其他兩型三相切換式整流器,當作切換式磁阻馬達驅動系統之前級,並比較評估其驅動特性。
此外,本文提出基於電壓窄波注入之切換式磁阻馬達無位置感測控制方案。藉由數位訊號處理器內建之脈寬調變通道,注入適當頻率及導通時間之脈波電壓於馬達之非激磁相線圈,由感測之轉子位置調幅波狀線圈電流經處理後獲得估測之霍爾訊號,並應用於切換式磁阻馬達之無位置感測控制。在無位置感測操控上,馬達先以步進馬達方式起動,俟接近適當轉速後,即切換至切換式磁阻馬達操作模式。在速度迴授控制方面,馬達轉速利用所提之估測機構由感測之四相線圈電流估算而得。
This thesis is mainly concerned with the development of a switched-reluctance motor (SRM) drive equipped with a three-phase four-quadrant front-end switch-mode rectifier (SMR). First, an asymmetric bridge converter fed SRM drive is constructed using off-the-shelf power modules. Through properly designed current and speed control schemes, the established motor drive possesses good driving characteristics, including acceleration/deceleration, reversible and regenerative braking operations. Then the high-speed driving performance enhancement via commutation instant advanced shift and voltage boosting are explored experimentally.
Next, a three-phase four-quadrant SMR is established and employed as the front-end of SRM drive. It can draw the power from the mains with power factor correction and possess regenerative braking energy recovery capability. Moreover, the DC-link voltage of the SRM drive can also be adjustable and boostable for effectively enhancing the SRM driving performance under higher speeds. For completeness, the driving characteristics of the SRM drive powered by other two types of three-phase SMRs are comparatively evaluated.
In addition, a SRM position sensorless control scheme based on narrow pulse voltage injection is proposed. The voltage pulses with suited frequency and duration are injected into the demagnetized phase winding via the DSP PWM channel. The resulted winding currents are sensed and processed to yield an observed Hall signal and used for making the SRM position sensorless control. In sensorless control operation, the motor is initially started in stepping motor mode. As the speed rises to an appropriate value, the operation is changed to switched-reluctance motor mode using the observed Hall signal. And the speed feedback control is conducted using the observed speed, which is obtained from the sensed four winding currents.
REFERENCES
A. Fundamentals of SRM
[1] T. J. E. Miller, Switched Reluctance Motors and Their Control, Oxford: Clarendon Press, 1993.
[2] R. Krishnan, Switched Reluctance Motor Drives: Modeling, Simulation, Analysis, Design, and Applications, New York: CRC Press, 2001.
[3] H. C. Lovatt, M. C. Clelland and J. M. Stephenson, “Comparative performance of singly salient reluctance, switched reluctance and induction motors,” in Proc. IEE Conf. Elect. Mach. and Drives, 1997, pp. 361-365.
[4] A. V. Radun, “Design considerations for the switched reluctance motor,” IEEE Trans. Ind. Appl., vol. 31, no. 5, pp. 1079-1087, 1995.
[5] T. J. E. Miller, “Optimal design of switched reluctance motors,” IEEE Trans. Ind. Electron., vol. 49, no. 1, pp. 15-27, 2002.
[6] K. Vijayakumar, R. Karthikeyan, S. Paramasivam, R. Arumugam and K. N. Srinivas, “Switched-reluctance motor modeling, design, simulation, and analysis: a comprehensive review,” IEEE Trans. Magn., vol. 44, no. 12, pp. 4605-4617, 2008.
[7] N. Schofield, S. A. Long, D. Howe and M. McClelland, “Design of a switched reluctance machine for extended speed operation,” IEEE Trans. Ind. Appl., vol. 45, no. 1, pp. 116-122, 2009.
[8] P. C. Desai, M. Krishnamurthy, N. Schofield and A. Emadi, “Novel switched reluctance machine configuration with higher number of rotor poles than stator poles: Concept to implementation, ” IEEE Trans. Ind. Electron., vol. 57, no. 2, pp. 649-659, 2010.
