研究生: |
方惠真 Fang Huey-Jen |
---|---|
論文名稱: |
辨識蠑螈酸性纖維母細胞生長因子在開散路徑中平衡中間物的研究探討 Identification and Characterization of an Equilibrium Intermediate in the Unfolding Pathway of the Newt Acidic Fibroblast Growth Factor |
指導教授: |
余靖
Chin Yu |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2001 |
畢業學年度: | 89 |
語文別: | 中文 |
中文關鍵詞: | 纖維母細胞生長因子 、平衡中間物 、尿素 、開散路徑 |
外文關鍵詞: | Fibroblast Growth Factor, Equilibrium intermediate, urea, unfolding pathway |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
纖維母細胞生長因子(FGF)在體內扮演許多重要的角色,諸如促進細胞增生、細胞分化、傷口癒合等,甚至近幾年發現它和腫瘤的形成也有關係。由於FGF和肝素(heparin)結合時,不僅三級結構會變得比較穩定,甚至還會增強FGF的生物活性,因此在本文中,我們探討一個類肝素分子(heparin-like compound)-Sucrose Octasulfate(SOS)對於FGF穩定度的影響,發現使用SOS可以保護FGF的三級結構受到酸鹼值及尿素的破壞,同時在莫耳鍵結比例為1時,達到飽和。我們也針對FGF在開散路徑中平衡中間物的探索及性質有一些研究,藉由螢光實驗、圓二色光學實驗及ANS尿素開散實驗,發現平衡中間物存在於pH=5.0、2.4 M 尿素濃度下,當我們更進一步使用核磁共振技術去觀測平衡中間物的結構時,發現雖然HSQC光譜相較於自然態的光譜,沒有太大的差異;但是經由氫氘交換後,有許多的殘基消失,分析得知在平衡中間物態時,大部份維持三級結構的作用力消失,而同時也只剩下50%的二級結構存在。
1. Kim, P. S.; Baldwin, R. L. “Intermediates in the Folding Reactions of Small Proteins and the Mechanism of Protein Folding” Annu. Rev. Biochem. 1982, 51, 459-489.
2. Kim, P. S.; Baldwin, R. L. “Intermediates in the Folding Reactions of Small Proteins” Annu. Rev. Biochem. 1990, 59, 631-660.
3. Karplus, M,; Weaver, D. L.; “Protein-folding dynamics” Nature 1976, 260, 404-406.
4. Gospodarowicz, D. “Growth factors and their action in vivo and in vitro” J. Pathol. 1983, 14, 201-23
5. Thomas, K. A.; Riley, M. C.; Lemmon, S. K.; Bagian, N. C.; Bradshaw, R. A. “Brain fibroblast growth factor: nonidentity with myelin basic protein fragments’’ J. Biol. Chem. 1980, 255, 5517-20
6. Thomas, K. A.; Rios-Candelore, M.; Fitzpatrick, S. “Purification and characterization of acidic fibroblast growth factor from bovine brain” Proc. Natl. Acad. Sci. USA 1984, 81, 357-61
7. Bohlen, P.; Baird. A.; Esch, F.; Ling, N.; Gospodarowicz, K.” Isolation and partial molecular characterization of pituitary fibroblast growth factor’’ Proc. Natl. Acad. Sci. USA 1984, 81, 5364-68.
8. Shing, Y.; Folkman, J.; Sullivan, R.; Butterfield, C.; Murray. J.; Klagsbrun, M. “Heparin affinity: purification of a tumor-derived capillary endothelial cell growth factor’’ Science 1984, 223, 1296-99.
9. 謝惠珠 “台灣眼鏡蛇神經毒蛋白從尿素變性態到自然態的摺疊路徑探討” 國立清華大學碩士論文 1999.
10. Gospodarowicz, D.; Greenburg, G.; Bialecki, H.; Zetter, B. ”Factors involved in the modulation of cell proliferation in vivo and in vitro: the role of fibroblast and epidermal growth factors in the proliferative response of mammalian cells.” In Vitro 1978, 14, 85-118.
