研究生: |
陳建中 Chen, Chien-Chung |
---|---|
論文名稱: |
Comparison of Cerebral Blood Volume measuring methods using MRI 磁振腦血容量測量方法之比較 |
指導教授: |
王福年
Wang, Fu-Nien |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 生醫工程與環境科學系 Department of Biomedical Engineering and Environmental Sciences |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 英文 |
論文頁數: | 57 |
中文關鍵詞: | 腦血容量 、血管空間佔據 、動態磁化率對比 、氧化鐵奈米粒子 |
外文關鍵詞: | CBV, VASO, DSC, iron oxide nanoparticle |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
血管空間佔據(Vascular Space Occupancy, VASO) 磁振造影技術可用來定量腦血容量(Cerebral Blood Volume,CBV)。原理主要是利用在生物體內打入具有可以使T1縮短的GD-DTPA 對比劑後,以反轉回復方法(Inversion Recovery)量測血液訊號消失點在注射對比劑前後的訊號變化,將前後影像相減可以得到一張相對腦血容量的影像。進一步的絕對定量,則可以取影像中全血像素的訊號差與以校正。
除了血管空間佔據方法以外,臨床常用的腦血容量測方法還有注射Gd-DTPA對比劑後連續動態掃描的動態磁化率對比(Dynamic Susceptibility Contrast, DSC)技術,並計算出對比劑集中量隨時間改變的曲線,之後再利用加馬回歸曲線(gamma-variate function)去找出對比劑在第一時間通過大腦後的曲線,並積分此曲線即可得到一張相對腦血容量的影像,在動物模型上,則有藉由注射氧化鐵奈米粒子後,量測血液T2*衰減效應而取得相對腦血容量定量的方法。在本研究論文中,我們在大鼠模型上應用並比較這三種方法,未來希望可以結合這三種方法的優點來發展出更理想的腦血容量絕對定量方法。
Using Vascular Space Occupancy (VASO) technique to determine the absolute cerebral blood volume (CBV) was already reported. An inversion recovery sequence with inversion time just on the blood nulling point was employed in this technique. After injecting T1 shortening agent Gd-DTPA, the signal difference can be calculated as a relative CBV value. Furthermore, the signal difference in whole-blood pixels can be utilized as a normalizing factor for absolute CBV quantification.
In addition to the VASO technique, the most popular method in clinical usage is the dynamic susceptibility contrast MRI (DSC-MRI), which can generate a relative CBV map by successively monitoring the signal time course after injecting Gd-DTPA bolus. For researches on animal model, iron oxide nanoparticles can be used as a blood-pool T2* contrast agent, and relative CBV maps can also be estimated by calculating the T2* decay. In this thesis, we implemented these three methods on a normal rat model and made a comparison. In the future, we expect to develop a hybrid method by combining their advantages, and provide an ideal technique for CBV absolute quantification.
1. Tomita M. Significance of cerebral blood volume. In: Tomita M, Sawada T, Naritomi H, eds. Cerebral hyperemia and ischemia: from the standpoint of cerebral blood volume. New York: Elsevier, 1988. p 3–30.
2. Derdeyn CP, Videen TO, Yundt KD, Fritsch SM, Carpenter DA, Grubb RL, Powers WJ. Variability of cerebral blood volume and oxygen extraction: stages of cerebral haemodynamic impairment revisited. Brain 2002;125:595–607.
3. Essig M, Waschkies M, Wenz F, Debus J, Hentrich HR, Knopp MV. Assessment of brain metastases with dynamic susceptibility-weighted contrast-enhanced MR imaging: initial results. Radiology 2003;228: 193–199.
4. Harris GJ, Lewis RF, Satlin A, English CD, Scott TM, Yurgelun-Todd DA, Renshaw PF. Dynamic susceptibility contrast MRI of regional cerebral blood volume in Alzheimer’s disease. Am J Psychiatry 1996; 153:721–724.
5. Kader A, Young WL. The effects of intracranial arteriovenous malformations on cerebral hemodynamics. Neurosurg Clin N Am 1996;7:767– 781.