[9] A. Chiba, M. Takeno, N. Hoshi, M. Takemoto, S. Ogasawara and M. A. Rahman, “Consideration of number of series turns in switched-reluctance traction motor competitive to HEV IPMSM,” IEEE Trans. Ind. Appl., vol. 48, no. 6, pp.2333-2340, 2012.
[10] K. Kiyota and A. Chiba, “Design of switched reluctance motor competitive to 60-kW IPMSM in third-generation hybrid electric vehicle,” IEEE Trans. Ind. Appl., vol. 48, no. 6, pp.2303-2309, 2012.
[11] M. Takeno, A. Chiba, N. Hoshi, S. Ogasawara, M. Takemoto and M. A. Rahman, “Test results and torque improvement of the 50-kW switched reluctance motor designed for hybrid electric vehicles,” IEEE Trans. Ind. Appl., vol. 48, no. 4, pp.1327-1334, 2012.
[12] B. Bilgin, A. Emadi and M. Krishnamurthy, “Comprehensive evaluation of the dynamic performance of a 6/10 SRM for traction application in PHEVs,” IEEE Trans. Ind. Electron., vol. 60, no. 7, pp. 2564-2575, 2013.
[13] R. Madhavan and B.G. Fernandes, “Axial flux segmented SRM with a higher number of rotor segments for electric vehicles,” IEEE Trans. Energy Convers., vol. 28, no. 1, pp. 203-213, 2013.
[14] M. Zeraoulia, M. E. H. Benbouzid and D. Diallo, “Electric motor drive selection issues for HEV propulsion systems: a comparative study,” IEEE Trans. Veh. Technol., vol. 55, no. 6, pp. 1756-1764, 2006.
[15] N. Schofield and S. Long, “Generator operation of a switched reluctance starter/generator at extended speeds,” IEEE Trans. Veh. Technol., vol. 58, no. 1, pp. 48-56, 2008.
[16] L. Kolomeisev, D. Kraynov, S. Pakhomin, F. Rednov, E. Kallenbach, V. Kireev, T. Schneider and J. Bocker, “Control of a linear switched reluctance motor as a propulsion system for autonomous railway vehicles,” in Proc. EPE-PEMC, 2008, pp.1598-1603.
[17] M. Cacciato, A. Consoli, G. Scarcella and G. Scelba, “A switched reluctance motor drive for home appliances with high power factor capability,” in Proc. IEEE PESC, 2008, pp. 1235-1241.
[18] A. Omekanda, B. Lequesne, H. Klode, S. Gopalakrishnan and I. Husain, “Switched reluctance and permanent magnet brushless motors in highly dynamic situations: a comparison in the context of electric brakes,” IEEE Mag. Ind. Appl., vol. 15, no. 4, pp. 35-43, 2009.
B. SRM Converters
[19] S. Vukosavic and V. R. Stefanovic, “SRM inverter topologies: a comparative evaluation,” IEEE Trans. Ind. Appl., vol. 27, no. 6, pp. 1034-1047, 1991.
[20] A. M. Hava, V. Blasko and T. A. Lipo, “A modified C-dump converter for variable reluctance machines,” IEEE Trans. Ind. Appl., vol. 28, no. 5, pp. 1017-1022, 1992.
[21] S. Mir, I. Husain and M.E. Elbuluk, “Energy-efficient C-dump converters for switched reluctance motors,” IEEE Trans. Power Electron., vol. 12, no. 5, pp. 912-921, 1997.
[22] Y. H. Yoon, S. H. Song, T. W. Lee, C. Y. Won and Y. R. Kim, “High performance switched reluctance motor drive for automobiles using C-dump converters,” in Proc. IEEE ISIE, 2004, pp. 969-974.
[23] V. V. Deshpande and Y. L. Jun, “New converter configurations for switched reluctance motors wherein some windings operate on recovered energy,” IEEE Trans. Ind. Appl., vol. 38, no. 6, pp. 1558-1565, 2002.
[24] H. L. Huy, K. Slimani and P. Viarouge, “A current-controlled quasi-resonant converter for switched-reluctance motor,” IEEE Trans. Ind. Electron., vol. 38, no. 5, pp.355-362, 1991.
[25] Y. Murai, J. Cheng and M. Yoshida, “New soft-switched reluctance motor drive circuit,” in Proc. IEEE IAS, 1997, vol. 1, pp. 676-681.