11. Maciag, T.; Hoover, G. A.; Stemerman, M. B.; Weinstein, R. “Serial propagation of human endothelial cells in vitro’’ J. Cell Biol. 1981, 91, 420-26.
12. Winkles, J. A.; Friesel, R.; Burgess, W. H.; Howk, R.; Mehlman, T. ”Human vascular smooth muscle cells both express and respond to heparin-binding growth factor I (endothelial cell growth factor)’’ Proc. Natl. Acad. Sci. USA 1987, 84, 7124-28.
13. Gospodarowicz, D.; Bohlen, P.; Guillemin, R. ”Primary structure of bovine pituitary basic fibroblast growth factor (FGF) and comparison with the amino-terminal sequence of bovine brain acidic FGF.” Proc. Natl. Acad. Sci. USA 1985, 82, 6507-10.
14. Chen, J. K.; Hoshi, H.; McKeehan, W. L. ”Heparin-binding growth factor type one and platelet-derived growth factor are required for the optimal expression of cell surface low density lipoprotein receptor binding activity in human adult arterial smooth muscle cells.’’ In Vitro Cell.Dev. Biol. 1988, 24, 199-204.
15. Schweigerer, L.; Neufeld, G.; Friedman, J.; Abraham, J. A.; Feddes, J. C.; Gospodarowicz, D. ”Basic fibroblast growth factor: production and growth stimulation in cultured adrenal cortex cells” Endocrinology 1987, 120, 796-800.
16. Gospodarowicz, D.; Ill, C. R.; Homsby, P. J.; Gill, G. N. ”Effects of fibroblast and epidermal growth factors on ovarian cell proliferation in vitro. I. Characterization of the response of granulosa cells to FGF and EGF” Endocrinology 1977, 100, 1080-89.
17. McKeehan, W. L.; Adams, P.S.; Rosser, M. P. ”Direct mitogenic effects of insulin, epidermal growth factor, glucocorticoid, cholera toxin, unknown pituitary factors and possibly prolactin, but not androgen, on normal rat prostate epithelial cells in serum-free, primary cell culture” Cancer Res. 1984, 44, 1998-2010.
18. Hoshi, H.; McKeehan, W. L. ”Brain- and liver cell-derived factors are required for growth of human endothelial cells in serum-free culture” Proc. Natl. Acad. Sci. USA 1984, 81, 6413-17.
19. Chaproniere, D. M.; McKeehan, W. L. ”Serial culture of single adult human prostatic epithelial cells in serum-free medium containing low calcium and a new growth factor from bovine brain” Cancer Res. 1986, 46, 819-24.
20. Arruti, C.; Courtois, Y. ”Morphological changes and growth stimulation of bovine epithelial lens cells by a retinal extract in vitro” Exp. Cell Res. 1978, 117, 283-92.
21. Courty, J.; Chevallier, B.; Moenner, M.; Loret, C.; Lagente, O. ”Evidence for FGF-like growth factor in adult bovine retina: analogies with EDGF I” Biochem. Biophys. Res. Commun. 1986, 136, 102-8.
22. Barritault, D.; Arruti, C.; Courtois, Y. ”Is there a ubiquitous growth factor in the eye? Proliferation induced in different cell types by eye-derived growth factors” Differentiation 1981, 18, 29-42.
23. Courty, J.; Loret, C.; Moenner, M.; Chevallier, B.; Lagente, O. ”Bovine retina contains three growth factor activities with different affinity to heparin: eye derived growth factor I, II, III” Biochemie 1985, 67, 265-69.
24. Plouet, J.; Courty, J.; Olivie, M.; Courtois, Y.; Barritarlt, D. ”A highly reliable and sensitive assay for the purification of cellular growth factors” Cell. Mol. Biol. 1984, 30, 105-10.
