簡易檢索 / 詳目顯示

研究生: 謝明發
Hsieh, Ming-Fa
論文名稱: 溶凝膠法合成氫氧基磷灰石及其製程
Sol-Gel Synthesis, Processing and Characterization
指導教授: 金重勳 博士
Dr. Chin, Tsung Shune
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2001
畢業學年度: 89
語文別: 中文
論文頁數: 158
中文關鍵詞: 氫氧基磷灰石核磁共振光譜溶凝膠法快速加熱陶瓷鍍層
外文關鍵詞: hydroxyapatite, nuclear magnetic resonace, sol-gel processing, rapid heating, ceramic coating
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以溶凝膠法合成氫氧基磷灰石(HA);前驅物為含四結晶水的硝酸鈣及三乙基正磷酸酯(TEP)溶解於2-甲氧基乙醇之溶液。在第一部份中,凝膠在煆燒到600oC後,X-光粉末繞射(XRD)圖譜顯示快速乾燥所得之粉體含有HA及明顯的氧化鈣(CaO)。緩慢乾燥後凝膠經熱重損失分析顯示煆燒過程為二步驟式的重量損失。600oC煆燒後的粉體含有主相HA及微量的CaO雜相。這些微量的CaO可用去離子水清洗並過濾去除之。
    在第二部份中,由前驅物熟化及乾燥處理後可發現TEP的水解反應及其產物。從固態磷-31核磁共振及XRD圖譜可發現,前驅物煆燒到250oC時為凝膠相,在350oC時轉變為玻璃態磷酸酯,在600oC時為生成HA。

    第三部份對乾燥之前驅物施以100~600 oC/min的快速煆燒(RTC)及1.67 oC/min 的傳統高溫爐煆燒(CFC)。XRD圖譜顯示施以RTC時HA結晶化溫度在350oC,遠低於CFC的600oC。搭配快速裂解-氣相層析儀串接質譜儀(Pyrolytic-GC/MS),煆燒模型得以建立;在較低的煆燒溫度時,凝膠裡有機物質受到快速加熱(RTC)而快速分解。在表面形成孔隙型態,在凝膠網絡裡微區有機物質崩解。因此,這些無機物質緊密地碰在一起使HA孕育成核。但在慢速煆燒(CFC)下分解的有機碳化物卻阻礙了無機物的接觸。因此,HA在600oC下才能生成。

    在第四部分中,製備HA塗層於鈦-六鋁-四釩合金基材。對每一塗層以RTC煆燒至400oC,連續製備5層後再以RTC於600oC煆燒一次。XRD圖譜顯示HA已形成。以X-光光電子能譜儀探測400oC煆燒後之塗層表面,結果顯示只有部分的磷酸鈣相,因為殘餘有機物質會阻礙該相之形成。600oC煆燒後,只有發現磷酸鈣相。五層厚的HA鍍層接著強度為60MPa。以SEM觀察分別經過400oC及600oC RTC煆燒後的鍍層表面,在較厚的區域發現孔隙狀結構,原因是較多的前驅物受到快速加熱而分解。


    The present study aims at a sol-gel processing of hydroxyapatite (HA) using precursors of calcium nitrate tetrahydrate and triethyl phosphate dissolved in 2-methoxy ethanol. Firstly, for the aged and slow-dried precursor, XRD pattern showed major peaks of HA and a very weak CaO peak. This minor CaO can be easily and completely washed out just by using distilled water. Secondly, during aging and drying, 1H NMR spectra showed hydrolyzed species: PO(OEt)2(OH) and PO(OEt)(OH)2. In solid-state MAS 31P NMR spectra, dried gels calcined at 250oC, 350oC and 600oC showed a conversion from gel to glassy phosphate, then HA ceramic.
    Thirdly, the dried gels were calcined by a rapid-thermal-calcine (RTC) heating (100~600 oC/min) and a conventional-furnace-calcine (CFC) heating (1.67 oC/min), respectively. The onset temperature of HA crystallization is lower in RTC, 350oC, as compared to 600oC in CFC, revealed by XRD analyses. Pyrolytic-GC/MS results combined with previous ones lead to models that RTC can catastrophically remove organic portion of the gel networks, leading to a porous surface morphology and a collapse of gel networks at local areas, so that HA crystallite nucleation is facilitated due to intimate contacts among inorganic species at lower temperatures. On the other hand, slow evolution of organics during CFC leads to carbonaceous residues that isolate the inorganic species and inhibit nucleation of HA crystallites until at a higher temperature.