6. Belliveau JW, Kennedy DN, Jr., McKinstry RC, Buchbinder BR, Weisskoff RM, Cohen MS, Vevea JM, Brady TJ, Rosen BR. Functional mapping of the human visual cortex by magnetic resonance imaging. Science 1991;254:716–719.
7. Mandeville JB, Marota JJ, Kosofsky BE, Keltner JR, Weissleder R, Rosen BR, Weisskoff RM. Dynamic functional imaging of relative cerebral blood volume during rat forepaw stimulation. Magn Reson Med 1998; 39:615–624.
8. Lu H, Golay X, Pekar JJ, van Zijl PCM. Functional magnetic resonance imaging based on changes in vascular space occupancy. Magn Reson Med 2003;50:263–274.
9. Mandeville JB, Marota JJ, Ayata C, Moskowitz MA, Weisskoff RM, Rosen BR. MRI measurement of the temporal evolution of relative CMRO(2) during rat forepaw stimulation. Magn Reson Med 1999;42: 944–951.
10. Buxton RB, Wong EC, Frank LR. Dynamics of blood flow and oxygenation changes during brain activation: the balloon model. Magn Reson Med 1998;39:855–864.
11. van Zijl PC, Eleff SM, Ulatowski JA, Oja JM, Ulug AM, Traystman RJ, Kauppinen RA. Quantitative assessment of blood flow, blood volume and blood oxygenation effects in functional magnetic resonance imaging. Nat Med 1998;4:159–167.
12. Hoeffner EG, Case I, Jain R, Gujar SK, Shah GV, Deveikis JP, Carlos RC, Thompson BG, Harrigan MR, Mukherji SK. Cerebral perfusion CT: technique and clinical applications. Radiology 2004;231:632–644.
13. Ostergaard L, Weisskoff RM, Chesler DA, Gyldensted C, Rosen BR. High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part I: Mathematical approach and statistical analysis. Magn Reson Med 1996;36:715–725.
14. Rosen BR, Belliveau JW, Vevea JM, Brady TJ. Perfusion imaging with NMR contrast agents. Magn Reson Med 1990;14:249–265.
15. Rausch M, Scheffler K, Rudin M, Radu EW. Analysis of input functions from different arterial branches with gamma variate functions and cluster analysis for quantitative blood volume measurements. Magn Reson Imaging 2000;18:1235–1243.
16. Calamante F, Morup M, Hansen LK. Defining a local arterial input function for perfusion MRI using independent component analysis. Magn Reson Med 2004;52:789–797.
17. Schmitt M, Viallon M, Thelen M, Schreiber WG. Quantification of myocardial blood flow and blood flow reserve in the presence of arterial dispersion: a simulation study. Magn Reson Med 2002;47:787–793.
18. Nighoghossian N, Berthezene Y, Meyer R, Cinotti L, Adeleine P, Philippon B, Froment JC, Trouillas P. Assessment of cerebrovascular reactivity by dynamic susceptibility contrast-enhanced MR imaging. J Neurol Sci 1997;149:171–176.
19. Law M, Yang S, Babb JS, Knopp EA, Golfinos JG, Zagzag D, Johnson G. Comparison of cerebral blood volume and vascular permeability from dynamic susceptibility contrast-enhanced perfusion MR imaging with glioma grade. Am J Neuroradiol 2004; 25:746 -755.
20. Herscovitch P, Raichle ME. What is the correct value for the brain–blood partition coefficient for water? J Cereb Blood Flow Metab 1985; 5:65–69.
21. H. Lu, M. Law, G. Johnson et al., “Novel approach to the measurement of absolute cerebral blood volume using vascular-space-occupancy magnetic resonance imaging,” Magn Reson Med, 2005, vol. 54, no. 6, pp. 1403-11.
22. E. X. Wu, K. K. Wong, M. Andrassy et al., “High-resolution in vivo CBV mapping with MRI in wild-type mice,” Magn Reson Med, 2003, vol. 49, no. 4, pp. 765-70.
23. Lei H, Grinberg O, Nwaigwe CI, Hou HG, Williams H, Swartz HM, Dunn JF. The effects of ketamine-xylazine anesthesia on cerebral blood flow and oxygenation observed using nuclear magnetic resonance perfusion imaging and electron paramagnetic resonance oximetry. Brain Res 2001;21:913:174–179.