[26] Y. G. Dessouky, B. W. Williams and J. E. Fletcher, “A novel power converter with voltage-boosting capacitors for a four-phase SRM drive,” IEEE Trans. Ind. Electron., vol. 45, no. 5, pp. 815-823, 1998.
[27] K. I. Hwu and C. M. Liaw, “DC-link voltage boosting and switching control for switched reluctance motor drives,” IEE Proc. Elect. Power Appl., vol. 147, no. 5, pp. 337-344, 2000.
[28] A. Dahmane, F. Meebody and F. M. Sargos, “A novel boost capacitor circuit to enhance the performance of the switched reluctance motor,” in Proc. IEEE PESC, 2001, vol. 2, pp. 844-849.
[29] T. Gopalarathnam and H. A. Toliyat, “A high power factor converter topology for switched reluctance motor drives,” in Proc. IEEE IAS, 2002, vol. 3, pp. 1647-1652.
[30] J. Y. Chai and C. M. Liaw, “Development of a switched-reluctance motor drive with PFC front-end,” IEEE Trans. Energy Convers., vol. 24, no. 1, pp. 30-42, 2009.
[31] J. Y. Chai, Y. C. Chang and C. M. Liaw, “On the switched-reluctance motor drive with three-phase single-switch switch-mode rectifier front-end,” IEEE Trans. Power Electron., vol. 25, no. 5, pp. 1135-1148, 2010.
[32] H. Goto, H. J. Guo and O. Ichinokura, “A novel drive method for switched reluctance using three-phase power modules,” in Proc. EPE-PEMC, 2006, pp. 1027-1031.
[33] H. C. Chang, C. H. Chen, Y. H. Chiang, W. Y. Sean and C. M. Liaw, “Establishment and control of a three-phase switched reluctance motor drive using intelligent power modules,” IET Elect. Power Appl., vol. 4, no. 9, pp. 772-782, 2010.
[34] K. T. Weng and C. Pollock, “Low-cost battery-powered switched reluctance drives with integral battery-charging capability,” IEEE Trans. Ind. Appl., vol. 36, no. 6, pp. 1676-1681, 2000.
[35] H. C. Chang and C. M. Liaw, “On the front-end converter and its control for a battery powered switched-reluctance motor drive,” IEEE Trans. Power Electron., vol. 23, no. 4, pp. 2143-2156, 2008.
[36] H. C. Chang and C. M. Liaw, “Development of a compact switched-reluctance motor drive for EV propulsion with voltage boosting and PFC charging capabilities,” IEEE Trans. Veh. Technol., vol. 58, no. 7, pp. 3198-3215, 2009.
C. Modeling and Dynamic Controls
[37] V. Vujicic and S.N. Vukosavic, “A simple nonlinear model of the switched reluctance motor,” IEEE Trans. Energy Convers., vol. 15, no. 4, pp. 395-400, 2000.
[38] B. P. Loop and S. D. Sudhoff, “Switched reluctance machine model using inverse inductance characterization,” IEEE Trans. Ind. Appl., vol. 39, no. 3, pp. 743-751, 2003.
[39] N. J. Nagel and R. D. Lorenz, “Modeling of a saturated switched reluctance motor using an operating point analysis and the unsaturated torque equation,” IEEE Trans. Ind. Appl., vol. 36, pp. 714-722, 2000.
[40] H. K. Bae and R. Krishnan, “A study of current controllers and development of a novel current controller for high performance SRM drives,” in Proc. IEEE IAS, 1996, vol. 1, pp. 68-75.
[41] F. Blaabjerg, P. C. Kjaer, P. O. Rasmussen and C. Cossar, “Improved digital current control methods in switched reluctance motor drives,” IEEE Trans. Power Electron., vol. 14, no. 3, pp. 563-572, 1999.
[42] R. B. Inderka, M. Menne, and R. W. A. A. De Doncker, “Control of switched reluctance drives for electric vehicle applications” IEEE Trans. Ind. Electron., vol. 49, no.1, pp. 48-53, 2002.