    Finally, HA coatings were deposited on Ti-6Al-4V substrates and subjected to a pre-calcined at 400oC. After five repetitions of coating procedures the coatings were then RTC at 600oC. The formation of HA was confirmed by XRD analysis. The residual organics, as revealed by XPS spectra of a coating calcined at 400oC, might retard the formation of calcium phosphate phase, thus only small amount of calcium phosphate phase is present. After calcining at 600oC, calcium phosphate phase is the only one identifiable in XPS spectra. The adhesive strength of the five-layer coating on the substrate is around 60 MPa.

    [1] Human Anatomy and Physiology, Edited by Elaine N. Marieb, Benjamin/Cummings Science Publishing, CA 94025, USA, 1998).
    [2] C.T. Laurencin, A.M.A. Ambrosio, M.D. Borden, J.A.T. Cooper, “Tissue engineering: orthopedic applications”, Ann. Rev. of Biomed. Eng., 1, 19-46 (1999)
    [3] X.C. Zhang, M.F.A. Goosen, U.P. Wyss, D. Pichoram “Biodegradable polymers for orthopedic applications”, J. Macromolecular Sci. Rev. In Macromolecular Chem. Phys., C33, 81-102 (1993).
    [4] R.C. Tuner, M.A. Ackley, P.E. Atkins, J.B. Park, “Molecular and macroscopic properties of PMMA bone-cement - free-radical generation and temperature-change versus mixing-ratio”, J. Biomed. Mater. Res. 15, 425-432 (1981).
    [5] R.R. Ramachandra, H.N. Roopa, T.S. Kannan, “Solid state synthesis and thermal stability of HAP and HAP-β-TCP composite ceramic powders”, J. Mater. Sci. Mater.-M., 8, 511-518 (1997).
    [6] T.A. Cuney, F. Korkusuz, M. Timicin, N. Akkas, “An investigation of the chemical synthesis and high-temperature sintering behaviour of calcium hydroxyapatite (HA) and tricalcium phosphate (TCP) bioceramics”, J. Mater. Sci. Mater.-M., 8, 91-96 (1997).
    [7] S.H. Rhee, J. Tanaka, “Hydroxyapatite coating on a collagen membrane by a miomimetic method, “J. Am. Ceram. Soc., 81, 3029-3031 (1998).
    [8] H.S. Liu, T.S. Chin, L.S. Lai, S.Y. Chiu, K.H. Chung, C.S. Chang, M.T. Lui, “Hydroxyapatite synthesized by a simplified hydrothermal method”, Ceram. Int. 23, 19-25 (1997).
    [9] A. Jillavenkatesa, R.A. Condrate, “Sol-gel processing of hydroxyapatite”, J. Mater. Sci., 33, 4111-4119 (1998).
    [10] C.M. Lopatin, V. Pizziconi, T.L. Alford, T. Laursen, “Hydroxyapatite powders and thin films prepared by a sol-gel technique”, Thin Solid Films, 326, 227-232 (1998).
    [11] H.K. Varma, S.N. Kalkura, R. Sivakumar, “Polymeric precursor route for the preparation of calcium phosphate compounds”, Ceram. Int., 24, 467-470 (1998).
    [12] P. Layrolle, A. Ito, T. Tateishi, “Sol-gel synthsis of amorphous calcium phosphate and sintering into microporous hydroxyapatite bioceramics”, J. Am. Ceram. Soc., 81, 1421-1428 (1998).
    [13] G. Kordas, C.C. Trapalis, ”Fourier transform and multi dimensional EPR spectroscopy for the characterization of sol-gel derived hydroxyapatite”, J. Sol-Gel Sci. Tech., 9, 17-24 (1997).
    [14] L. Keller, W.A. Dollase, “X-ray determination of crystalline hydroxyapatite to amorphous calcium- phosphate ratio in plasma sprayed coatings”, J. Biomed. Mater. Res., 49, 244-249 (2000).
    [15] C.M. Cotell, “Pulsed-laser deposition and processing of biocompatible hydroxyapatite thin-films”, Appl. Surf. Sci, 69, 140-148 (1993).