25. Tarsio, J. F.; Rubin, N. A.; Russell, P.; Gregerson, D. S.; Reid, T. W. ”Growth-stimulatory effects of retinoblastoma-derived growth factors and other mitogens on Nakano mouse lens epithelial cells” Exp. Cell Res. 1983, 146, 71-78.
26. Mullins, D. E.; Rifkin, D. B. ”Stimulation of motility in cultured bovine capillary endothelial cells by angiogenic preparations” J. Cell. Physiol. 1984, 119, 247-54.
27. Terranova, V. P.; Diflorio, R.; Lyall, R. M.; Hic, S.; Friesel, R.; Maciag, T. ”Human endothelial cells are chemotactic to endothelial cell growth factor and heparin” J. Cell Biol. 1985, 101, 2330-34.
28. Senior, R. M.; Huang, S. S.; Griffin, G. L.; Huang, J. S. ”Brain-derived growth factor is a chemoattractant for fibroblasts and astroglial cells” Biochem. Biophys. Res. Commun. 1986, 141, 67-72.
29. Serrero, G.; Khoo, J. C. ”An in vitro model to study adipose differentiation in serum-free medium” Anal. Biochem. 1982, 120, 351-359.
30. Davidson, J. M.; Klagsbrun, M.; Hill, K. E.; Buckley, A.; Sullivan, R. ”Accelerated wound repair, cell proliferation, and collagen accumulation are produced by a cartilage-derived growth factor” J. Cell Biol. 1985, 100, 1219-27.
31. Katoh, Y.; Kodama, K.; Ishikawa, T. ”In vivo effects of epidermal and fibroblast growth factors on DNA replication in mouse skin” Exp. Cell Res. 1985, 161, 111-16.
32. Koschinsky, T.; Bunting, C. E.; Rutter, R.; Gries, F. A. “Vascular growth factors and the development of macrovascular disease in diabetes mellitus” Diabete Metab. 1987, 13, 318-25.
33. Folkman, J. ”What is the role of angiogenesis in metastasis from cutaneous melanoma?” Eur. J. Cancer Clin. Oncol. 1987, 23, 361-63.
34. Basilico, C.; Moscatelli, D. ”The FGF family of growth factors and oncogenes” Adv. Cancer Res. 1992, 59, 115-165.
35. Zhu, X.; Komiya, H.; Chirino, A.; Faham, S.; Fox, G. M.; Arakawa, T.; Hus, B. T.; Rees, D. C. ”Three-dimensional structures of acidic and basic fibroblast growth factors” Science 1991, 251, 90-93.
36. 亞倫庫瑪 “蠑螈酸性纖維母細胞生長因子的結構之研究” 國立清華大學化學研究所博士論文 1999.
37. Pineda-Lucena, A.; Jimenez, M. A.; Lozano, R. M.; Nieto, J. L.; Santoro, J.; Rico, M.; Gimenez-Gallego, G. ”Three-dimensional structure of acidic fibroblast growth factor in solution: effects of binding to a heparin functional analog” J. Mol. Biol. 1996, 264, 162-178.
38. Pineda-Lucena, A.; Jimenez, M. A.; Nieto, J. L.; Santoro, L.; Rico, M.; Gallego, G. G. “1H-NMR assignment and solution structure of human acidic fibroblast growth factor activated by inositol hexasulfate” J. Mol. Biol. 1994, 242, 81-98.
39. Burgess, W. H.; Macias, T. ”The heparin-binding (fibroblast) growth factor family of proteins” Annu. Rev. Biochem. 1989, 58, 575-606.
40. Buck, M.; Radford, S. E.; Dobson, C. M. ”A partially folded state of hen egg white lysozyme in trifluoroethanol: structural characterization and implications for protein folding” Biochemistry 1993, 32, 669-678.
41. Mach, H.; Ryan, J. A.; Burke, C. J.; Volkin, D. B.; Middaugh, C. R. ”Partially structured self-associating states of acidic fibroblast growth factor” Biochemistry 1993, 32, 7703-7711.