[43] S. E. Schulz and K. M. Rahman, “High-performance digital PI current regulator for EV switched reluctance motor drives,” IEEE Trans. Ind. Appl., vol. 39, no. 4, pp. 1118-1126, 2003.
[44] R. Gobbi and K. Ramar, “Optimization techniques for a hysteresis current controller to minimize torque ripple in switched reluctance motors,” IET Proc. Elect. Power Appl., vol. 3, no. 5, pp. 453-460, 2009.
[45] L. Ben Amor, L.-A. Dessaint and O. Akhrif, “Switched reluctance motor torque control with peak current minimization,” in Proc. IEEE IECON, 2004, vol. 2, pp. 1885-1890.
[46] K. Wong, “Energy-efficient peak-current state-machine control with a peak power mode,” IEEE Trans. Power Electron., vol. 24, no. 2, pp. 489-498, 2009.
[47] G. John and A. R. Eastham, “Robust speed control of a switched reluctance drive,” in Proc. IEEE CCECE, 1993, vol. 1, pp. 317-320.
[48] C. Lucas, M. M. Shanehchi, P. Asadi and P. M. Rad, “A robust speed controller for switched reluctance motor with nonlinear QFT design approach,” in Proc. IEEE IAS, 2000, vol. 3, pp. 1573-1577.
[49] K. I. Hwu and C. M. Liaw, “Robust quantitative speed control of a switched reluctance motor drive,” IEE Proc. Elect. Power Appl., vol. 148, no. 4, pp. 345-353, 2001.
[50] G. John and A. R. Eastham, “Speed control of switched reluctance motor using sliding mode control strategy,” in Proc. IEEE IAS, 1995, vol. 1, pp. 263-270.
[51] T. S. Chuang and C. Pollock, “Robust speed control of a switched reluctance vector drive using variable structure approach,” IEEE Trans. Ind. Electron., vol. 44, no. 6, pp. 800-808, 1997.
[52] C. Bian, Y. Man, C. Song and S. Ren, “Variable structure control of switched reluctance motor and its application,” in Proc. IEEE WCICA, 2006, vol. 1, pp. 2490-2493.
[53] M. A. A. Morsy, M. S. A. Moteleb and H. T. Dorrah, “Development of robust fuzzy sliding mode control technique for nonlinear drive systems,” in Proc. IEEE MHS, 2006, pp. 1-6.
D. Commutation Instant Tuning
[54] R. Orthmann and H. P. Schoner, “Turn-off angle control of switched reluctance motors for optimum torque output,” in Proc. IET Conf. Power Electron. and Appl., 1993, vol. 6, pp. 20-25.
[55] B. Fahimi, G. Suresh, J. P. Johnson, M. Ehsani, M. Arefeen and I. Panahi, “Self-tuning control of switched reluctance motors for optimized torque per ampere at all operating points,” in Proc. IEEE APEC, 1998, vol. 2, pp. 778-783.
[56] M. Rodrigues, P. J. Costa Branco and W. Suemitsu, “Fuzzy logic torque ripple reduction by turn-off angle compensation for switched reluctance motors,” IEEE Trans. Ind. Electron., vol. 48, pp. 711-715, 2001.
[57] J. J. Gribble, P. C. Kjaer, C. Cossar and T. J. E. Miller, “Optimal commutation angles for current controlled switched reluctance motors,” in Proc. IET ICPEVSD, 1996, pp. 87-92.
[58] C. Mademlis and I. Kioskeridis, “Performance optimization in switched reluctance motor drives with online commutation angle control,” IEEE Trans. Energy Convers., vol. 18, no. 3, pp. 448-457, 2003.
[59] K. I. Hwu and C. M. Liaw, “Intelligent tuning of commutation for maximum torque capability of a switched reluctance motor,” IEEE Trans. Energy Convers., vol. 18, no. 1, pp. 113-120, 2003.
[60] S. A. Fatemi, H. M. Cheshmehbeigi and E. Afjei, “Self-tuning approach to optimization of excitation angles for switched-reluctance motor drives,” in Proc. IEEE ECCTD, 2009, pp. 851-856.
[61] J. Y. Chai, Y. W. Lin and C. M. Liaw, “Comparative study of switching controls in vibration and acoustic noise reductions for switched reluctance motor,” IEE Proc. Elec. Power Appl., vol. 153, no. 3, pp. 348-360, 2006.