    [16] M. Manso, C. Jimenez, C. Morant, P. Herrero, J.M. Martinez-Duart, “Electrodeposition of hydroxyapatite coatings in basic conditions”, Biomaterials, 21, 1755 (2000).
    [17] W. Weng, J.L. Baptista, “Preparation and characterization of hydroxyapatite coatings on Ti-6Al-4V alloy by a sol-gel method”, J. Am. Ceram. Soc., 82, 23-32 (1999).
    [18] L.D. Piveteau, B. Gasser, L. Schlapbach, “Evaluating mechanical adhesion of sol-gel titanium dioxide coatings containing calcium phosphate for metal implant application”, Biomaterials, 21, 2193-2201 (2000).
    [19] J.A. Buckwalter, R.L. Cruess In: C.A. Rockwood, D.P. Green, R.W. Bucholz, eds. Fractures in Aldults (3rd edn.). Philadelphia: J.B. Lippincott,181-222 (1991).
    [20] An Introduction to Bioceramics, Edited by L.L. Hench and J. Wilson, World Scientific Publishing Co. Ltd, USA (1993).
    [21] M.J. Yaszemski, R.G. Payne, W.C. Hayes, R. Langer, A.G. Mikos, “Evolution of bone transplantation: Molecular, cellular and tissue strategies to engineer human bone”, Biomaterials, 17, 175-185 (1996).
    [22] Titanium alloys in surgical implants, Edited by A.H. Luckey and F. Kubli, Jr., Philadelphia, American Society for Testing and Materials, (1983).
    [23] Bone Grafts, Derivatives and Substitutes, Edited by M.R. Urist, B.T. O’Connor, R.G. Burwell, Oxford UK, Butterworth-Heinemann Ltd., p. 5, (1994).
    [24] B. Haeseker, “Job van Meekeren (1611-1666) and Sugery of the Hand”, Plast. Reconstr. Surg., 82, 539 (1988).
    [25] H. de Boer, “ The history of bone grafts”, Clinical orthopedics, 226, 292 (1989).
    [26] M.F.A. Woodruff and N.W. Nisbet (1960) Transplantation of bone, p.347. In: The Transplantation of Tissues and Organs (ed M.F.A. Woodruff), Springfield, IL, USA.
    [27] J.A. Thomson, J. Itskovitzeldor, S.S. Shapiro, M.A. Waknitz, J.J. Swiergiel, V.S. Marshall, J.M. Jones, “Embryonic stem cell lines derived from human blastocytes”, Science, 282, 1145-1147 (1998).
    [28] R.J. Lazzara, “Criteria for implant selection: surgical and prosthetic consideration”, Pract. Periodontics Aesthet. Dent., 6, 55-62 (1994).
    [29] Biomaterials- An Introduction, 2nd edn., Edited by J.B. Parks and R.S. Lakes, Prenum Press, New York (1979).
    [30] Biocompatibility of Clinical Implant Materials, Edited by D.F. Williams (CRC Press, Boca Raton, FL, 1981) Vol. II, pp 3-42.
    [31] Bioceramic: Materials, Properties and Applications, Edited by A. Ravaglioli and A. Krajewski, p.155 (1992).
    [32] Inorganic Phosphate Materials, Edited by T. Kanazawa (Elsevier Science Publishers, Amsterdam, the Netherlands, 1989).
    [33] A.S. Posner, A. Perloff, A.F. Dioro, “Refinement of the hydroxyapatite structure”, Acta. Cryst., 11, 308-310 (1958).
    [34] H.J. Heijigers, F.C. Driessens, R.M. Verbeeck, “ Lattice parameters and cations distribution of solid solutions of calcium and strontium hydroxyapatite”, Calcif. Tiss. Int., 29,127-131 (1979).
    [35] R.M.H. Verbeeck, F.C.M. Driessens, H.J.M. Heijligers, C.J. Lassuyt, J.W.G.A. Vrolijk, “Lattice-parameters and cation distribution of solid-solutions of calcium and lead hydroxyapatite”, Calcif. Tiss. Int., 33, 243-247 (1981).
    [36] M.I. Kay, R.A. Young, A.S. Posner, “Crystal structure of hydroxyapatite”, Nature, 204, 1050-1052 (1964).
