簡易檢索 / 詳目顯示

研究生: 陳靜雅
Chen, Ching-Ya
論文名稱: 具奈米柱結構之矽/摻鋁氧化鋅異質接面之研究
The Study of Silicon/Aluminum-Doped Zinc Oxide Heterojunction with Nanorods Structure
指導教授: 徐永珍
Hsu, Klaus Yung-Jane
口試委員: 江雨龍
Jiang, Yeu-Long
賴宇紳
Lai, Yu-Sheng
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 58
中文關鍵詞: 摻鋁氧化鋅透明多功能導電電極抗反射層蕭特基接面單原子層沉積技術
外文關鍵詞: Aluminum-Doped Zinc Oxide, Transparent Multifunctional Conducting Electrode, Anti-Reflection Layer, Schottky Junction, Atomic Layer Deposition
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文旨在探討矽/摻鋁氧化鋅異質接面之研究,此接面可做為一光二極體元件。其中選用摻鋁氧化鋅做為接面材料,主要利用它作為一透明多功能導電電極(multifunctional conducting electrode),具有導電、抗反射和與n型矽基板為蕭特基接面可產生光電子及載子分離等特性。
    而為了使元件的光學特性更好,我們於矽基板上製做出奈米柱的結構,使用的製程方法為金侵入蝕刻法(Intruded Gold Nanoclusters, INC),在矽基板上簡易、快速的蝕刻出奈米柱,藉由改變基板表面的光學行為達到元件的良好抗反射效果。接著由於原子層沉積技術披覆性佳,因此我們利用此技術在奈米柱結構上成長一層很薄的摻鋁氧化鋅,使摻鋁氧化鋅能夠良好的披覆於奈米柱結構,藉此達到在固定面積下具有更高密度的3D蕭特基接面。
    論文中亦會去探討此接面的材料和光學特性,以及與傳統蕭特基接面在照光下的光電性質比較。


    This thesis is about silicon / aluminum-doped zinc oxide heterojunction, which can be applied as a photodiode device. Aluminum-doped zinc oxide is chosen to be the interface material, which is mainly used as a transparent conducting multifunctional electrode. It contains the characteristics of conductivity, anti-reflection, and Schottky interface with the n-type silicon substrate which can generate and separate the carriers .
    In order to improve the optical characteristic, we fabricated a nano-rods structure on a silicon substrate by the method of Intruded Gold Nanoclusters (INC), which can etch silicon substrate fast and simply to achieve a good anti-reflective layer by changing the optical behavior of the substrate surface. Then we used the atomic layer deposition (ALD) technology to grow a layer of aluminum-doped zinc oxide on the nano-rods surface. This fabrication can let aluminum-doped zinc oxide cover nano-rods structure well, and obtain a 3D Schottky junction with high density under a fixed area.
    Therefore, the materiel properties, optical properties, electrical properties of this heterojunction are discussed.

    摘要 I Abstract II 致謝 III 目錄 V 圖目錄 VIII 第一章 緒論 1 1.1前言 1 1.2研究動機 2 1.3論文章節架構 3 第二章 文獻回顧 4 2.1半導體光二極體原理 4 2.1.1 半導體的光激發 4 2.1.2 光偵測器重要參數 8 2.1.3透明導電薄膜 10 2.2奈米矽結構製備與特性 11 2.2.1奈米矽製備方法 11 2.2.2尖端電場加強效應 12 2.3氧化鋅 14 2.3.1氧化鋅的結構及特性 14 2.3.2氧化鋅薄膜之沉積方法 15 2.3.3摻鋁氧化鋅 17 2.3.4摻鋁氧化鋅製程 18 2.4原子層沉積 19 2.4.1原子層沉積法原理(Atomic layer deposition, ALD) 19 2.4.2氣流中斷法 20 2.5太陽能電池原理 21 2.5.1太陽能電池簡介 21 2.5.2空氣質量(Air Mass) 22 2.5.3理想太陽能電池等效電路 22 2.5.4非理想太陽能電池等效電路 23 2.5.5太陽能電池重要參數 23 2.5.6抗反射層 26 第三章 元件設計與驗證 27 3.1實驗方法與步驟 27 3.1.1元件結構設計 27 3.1.2基板清潔 28 3.1.3矽基板結構的製作 29 3.1.4鍍背電極 30 3.1.5成長摻鋁氧化鋅薄膜 31 3.1.6樣品量測 31 3.2 實驗測量儀器 32 3.2.1 X光繞射儀(X-ray Diffraction, XRD) 32 3.2.2 X光反射儀(X-ray Reflectivity, XRR) 33 3.2.3光激發螢光光譜(Photo Luminescence, PL) 34 3.2.4可見-紫外光光譜(Ultraviolet-visible Spectroscopy) 34 3.2.5聚焦離子束(Focused Ion Beam, FIB ) 34 3.2.6穿透式電子顯微鏡技術(Transmission Electron Microscope, TEM ) 35 3.2.7光電特性測量 35 第四章 結果與討論 36 4.1 材料分析 36 4.1.1 摻鋁氧化鋅薄膜材料本質分析 36 4.1.2 矽基板奈米柱結構分析 37 4.2 光學分析 40 4.2.1光激發螢光光譜 40 4.2.2可見-紫外光光譜 42 4.3 光電轉換分析 45 4.3.1元件於不同光強度之電流-電壓曲線圖(I-V curve) 45 4.3.2元件於不同光波長之開路電壓和短路電流 51 第五章 結論與未來展望 55 參考文獻 56