42. Lozano, R. M.; Jimenez, M.; Santoro, J.; Rico, M.; Gallego, G. G. ”Solution structure of acidic fibroblast growth factor bound to 1,3, 6-naphthalenetrisulfonate: a minimal model for the anti-tumoral action of suramins and suradistas” J. Mol. Biol. 1998, 281, 899-915.
43. Ruoslahti, E.; Yamaguchi, Y. ”Proteoglycans as modulators of growth factor activities” Cell 1991, 64, 867-869.
44. Lindhal, U.; Lindholt, K.; Spillmann, D.; Kjellen, L. ”More to "heparin" than anticoagulation” Thromb. Res. 1994, 75, 1-32.
45. Cohen, F.E. ”Protein misfolding and prion diseases” J. Mol. Biol., 1999, 293, 313-320.
46. Harrison, P. M.; Chan, H. S.; Prusiner, S. B.; Cohen, F. E. ”Thermodynamics of model prions and its implications for the problem of prion protein folding” J. Mol. Biol. 1999, 286, 593-606.
47. Baldwin, M. A.; James, T. L.; Cohen, F. E.; Prusiner, S. B. ”The three-dimensional structure of prion protein: implications for prion disease” Biochem.Soc. Trans. 1998, 26, 481-486.
48. Cohen, F. E.; Prusiner, S. B. ”Pathologic conformations of prion proteins” Ann.Rev.Biochem. 1998, 67, 793-819.
49. Baum, J.; Brodsky, B. ”Folding of peptide models of collagen and misfolding in disease” Curr. Opin. Strc. Biol. 1999, 9, 122-128.
50. Zazo, M.; Lozano, R. M.; Jimenez, M.; Ortega, S.; Varela, J.; Diaz-Orejas, R.; Ramirez, J. M.; Gallego, G. G. ”High-level synthesis in Escherichia coli of shortened and full-length human acidic fibroblast growth factor and purification in a form stable in aqueous solutions” Gene 1992, 113, 231-238.
51. Burgess, W. H.; Maciag, T. ”The heparin-binding (fibroblast) growth factor family of proteins” Annu. Rev. Biochem. 1989, 58, 575-606.
52. Gimenez-Gallego, G.; Cuevas, P. ”Fibroblast growth factors, proteins with a broad spectrum of biological activities” Neurological Res. 1994, 16, 313-316.
53. Volkin, D. B.; Tsai, P. K.; Dabora, J. M.; Gress, J. O.; Burke, C. J.; Linhardt, R. J.; Middaugh, C. R. ”Physical stabilization of acidic fibroblast growth factor by polyanions” Arch. Biochem. Biophys. 1993, 300, 30-41.
54. Slavik, J. ”Anilinonaphthalene sulfonate as a probe of membrane composition and function” Biochim. Biophys. Acta 1982, 694, 1-25.
55. Ikai, A.; Tanford, C. ”Kinetic evidence for incorrectly folded intermediate states in the refolding of denatured proteins” Nature 1971, 230, 100-102.
56. Ikai, A.; Tanford, C. ”Kinetics of unfolding and refolding of proteins. I. Mathematical analysis” J. Mol. Biol. 1973, 73, 145-163.
57. Ikai, A.; Fish, W.W.; Tanford, C. ”Kinetics of unfolding and refolding of proteins. II. Results for cytochrome c.” J. Mol. Biol. 1973, 73, 165-184.
58. Tanford, C.; Aune, K.C.; Ikai, A. ”Kinetics of unfolding and refolding of proteins. 3. Results for lysozyme” J. Mol. Biol. 1973, 73, 185-197.
59. Tanford, C. ”Protein denaturation.” Adv. Protein Chem. 1968, 23, 121-282.
60. Aune, K. C.; Salahuddin, A.; Zarlengo, M.H.; Tanford, C. ”Evidence for residual structure in acid- and heat-denatured proteins” J. Biol. Chem. 1967, 242, 4486-89.