    [37] J. P. Yesinowski, H. Eckert, “Hydrogen environments in calcium phosphates- H-1 MAS NMR at high spinning speeds”, J. Am. Chem. Soc., 109, 6274-6282 (1987).
    [38] E. A. P. de Maeyer, R. M. H. Verbeeck, D. E. Naessns, “Stoichiometry of Na+- and CO32--containing apatites obtained by hydrolysis of monetite”, Inorg. Chem., 32,5709-5714 (1993).
    [39] A. Peeters, E.A.P. DeMaeyer, C. VanAlsenoy, R.M.H. Verbeeck, “Solids modeled by ab initio crystal-field methods. 12. Structure, orientation, and position of A-type carbonate in a hydroxyapatite lattice”, J. Phys. Chem. B, 101, 3995-3998 (1997).
    [40] M. Nagai, T. Nishino, “Surface conduction of porous hydroxyapatite ceramics at elevated-temperatures”, Solid State Ionics, 28, 1456-1461 (1988).
    [41] M. Nagai, T. Nishino, T. Saeki, “A new type of CO2 gas sensor comprising porous hydroxyapatite ceramics”, Sensors Actuat., 15, 145-151 (1988).
    [42] M. Nagai, T. Saeki, T. Nishino, “Carbon-dioxide sensor mechanism of porous hydroxyapatite ceramics”, J. Am. Cerm. Soc., 73, 1456-1460 (1990).
    [43] E. Fernandez, F.J. Gil, M.P. Ginerba, F.C.M. Driessens, J.A. Planell, S.M. Best, “Calcium phosphate bone cements for clinical applications, Part I: Solution chemistry”, J. Mater. Sci. Mater-M., 10, 169-176(1999).
    [44] S. Koutsopoulos, E. Dalas, N. Klouras, “Inhibition of hydroxyapatite crystal growth by substituted titanocenes”, Langmuir, 16, 6745-6749 (2000).
    [45] K. Kandori, M. Mukai, A. Yasikawa, T. Ishikawa, “Competitive and coorperative adsorptions of bovine serum albumin and lysozyme to synthetic calcium hydroxyapatite”, Langmuir, 16, 2301-2305 (2000).
    [46] M.S. Tung, W.E. Brown, “An intermediate state in hydrolysis of amorphous calcium-phosphate”, Calcif. Tiss. Int., 35, 783-790 (1983).
    [47] Ebelmen, annals de Chimie et de Physique, Ser. 3, Bd 57:319-55 (1846)
    [48] H. Dislich, “New routes to multicomponent oxide glasses”, Angewandte Chemie International Ed. 10, 363-370 (1971).
    [49] Fundamentals of Ceramic Powder Processing and Synthesis, Edited by T.A. Ring (Academic Press, Inc., New York, USA, 1996).
    [50] D.R. Rolison, B. Dunn, “Electrically conductivew oxide aerogels: new materials in electrochemistry”, J. Mater. Chem., 11, 963-980 (2001).
    [51] J. Livage, P. Barboux, M.T. Vandenborre, C.Schmutz, F. Taulelle, “Sol-gel Synthesis of Phosphates”, J. Non-Cryst. Solids, 147?, 18-23 (1992).
    [52] F. Tian, L. Pan, X. Wu, “The NMR studies of the P2O5-SiO2 sol and gel chemistry”, J. Non-Cryst. Solids, 104, 129-134 (1988).
    [53] S.P. Szu, L.C. Klein, M. Greenblatt, “Effect of precursors on the structure of phosphosilicate gels: 29Si and 31P MAS-NMR study”, J. Non-Cryst. Solids, 143, 21-30 (1992).
    [54] J. C. Schrotter, A. Cardenas, M. Smaihi, N. Hovnanian, “Silicon and phosphorus alkoxide mixture: sol-gel study by spectroscopic technics”, J. Sol-Gel Sci. Tech., 4, 195-204 (1995).
    [55] W. Weng, L. Huang, G. Han, “The alkoxide sol-gel process in the calcium phosphate system and its applications”, Appl. Organomet. Chem., 13, 555-564 (1999).
    [56] W. Weng, H. Yang, M. Ge, “The sol-gel process in the 5Ca glycolate- 3H3PO4 system”, Mater. Chem. Phys., 55, 102-107 (1998).