[62] Y. W. Lin, K. F. Chou, M. J. Yeh, C. C. Wang, S. L. Yu, C. C. Yang, Y. C. Chang and C. M. Liaw, “Design and control of a switched-reluctance motor-driven cooling fan,” IET Power Elect., vol. 5, no. 9, pp. 1813-1826, 2012.
E. Switch-Mode Rectifiers
[63] M. Hengchun, F. C. Y. Lee, D. Boroyevich and S. Hiti, “Review of high performance three-phase power-factor correction circuits,” IEEE Trans. Ind. Electron., vol. 44, no. 4, pp. 437-446, 1997.
[64] B. Singh, N. B. Singh, A. Chandra, K. A. Haddad, A. Pandey and P. D. Kothari, “A review of three-phase improved power quality AC/DC converters,” IEEE Trans. Ind. Electron., vol. 51, no. 3, pp. 641-660, 2004.
[65] R. Zhang and F. C. Lee, “Optimum PWM pattern for a three-phase boost DCM PFC rectifier,” in Proc. IEEE APEC, 1997, vol. 2, pp. 895-901.
[66] Y. Jang and M. M. Jovanovic, “A comparative study of single-switch three-phase high power-factor rectifiers,” IEEE Trans. Ind. Appl., vol. 34, no. 6, pp. 1327-1334, 1998.
[67] J. Y. Chai, Y. C. Chang and C. M. Liaw, “On the switched-reluctance motor drive with three-phase single-switch-mode rectifier front-end,” IEEE Trans. Power Electron., vol. 25, no. 5, pp. 1135-1148, 2010.
[68] M. M. Reis, B. Soares, L. H. S. C. Barreto, E. Freitas, C. E. A. Silva, R. T. Bascope and D. S. Oliveira, “A variable speed wind energy conversion system connected to the grid for small wind generator,” in Proc. IEEE APEC, 2008, pp. 751-755.
[69] D. S. Oliveira, L. Barreto, F. Antunes, M. Silva, D. L. Queiroz and A. R. Rangel, “A DCM three-phase high frequency semi-controlled rectifier feasible for low power WECS based on a permanent magnet generator,” in Proc. IEEE COBEP, 2009, pp. 1193-1199.
[70] Y. Jang and M.M. Jovanović, “The Taipei rectifier—a new three-phase two-switch ZVS PFC DCM boost rectifier” IEEE Trans. Power Electron., vol. 28, no. 2, pp. 686-694, 2013.
[71] J. Hahn, P. N. Enjeti and I. J. Pitel, “A new three-phase power factor correction (PFC) scheme using two single-phase PFC modules,” IEEE Trans. Ind. Appl., vol. 38, no. 1, pp. 123-130, 2002.
[72] S. H. Li and C. M. Liaw, “Development of three-phase switch-mode rectifier using single-phase modules,” IEEE Trans. Aerosp. Electron. Syst., vol. 40, no. 1, pp. 70-79, 2004.
[73] A. Stupar, T. Friedli, J. Minibock and J.W. Kolar, “Towards a 99% efficient three-phase buck-type PFC rectifier for 400-V DC distribution systems” IEEE Trans. Power Electron., vol. 27, no. 4, pp. 1732-1744, 2012.
[74] J. W. Kolar and T. Friedli, “The essence of three-phase PFC rectifier systems—part I” IEEE Trans. Power Electron., vol. 28, no. 1, pp. 176-198, 2013.
[75] T. Friedli, M. Hartmann and J.W. Kolar, “The essence of three-phase PFC rectifier systems – part II,” IEEE Trans. Power Electron., vol. 29, no. 2, pp. 543-560, 2014.
F. Regenerative Braking
[76] B. T. Ooi, L. W. Dixon, A. B. Kulkarni and M. Nishimoto, “An integrated AC drive system using a controlled-current PWM rectifier/inverter link,” IEEE Trans. Power Electron., vol. 3, no. 1, pp. 64-71, 1988.