61. Privalov, P. L. ”Stability of proteins: small globular proteins” Adv. Protein Chem. 1979, 33, 167-241.
62. Privalov, P. L. ”Stability of proteins. Proteins which do not present a single cooperative system” Adv. Protein Chem. 1982, 35, 1-104.
63. Privalov, P. L.; Makhatadze, G. I. ”Heat capacity of proteins. II. Partial molar heat capacity of the unfolded polypeptide chain of proteins: protein unfolding effects.” J. Mol. Biol. 1990, 213, 385-391.
64. Brems, D. N.; Baldwin, R.L. ”Equilibrium denaturation of pituitary- and recombinant-derived bovine growth hormone.” Biochemistry 1985, 24, 7662-8.
65. Nozaki, Y.; Tanford, C. ”The solubility of amino acids and two glycine peptides in aqueous ethanol and dioxane solutions. Establishment of a hydrophobicity scale” J. Biol. Chem. 1971, 246, 2211-7.
66. Ptitsyn, O. B. ”Molten globule and protein folding” Adv. Protein Chem. 1995, 47, 83-229.
67. Neri, D.; Billeter, M.; Wider, G.; Wuthrich, K. ”NMR determination of residual structure in a urea-denatured protein, the 434-repressor” Science, 1992, 257, 1559-63.
68. Alexandrescu, A. T.; Abeygunawardana, C.; Shortle, D. ”Structure and dynamics of a denatured 131-residue fragment of staphylococcal nuclease: a heteronuclear NMR study” Biochemistry 1994, 33, 1063-72.
69. Buck, M.; Radford, S. E.; Dobson, C. M. ”A partially folded state of hen egg white lysozyme in trifluoroethanol: structural characterization and implications for protein folding” Biochemistry 1993, 32, 669-78.
70. Stockman, B. J.; Euvrard, A.; Scahill, T. A. ”Heteronuclear three-dimensional NMR spectroscopy of a partially denatured protein: the A-state of human ubiquitin” J. Biomolec. NMR. 1993, 3, 285-296.
71. Redfield, C.; Smith, R. A. G.; Dobson, C. M. ”Structural characterization of a highly-ordered 'molten globule' at low pH” Nat. Struc. Biol. 1994, 1, 23-29.
72. Feng, Y.; Sligar, S. G.; Wand, A. J. ”Solution structure of apocytochrome b562” Nat. Struc. Biol. 1994, 1, 30-35.
73. Harding, M. M.; Williams, D. H.; Woolfson, D. N. “Characterization of a partially denatured state of a protein by two-dimensional NMR: reduction of the hydrophobic interactions in ubiquitin” Biochemistry 1991, 30, 3120-28.
74. Ptitsyn, O. B.; Uversky, V. N. ”The molten globule is a third thermodynamical state of protein molecules” FEBS Lett. 1994, 341, 15-18.
75. Ptitsyn, O. B.; Bychkova, V. E.; Uversky, V. N. “Kinetic and equilibrium folding intermediates” Philos. Trans. R. Soc. London, Ser. B Biol. Sci. 1995, 348, 35-41.
76. Semisotnov, G. V.; Rodionova, N. A.; Razgulyaev, I.; Uversky, V. N.; Gripasq, A. F.; Gillmanshin, R. I. ”Study of the "molten globule" intermediate state in protein folding by a hydrophobic fluorescent probe.” Biopolymers 1991, 31, 119-128.
77. Uversky, V. N.; Semisotnov, G. V.; Pain, R. H.; Pitisyn, O. B. ” 'All-or-none' mechanism of the molten globule unfolding” FEBS Lett. 1992, 314, 89-92.
78. Christensen, H.; Pain, R. H. ”Molten globule intermediates and protein folding” Eur. Biophys. J. 1991, 19, 221-229.