    [57] K. Kandori, N. Horigami, A. Yasukawa, T. Ishikawa, “Texture and formation mechanism of fibrous calcium hydroxyapatite particles prepared by decomposition of Calcium-EDTA chelates”, J. Am. Ceram. Soc., 80, 1157-1164 (1997).
    [58] S.W. Russell, K. A. Luptak, C.T.A. Suchicital, T.L. Alford, V.B. Pizziconi, ”Chemical and structural evolution of sol-gel-derived hydroxyapatite thin films under rapid thermal processing”, J. Am. Ceram. Soc., 79, 837-842 (1996).
    [59] M.M. Pereira, A.E. Clark, L.L. Hench, “Calcium phosphate formation on sol-gel-derived bioactive glasses in vitro”, J. Biomed. Mater. Res., 28, 693-698 (1994).
    [60] C.S. Chai, K. A. Gross, B.Ben-Nissan, “Critical ageing of hydroxyapatie sol-gel solutions”, Biomaterials, 19, 2291-2296 (1998).
    [61] C.S. Chai, K.A. Gross, L. Hanley, K. Kannangara, B. Ben-Nissan, “Critical ageing and chemistry of nanocrystalline hydroxyapatite sol-gel solutions”, J. Aust. Ceram. Soc., 34, 263-268 (1998).
    [62] C.S. Chai, B. Ben-Nissan, “Bioactive nanocrystalline sol-gel hydroxyapatite coatings”, J. Mater. Sci. Mater.-M., 10, 465-469 (1999).
    [63] L.D. Piveteau, M.I. Girona, L. Schlapbach, P. Barboux, J.P. Boilot, B. Gasser, “Thin films of calcium phosphate and titanium doxide by a sol-gel route: a new method for coating medical implants”, J. Mater. Sci. Mater.-M., 10, 161-167 (1999).
    [64] A. Montenero, G. Gnappi, F. Ferrari, M. Cesari, E. Salvioli, L. Mattogno, S. Kaciulis, M. Fini, “Sol-gel derived hydroxyapatite coatings on titanium substrate”, J. Mater. Sci., 35, 2791-2797 (2000).
    [65] K.A. Gross, C.S. Chai, G.S.K. Kannangara, B. Ben-nissan, L. Hanley, “Thin hydroxyapatite coatings via sol-gel synthesis”, J. Mater. Sci. Mater.-M., 9, 839-843 (1998).
    [66] H. Ji, P.M. Marquis, “Effect of heat treatment on the microstructure of plasma-sprayed hydroxyapatite coating”, Biomaterials, 14, 64-68 (1993).
    [67] C.S. Kim, P. Ducheyne, “Compositional variations in the surface and interface of calcium phosphate ceramic coatings on Ti and Ti-6Al-4V due to sintering and immersion”, Biomaterials, 12, 461-469 (1991).
    [68] J.M. Gomez-Vega, E. Saiz and A.P. Tomsia, “Glass-based coatings for titanium implant alloys”, J. Biomed. Mater. Res., 46, 549-559 (1999).
    [69] B.D. Ratner, D.G. Castner, Electron spectroscopy for chemical analysis, Chapter 3. In: Surface Analysis- the Principal Techniques, Edited by J.C. Vickerman, John Wiley & Sons, UK (1998).
    [70] H.B. Lu, C.T. Campbell, D.J. Graham, B.D. Ratner, “Surface characterization of hydroxyapatite and related calcium phosphates by XPS and TOF-SIMS”, Anal. Chem., 72, 2886-2894 (2000).
    [71] S. Kaciulis, G. Mattogno, A. Napoli, E. Bemporad, F. Ferrari, A. Montenero, G. Gnappi, “Surface analysis of biocompatible coatings on titanium”, J. Electron Spectroscopy Related Phenomena, 95, 61-69 (1998).
    [72] S. Kaciulis, G. Mattogno, L. Pandolfi, M. Cavalli, G. Gnappi, A. Montenero, “ XPS study of apatite-based coatings prepared by sol-gel technique”, Appl. Surf. Sci., 151, 1-5 (1999).
    [73] H. Zeng, W. Lacefield, “XPS, EDX and FTIR analysis of pulsed laser deposited calcium phosphate bioceramic coatings: the effects of various process parameters”, Biomaterials, 21, 23-30 (2000).