[77] J. W. Kolar, H. Ertl, F. C. Zach, V. Blasko, V. Kaura and R. Lukaszewski, ”A novel concept for regenerative braking of PWM-VSI drives employing a loss-free braking resistor” in Proc. IEEE APEC, 1997, vol. 1, pp. 297-305.
[78] B. Piepenbreier and L. Sack, ”Regenerative drive converter with line-frequency switched rectifier and without DC link components” in Proc. IEEE PESC, 2004, vol. 5, pp. 3917-3923.
[79] L. Lihua, K. Smedley and J. Taotao, ”A new three-phase rectifier for regenerative braking application” in Proc. PESC, 2007, pp. 2854-2860.
[80] G. Hongwei, G. Yimin and M. Ehsani, ” A neural network based SRM drive control strategy for regenerative braking in EV and HEV” in Proc. IEEE IEMDC, 2001, pp. 571-575.
[81] A. Komatsuzaki, T. Banba and I. Miki, ” A position sensorless drive using estimation of turn-off angle regenerative braking in switching reluctance motor” in Proc. IEEE ICEMS, 2007, pp. 450-455.
H. Position Sensorless Control
[82] M. Ehsani, I. Husain and A. B. Kulkarni, “Elimination of discrete position sensor and current sensor in switched reluctance motor drives,” IEEE Trans. Ind. Appl., vol. 28, no. 1, pp. 128-135, 1992.
[83] H. Iqbal, “Indirect rotor-position estimation techniques for switched reluctance motors- a review,” www.ecgf.uakron.edu/husain/personal/pdf/96emotion_rom.pdf.
[84] M. Ehsani and B. Fahimi, “Elimination of position sensors in switched reluctance motor drives: state of the art and future trends,” IEEE Trans. Ind. Electron., vol. 49, no. 1, pp. 40-47, 2002.
[85] G. Suresh, B. Fahimi and M. Ehsani, “Improvement of the accuracy and speed range in sensorless control of switched reluctance motors,” in Proc. IEEE APEC, 1998, vol. 2, pp. 770-777.
[86] G. Suresh, B. Fahimi, K. M. Rahman, M. Ehsani and I. Panahi, “Four-quadrant sensorless SRM drive with high accuracy at all speeds,” in Proc. IEEE APEC, 1999, vol. 2, pp. 1226-1231.
[87] P. Bishop, A. Khalil and I. Husain, “Low level amplitude modulation based sensorless operation of a switched reluctance motor,” in Proc. IEEE PESC, 2004, vol. 5, pp. 3347-3352.
[88] E. Kayikci, M. C. Harke and R. D. Lorenz, “Load invariant sensorless control of a SRM drive using high frequency signal injection,” in Proc. IEEE IAS, 2004, vol. 3, pp. 1632-1637.
[89] S. M. Ahmed and P. W. Lefley, “A new simplified sensorless control method for a single phase SR motor using HF signal injection,” in Proc. IEEE UPEC, 2007, pp. 1075-1078.
[90] E. Bassily, “New rotor-position estimation technique for sensorless switched reluctance motor,” in Proc. IEEE AMC, 2008, pp. 399-404.
[91] P. Bishop, A. Khalil and I. Husain, “Low level amplitude modulation based sensorless operation of a switched reluctance motor,” in Proc. IEEE PESC, 2004, vol. 5, pp. 3347-3352.
[92] S. M. Ahmed and P. W. Lefley, “A new simplified sensorless control method for a single phase SR motor using HF signal injection,” in Proc. IEEE UPEC, 2007, pp. 1075-1078.
[93] E. Kayikci, M. C. Harke and R. D. Lorenz, “Load invariant sensorless control of a SRM drive using high frequency signal injection,” in Proc. IEEE IAS, 2004, vol. 3, pp. 1632-1637.
[94] E. Kayikci and R. D. Lorenz, “Self-sensing control of a four phase switched reluctance drive using high frequency signal injection including saturation effects,” in Proc. IEEE IEMDC, 2009, pp. 611-618.
[95] G. Gallegos-Lopez, P. C. Kjaer and T. J. E. Miller, “A new sensorless method for switched reluctance motor drives,” IEEE Trans. Ind. Appl., vol. 34, no. 4, pp. 832-840, 1998.
[96] J. Bekiesch and G. Schroder, “Sensorless operation of the switched reluctance machine,” in Proc. IEEE EPE, 2007, pp. 1-8.
[97] D. H. Lee, T. H. Kim and J. W. Ahn, “A simplified novel sensorless control of SRM,” in Proc. IEEE IAS, 2006, vol. 4, pp. 2001-2005.
[98] T. Wakasa, H. J. Guo and O. Ichinokura, “A simple position sensorless driving system of SRM based on new digital PLL technique,” in Proc. IEEE IECON, 2002, vol. 1, pp. 502-507.
[99] H. Gao, F. R. Salmasi and M. Ehsani, “Sensorless control of SRM at standstill,” in Proc. IEEE APEC, 2001, vol. 2, pp. 850-856.
[100] A. Komatsuzaki, T. Bamba and I. Miki, “A position sensorless speed control for switched reluctance motor at low speeds,” in Proc. IEEE PES, 2007, pp. 1-7.
[101] J. Bekiesch, G. Schroder, T. H. Kim and J. W. Ahn, “A simple excitation position detection method for sensorless SRM drive,” in Proc. IEEE EPE, 2007, pp. 1-8.
[102] K. Trakrancharoungsook and S. Kittiratsatcha, “Position estimation technique of a switched reluctance motor at standstill,” in Proc. IEEE PCC, 2007, pp. 264-270.
[103] M. Krishnamurthy, C. S. Edrington and B. Fahimi, “Prediction of rotor position at standstill and rotating shaft conditions in switched reluctance machines,” IEEE Trans. Power Electron., vol. 21, no. 1, pp. 225-233, 2006.
[104] H. J. Guo, M. Takahashi, T. Watanabe and O. Ichinokura, “A new sensorless drive method of switched reluctance motors based on motor's magnetic characteristics,” IEEE Trans. Magnetics, vol. 37, no. 4, pp. 2831-2833, 2001.
[105] H. J. Guo, W. B. Lee, T. Watanabe and O. Ichinokura, “An improved sensorless driving method of switched reluctance motors using impressed voltage pulse,” in Proc. IEEE PCC, 2002, vol. 3, pp. 977-980.
[106] S. Kachapornkul, P. Somsiri, N. Chayopitak, K. Tungpimolrut, R. Pupadubsin and P. Jitkreeyan, “Sensorless control of switched reluctance motor for three-phase full-bridge inverter drive,” in Proc. IEEE ICEMS, 2008, pp. 3321-3326.
[107] G. Pasquesoone, R. Mikail and I. Husain, “Position estimation at starting and lower speed in three-phase switched reluctance machines using pulse injection and two thresholds,” IEEE Trans. Ind. Appl., vol. 47, no. 4, pp. 1724-1731, 2011.
[108] A. Khalil, S. Underwood, I. Husain, H. Klode, B. Lequesne, S. Gopalakrishnan and A. M. Omekanda, “Four-quadrant pulse injection and sliding mode observer based sensorless operation of a switched reluctance machine over entire speed range including zero speed,” IEEE Trans. Ind. Appl., vol. 43, no. 3, pp. 714-723, 2007.
[109] K. R. Geldhof, A.P.M. Van den Bossche and J. A. Melkebeek, “Rotor-position estimation of switched reluctance motors based on damped voltage resonance,” IEEE Trans. Ind. Electron., vol. 57, no. 9, pp. 2954-2960, 2010.
I. Others
[110] Digital signal controller TMS320F28335 datasheet, http://www.ti.com/lit/gpn/ tms320f28335
[111] C. K. Pan, A DSP-based soft-switching converter-fed switched reluctance motor drive, Master Thesis, Department of Electrical Engineering, National Tsing Hua University, ROC, 2003.
[112] C. M. Wang, Development of switched-reluctance motor drive with three-phase switch-mode rectifier front-end, Master Thesis, Department of Electrical Engineering , National Tsing Hua University, ROC, 2010.
[113] J. Y. Chai, Development and control of a switched-reluctance motor drive with power factor front-end, Ph. D. Dissertation, Department of Electrical Engineering, National Tsing Hua University, ROC, 2008.