    [1] M. Grätzel, "Photoelectrochemical cells," Nature, vol. 414, no. 6861, pp. 338-344, 2001/11/01 2001, doi: 10.1038/35104607.
    [2] Y. Li et al., "Bioinspired silicon hollow-tip arrays for high performance broadband anti-reflective and water-repellent coatings," Journal of Materials Chemistry, vol. 19, no. 13, pp. 1806-1810, 2009, doi: 10.1039/B821967B.
    [3] Y.-M. Chang, M.-C. Liu, P.-H. Kao, C.-M. Lin, H.-Y. Lee, and J.-Y. Juang, "Field Emission in Vertically Aligned ZnO/Si-Nanopillars with Ultra Low Turn-On Field," ACS Applied Materials & Interfaces, vol. 4, no. 3, pp. 1411-1416, 2012/03/28 2012, doi: 10.1021/am201667m.
    [4] R. L. Petritz, "Theory of Photoconductivity in Semiconductor Films," Physical Review, vol. 104, no. 6, pp. 1508-1516, 12/15/ 1956, doi: 10.1103/PhysRev.104.1508.
    [5] S. M. Sze, “Semiconductor Device Physics and Technology”, John Wiley & Sons Inc., 3rd
    [6] C. G. Granqvist and A. Hultåker, "Transparent and conducting ITO films: new developments and applications," Thin Solid Films, vol. 411, no. 1, pp. 1-5, 2002/05/22/ 2002, doi: https://doi.org/10.1016/S0040-6090(02)00163-3.
    [7] E. Ahilea and A. A. Hirsch, "Resistance of Thin Metal Films Grown under a Longitudinal Electric Field," Journal of Applied Physics, vol. 42, no. 13, pp. 5601-5608, 1971/12/01 1971, doi: 10.1063/1.1659989.
    [8] P. Granitzer and K. Rumpf, "Porous Silicon—A Versatile Host Material," (in eng), Materials (Basel), vol. 3, no. 2, pp. 943-998, 2010, doi: 10.3390/ma3020943.
    [9] H. Han, Z. Huang, and W. Lee, "Metal-assisted chemical etching of silicon and nanotechnology applications," Nano Today, vol. 9, no. 3, pp. 271-304, 2014/06/01/ 2014, doi: https://doi.org/10.1016/j.nantod.2014.04.013.
    [10] M. Algasinger, M. Bernt, S. Koynov, and M. Stutzmann, "Porous silicon formation during Au-catalyzed etching," Journal of Applied Physics, vol. 115, no. 16, p. 164308, 2014/04/28 2014, doi: 10.1063/1.4873892.
    [11] S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo, and T. Steiner, "Recent progress in processing and properties of ZnO," Superlattices and Microstructures, vol. 34, no. 1, pp. 3-32, 2003/07/01/ 2003, doi: https://doi.org/10.1016/S0749-6036(03)00093-4.
    [12] M. Ichimura and Y. Maeda, "Heterojunctions based on photochemically deposited CuxZnyS and electrochemically deposited ZnO," Solid-State Electronics, vol. 107, 05/31 2015, doi: 10.1016/j.sse.2015.02.016.
    [13] R. Shukla, A. Srivastava, A. Srivastava, and K. Dubey, "Growth of Transparent Conducting Nanocrystalline Al Doped ZnO Thin Films by Pulsed Laser Deposition," Journal of Crystal Growth - J CRYST GROWTH, vol. 294, pp. 427-431, 09/01 2006, doi: 10.1016/j.jcrysgro.2006.06.035.
    [14] "[11] Wikiwand-氧化鋅。Link:http://www.wikiwand.com/zh-tw/%E6%B0%A7%E5%8C%96%E9%8B%85."
    [15] J. G. Lu, T. Kawaharamura, H. Nishinaka, Y. Kamada, T. Ohshima, and S. Fujita, "Zno-based thin films synthesized by atmospheric pressure mist chemical vapor deposition," Journal of Crystal Growth, vol. 299, no. 1, pp. 1-10, 2007/02/01/ 2007, doi: https://doi.org/10.1016/j.jcrysgro.2006.10.251.
    [16] M. Rusu et al., "High-Efficient ZnO/PVD-CdS/Cu(In,Ga)Se2 Thin Film Solar Cells: Formation of the Buffer-Absorber Interface and Transport Properties," MRS Proceedings, vol. 865, p. F14.25, 2005, Art no. F14.25, doi: 10.1557/PROC-865-F14.25.
    [17] K. Komatsu, Y. Seno, T. Komiyama, Y. Chonan, H. Yamaguchi, and T. Aoyama, "Characteristics of ZnO/CuO heterojunctions formed by direct bonding and PLD with bias voltage application," physica status solidi (c), vol. 10, 08/06 2013, doi: 10.1002/pssc.201200963.
    [18] P. Hazra, S. Singh, and S. Jit, "Ultraviolet Photodetection Properties of ZnO/Si Heterojunction Diodes Fabricated by ALD Technique Without Using a Buffer Layer," Journal of Semiconductor Technology and Science, vol. 14, pp. 117-123, 02/28 2014, doi: 10.5573/JSTS.2014.14.1.117.
    [19] D. Hu, Y. J. Liu, H. S. Li, X. Y. Cai, X. L. Yan, and Y. D. Wang, "Effect of nickel doping on structural, morphological and optical properties of sol–gel spin coated ZnO films," Materials Technology, vol. 27, no. 3, pp. 243-250, 2012/07/01 2012, doi: 10.1179/1753555712Y.0000000006.
    [20] C. Lee, K. Yim, Y. Cho, and J. G. Lee, "A comparison of transmittance properties between ZnO: Al films for transparent conductors for solar cells deposited by sputtering of AZO and cosputtering of AZO/ZnO," Rare Metals, vol. 25, no. 6, Supplement 1, pp. 105-109, 2006/10/01/ 2006, doi: https://doi.org/10.1016/S1001-0521(07)60054-0.
    [21] T. Kim, Y.-G. Ju, L. Park, S. Lee, J.-H. Baek, and Y. Yu, "Enhanced Optical Output Power of Tunnel Junction GaN-Based Light Emitting Diodes with Transparent Conducting Al and Ga-Codoped ZnO Thin Films," Japanese Journal of Applied Physics, vol. 49, 09/01 2010, doi: 10.1143/JJAP.49.091002.
    [22] J.-A. Jeong, Y.-S. Park, and H.-K. Kim, "Comparison of electrical, optical, structural, and interface properties of IZO-Ag-IZO and IZO-Au-IZO multilayer electrodes for organic photovoltaics," Journal of Applied Physics, vol. 107, no. 2, p. 023111, 2010/01/15 2010, doi: 10.1063/1.3294605.
    [23] B.-S. Ko, S.-J. Lee, D.-H. Kim, and D.-K. Hwang, "Effects of a Pretreatment on Al-Doped ZnO Thin Films Grown by Atomic Layer Deposition," Journal of Nanoscience and Nanotechnology, vol. 15, 03/01 2015, doi: 10.1166/jnn.2015.10257.
    [24] 曾柏憲,"利用原子層沉積法成長出高品質摻鋁氧化鋅薄膜於矽光學元件之應用",清華大學,碩士論文,2016
    [25] X. Li et al., "High Detectivity Graphene-Silicon Heterojunction Photodetector," Small, vol. 12, no. 5, pp. 595-601, 2016/02/01 2016, doi: 10.1002/smll.201502336.
    [26] S.-C. Tseng, H.-L. Chen, C.-C. Yu, Y.-S. Lai, and H.-W. Liu, "Using intruded gold nanoclusters as highly active catalysts to fabricate silicon nanostalactite structures exhibiting excellent light trapping and field emission properties," Energy & Environmental Science, vol. 4, no. 12, pp. 5020-5027, 2011, doi: 10.1039/C1EE01401C.
    [27] X. Liu, P. R. Coxon, M. Peters, B. Hoex, J. M. Cole, and D. J. Fray, "Black silicon: fabrication methods, properties and solar energy applications," Energy & Environmental Science, vol. 7, no. 10, pp. 3223-3263, 2014, doi: 10.1039/C4EE01152J.
    [28] M. Wolkin, J. Jorne, P. Fauchet, G. Allan, and C. Delerue, "Electronic States and Luminescence in Porous Silicon Quantum Dots: The Role of Oxygen," Physical Review Letters, vol. 82, pp. 197-200, 01/04 1999, doi: 10.1103/PhysRevLett.82.197.
    [29] M. Algasinger et al., "Improved Black Silicon for Photovoltaic Applications," Advanced Energy Materials, vol. 3, 08/01 2013, doi: 10.1002/aenm.201201038.
    [30] D. Mora-Fonz et al., "Morphological Features and Band Bending at Nonpolar Surfaces of ZnO," The Journal of Physical Chemistry C, vol. 119, no. 21, pp. 11598-11611, 2015/05/28 2015, doi: 10.1021/acs.jpcc.5b01331.

    QR CODE