    [74] M. Nagano, T. Nakamura, T. Kokubo, M. Tanahashi, M. Ogawa, “Differences of bone bonding ability and degradation behaviour in vivo between amorphous calcium phosphate and highly crystalline hydroxyapatite coating”, Biomaterials, 17, 1771-1777 (1996).
    [75] J.M. Semmelink, A.L. Althuis, C.P.A.T. Klein, J.P.W. Vermeiden, “Granuloma and plasma-cell formation induced by the subcutaneous implantation of β-whitlockite particles”, Biomaterials, 7, 152-154 (1986).
    [76] C.C. Chusuei, D.W. Goodman, M.J. Van Stipdonk, D.R. Justes, E.A. Schweikert, “Calcium phosphate phase identification using XPS and time-of flight cluster SIMS”, Anal. Chem., 71, 149-153 (1999).
    [77] D. A. Skoog and J.J. Leary, Principles of instrumental analysis, 4th ed., Saunders College Publishing 1992.
    [78] NMR and Chemistry: An introduction to the Fourier transform-multinuclear era, Edited by J.W. Akitt (2nd Eds), Chapter 4, Champman and Hall Ltd, New York (1983).
    [79] J.J. Fitzgerald and S.M. DePaul, In: Solid-state NMR spectroscopy of inorganic materials, Edited by J.J. Fitzgerald, Chapter 1, American Chemical Society, Washington, USA (1999).
    [80] J.L. Miquel, L. Facchini, A.P. Legrand, C. Rey, J. Lemaitre, “Solid state NMR to study calcium phosphate ceramics,” Colloids Surf., 45, 427-33, (1990).
    [81] R.J. Kirkpatrick, R.K. Brow, “Nuclear magnetic resonance investigation of the structures of phosphate and phosphate-containing glasses: a review,” Solid State Nucl. Magn. Reson., 5, 9-21 (1995).
    [82] R. Jaeger, G.J. Vancso, D. Gates, Y. Ni, I. Manners, “Chain flexibility and 31P NMR spin-lattice relaxation measurements on melts of halogenated Poly(thionylphosphaxenes),” Macromolecules, 30, 6869-72 (1997).
    [83] H.R. Allcock, M.E. Napierala, D.L. Olmeijer, S.A. Best, K.M. Merz, Jr., “Ionic conduction in polyphosphazen solids and gels: 13C, 31P, and 15N NMR spectroscopy and molecular dynamics simulations,” Macromolecules, 32, 732-41 (1999).
    [84] Y. Wu, J.L. Ackerman, D.A. Chesler, J. Li, R.M. Neer, J. Wang, M.J. Glimcher, “Evaluation of bone mineral density using three-dimensional solid state phosphorus-31 NMR projection imaging,” Calcif. Tiss. Int., 62, 512-18 (1998).
    [85] Dictionary of Inorganic Compounds In: J.E. Macintype, Executive editor. London: Chapman and Hall (1992) Ca(NO3)2 IC-016009, Ca(OH)2 IC-015989.
    [86] J. Baginska, K. Szczukowski, “Studies of the decomposition of calcium nitrate and nitrite in nitrogen and nitrogen dioxide atmosphere”, Zesz Nauk Politech Slask Chem 1986;141-149.
    [87] H.S. Liu, T.S. Chin, “ Low melting PbO-ZnO-P2O5 glasses. Part 2. a structural study by raman spectroscopy and MAS-NMR,” Phys. Chem. Glasses, 38, 123-131 (1997).
    [88] P. Losso, B. Schnabel, C. Jager, U. Sternberg, D. Stachel, D.O. Smith, “31P NMR investigations of binary alkaline earth phosphate glasses of ultra phosphate composition”, J. Non-Cryst. Solids, 143, 265-273 (1992).
    [89] W.P. Rothwell, J.S. Waugh, J.P. Yesinowski, ”High-resolution variable-temperature 31P NMR of solid calcium phosphates”, J. Am. Chem. Soc., 102, 2637-2643 (1980).
    [90] W.P. Aue, A.H. Roufosse, M.J. Glimcher, R.G. Griffin, “Solid-state phosphorus-31 nuclear magnetic resonance studies of synthetic solid phases of calcium phosphates: potential models of bone mineral”, Biochemistry, 23, 6110-6114 (1984).
    [91] M.Feike, C. Jager, H.W. Spiess, “Connectivities of coordination polyhedra in phosphate glasses from 31P double-quantum NMR spectroscopy”, J. Non-Cryst. Solids, 223, 200-206 (1998).
    [92] E.A. De Maeyer, R.M. Verbeeck, C.W. Vercruysse, “Conversion of octacalcium phosphate in calcium phosphate cements”, J. Biomed. Mater. Res., 52, 95-106 (2000).
    [93] N. Sahai, J. A. Tossel, “Molecular orbital study of spatite (Ca5(PO4)3(OH)) nucleation at silica bioceramic surfaces,” J. Phys. Chem. B, 104, 4322-41 (2000).
    [94] P. S. Belton, R. K. Harris, and P. J. Wilkes, “Solid-state phosphorus-31 NMR studies of synthetic inorganic calcium phosphates,” J. Phys. Chem. Solids, 49, 21-27 (1988).
    [95] Y. Ding, C. Jin, Z. Meng, “The effects and mechanism of chemical additives on the pyrolysis evolution and microstructure of sol–gel derived Ba1−xSrxTiO3 thin films”, Thin Solid Films, 375, 196-199 (2000).
    [96] J.J. Pis, J.B. Parra, G. de la Puente, F. Rubiera, J.A. Pajares, “Development of macroporosity in activated carbons by effect of coal preoxidation and burn-off”, Fuel, 77, 625-630 (1998).
    [97] J.B. Parra, J.J. Pis, J.C. de Sousa, J.A. Pajares, R.C. Bansal, “Effect of coal preoxidation on the development of microporosity in activated carbons”, Carbon, 34, 783-787 (1996).
    [98] S.W. Russell, K.A. Luptak, C.T.A. Suchicital, T.L. Alford, V.B. Pizziconi, “Chemical and structural evolution of sol-gel-derived hydroxyapatite thin films under rapid thermal processing”, J. Am. Ceram. Soc., 79, 837 (1996).
    [99] S.V. Levchik, G.F. Levchik, A.I. Balabanovich, G. Camino, L. Costa, “Mechanistic study of combustion performance and thermal decomposition behaviour of nylon 6 with added halogen-free fire retardants”, Polym. Degrad. Stabil., 54, 217-222 (1996).
    [100] S.V. Levchik, G. Camino, L. Costa, G.F. Levchik, “Mechanism of action of phosphorus-based flam retardants in Nylon 6. I. ammonium polyphosphate”, Fire and Materials, 19, 1-10 (1995).
    [101] S. Bourbigot, M.L. Bras, R. Delobel, “Carbonization mechanisms resulting from intumescence association with the ammonium polyphosphate-pentaerythritol fire retardant system”, Carbon, 31, 1219-1230 (1993).
    [102] D. R. Lide, CRC Handbook of Chemistry and Physics, 76th ed. (CRC Press, Inc., Boca Raton, FL, 1995), p.14.
    [103] Y. Fujishiro, N. Sato, S. Uchida, T. Sato, “Coating of CaTiO3 on titanium substrates by hydrothermal reactions using calcium ethylene diamine tetra acetic acid chelate”, J. Mater. Sci. Mater.-M., 9, 363-367 (1998).
    [104] A.C. Tas, “Combustion synthesis of calcium phosphate bioceramic powders”, J. Euro. Ceram. Soc., 20, 2389-2394 (2000).
    [105] W.J. Weng, G. Shen, G.R. Han, “Low temperature preparation of hydroxyapatite coatings on titanium alloy by a sol-gel route”, J. Mater. Sci. Lett., 19, 2187-2188 (2000).
    [106] F.Y. Hsu, S.C. Chueh, Y.J. Wang, “Microspheres of hydroxyapatite/reconstituted collagen as supports for osteoblast cell growth”, Biomaterials, 20, 1931-1936 (1999).
    [107] Y.c. Tsui, C. Doyle, T.W. Clyne, “Plasma sprayed hydroxyapatite coatings on titanium substrates Part 1: Mechanical properties and residual stress levels”, Biomaterials, 19, 2015-2029 (1998).
    [108] G. Carotenuto, “Dense/porous layered hydroxylapatite ceramic for orthopedic device coating prepared by tape casting technique”, Advanced Performance Materials, 5, 171-181 (1998)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE