簡易檢索 / 詳目顯示

研究生: 陳建勳
Chien-Hsun Chen
論文名稱: 以網框矽(111)為基材利用有機金屬化學氣相沉積法成長氮化鎵/氮化鋁多層膜之研究
Characterizations of GaN/AlN multilayers on a mesh patterned Si(111) grown by metal-organic chemical vapor deposition
指導教授: 黃振昌
Jennchang Hwang
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 162
中文關鍵詞: 氮化鎵選區成長法有機金屬化學氣相沉積法應力拉曼光譜
外文關鍵詞: GaN, selective area growth, MOCVD, stress, Raman
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文係以介電薄膜為網框之矽(111)為基材用有機金屬化學氣相沉積法成長厚達2 micrometer 的無裂縫氮化鎵/氮化鋁多層膜。研究發現,所選用的介電薄膜不論是氮化矽或是氧化矽均可得到300 X 300 micro-m2大小的無裂縫氮化鎵/氮化鋁多層膜。從陰極激發光 (cathodoluminescence)光譜及拉曼(Raman)光譜的結果顯示,以氮化矽薄膜加網框方式之矽(111)為基材所成長之氮化鎵有較佳的品質,同時隨著邊框尺寸的縮小,氮化鎵的品質也隨之提升。
    以拉曼光譜量測氮化鎵薄膜應力沿著窗口區中央取點,其E2(TO)模式呈現U型曲線。這表示窗口區之邊緣處有顯著的應力鬆弛現象,這是因為有(11-bar01)或(112-bar2)這兩個面的關係。應力在窗口區的角落處幾乎是完全鬆弛的狀態,是因為有(11-bar01)、(112-bar2)和(101-bar1)這三個面存在的關係。藉由拉曼光譜量測及斷裂破壞的觀察可以得知應力最大之處位於窗口區中央表面處。同時也將討論氮化矽所扮演的角色。
    利用陰極激發光光譜及拉曼光譜量測80 X 80 micro-m2大小的無裂縫氮化鎵/氮化鋁多層膜,特別針對窗口區的中央處、邊緣處及角落這三個地方作量測。發現氮化鎵的能帶隨著位置不同而有不同的值,亦即,3.413 eV(中央處)、3.418 eV(邊緣處)及3.426 eV(角落) 。能帶值的差異是因為氮化鎵在窗口區內有應力分佈變化的情況,此可由拉曼光譜進一步證實。每單位應力變化所造成的能帶值之變化為0.03 eV/GPa。
    利用掃描式光電子能譜儀(Scanning photoelectron microscopy, SPEM)擷取成長在40 X 40 micro-m2大小的網框內無裂縫之氮化鎵/氮化鋁多層膜的化學訊號。研究結果發現SPEM之圖片會受到局部區域的電荷累積所影響,而氮化鎵表面的V型缺陷藉由SPEM微區分析可得知為鎵的終端(Ga-terminated)表面。


    A 300 x 300 micro-meter square crack-free GaN/AlN multilayers of 2 micrometer thick has been successfully grown on the Si(111) substrate patterned with SixNy or SiO2 meshes by MOCVD. The cathodoluminescence (CL) and Raman results show that the better quality of GaN is obtained for the SixNy mesh patterned Si(111) as the substrate. And better quality of GaN is achieved for smaller mesh size.
    The in-plane stress exhibits a U shape distribution across the “window” region, supported by the Raman shift of the GaN E2(TO) mode. This indicates a stress relaxation abruptly occurring near the edge of the “window” region due to the free standing surface (11-bar01) or (112-bar2). The in-plane stress is almost relaxed at the corner of the “window” region due to three free standing surfaces (11-bar01), (112-bar2), and (101-bar1). The maximum in-plane stress is located near the surface of the multilayers at the center of the “window” region, supported by the Raman measurements and the failure observations. The role of the SixNy mesh in the stress relaxation is discussed.
    The band gap shift in the 80 x 80 micrometer square crack-free GaN/AlN multilayers on the mesh patterned Si(111) was characterized by cathodoluminescence (CL) and Raman techniques. The GaN band gap derived from CL spectra depends on the spatial point inside a mesh, which changes from 3.413 eV (at center), to 3.418 eV (at edge), and to 3.426 eV (at corner). The band gap shift is attributed to the variation of tensile stress inside the mesh, confirmed by Raman mapping. The shift of GaN band gap per unit stress is determined to be 0.03 eV/GPa.
    Scanning photoelectron microscopy (SPEM) was applied to extract chemical images of the GaN/AlN multilayers within the mesh. The SPEM images study of the GaN/AlN multilayers on a mesh patterned Si(111) is dependent on the local charging. The V-defect on the surface of GaN can be observed by SPEM images and is determined to be Ga terminated surface.

    Abstract (Chinese) ………………………………………………I Abstract (English)………………………………………………III Acknowledgements (Chinese)………………………………………V Contents……………………………………………………………VII List of Tables ……………………………………………………XI List of Figures …………………………………………………XII Chapter 1 Introduction ....................................1 1-1 Applications of GaN.................................1 1-2 GaN on Si(111)......................................2 1-3 Selective Area Growth (SAG).........................3 1-4 objectives..........................................5 1-5 organization of the thesis..........................6 References..............................................8 Chapter 2 Background study................................11 2-1 Metal-Organic Chemical Vapor Deposition (MOCVD).....11 2-1-1 Origin of the MOCVD.............................11 2-1-2 Precursor of the MO source......................12 2-1-3 MOCVD growth mechanism..........................13 2-2 Properties of GaN and its evolution.................15 2-2-1Properties of GaN…………………………………………15 2-2-2 Evolution of GaN and Devices…………………………15 2-3 Raman spectroscopy……………………………………………17 2-3-1 classical theory of Raman scattering………………17 2-3-2 Raman vibrational modes of GaN………………………19 2-4 Cathodoluminescence…………………………………………21 2-4-1 Advantages of cathodoluminescence…………………21 2-4-2 Luminescence in semiconductor………………………21 References…………………………………………………………35 Chapter 3 Experimental………………………………………………41 3-1 Sample preparation……………………………………………………………41 3-2 Growth of GaN/AlN multilayers by MOCVD…………………42 3-3 Field Emission Scanning Electron Microscope…………42 3-4 Cathodoluminescence …………………………………………43 3-5 Mico-Raman………………………………………………………44 3-6 Scanning Photoelectron Microscopy (SPEM)………………44 References……………………………………………………………51 Chapter 4 Growth of crack-free GaN/AlN multilayers on mesh patterned Si(111)……………………………………………………52 4-1 Introduction…………………………………………………52 4-2 Experimental……………………………………………………54 4-3 result and discussion………………………………………56 4-4 Conclusion………………………………………………………60 References …………………………………………………………75 Chapter 5 Stress relaxation in the GaN/AlN multilayers grown on a mesh-patterned Si(111) substrate…………………77 5-1 Introduction……………………………………………………77 5-2 Experimental……………………………………………………79 5-3 result and discussion ………………………………………81 5-4 Conclusion……………………………………………………86 References …………………………………………………………97 Chapter 6 Bandgap shift in the GaN/AlN multilayers on the mesh-patterned Si(111)………………………………………………99 6-1 Introduction……………………………………………………99 6-2 Experimental…………………………………………………101 6-3 result and discussion………………………………………103 6-4 Conclusion……………………………………………………107 References …………………………………………………………114 Chapter 7 A scanning photoelectron microscopy study of GaN/AlN multilayers on a mesh patterned Si(111)……………116 7-1 Introduction …………………………………………………116 7-2 Experimental…………………………………………………117 7-3 SPEM images study of AlN/SixNy stripes………………118 7-4 SPEM images study of GaN/AlN multilayers……………122 7-5 SPEM image study of V-defect……………………………125 7-6 Conclusion………………….…………………………………126 References …………………………………………………………141 Chapter 8 Conclusions………………………………………………144 Appendix I Enhancement of C-axis texture of AlN films by substrate implantation……………………………………………145 Publications…………………………………………………………149

    1.S. Nakamura,and G. Fasol, The Blue Laser Diodes (Springer, Heidelberg, 1997).
    2.S. J. Pearton, J. C. Zolper, R. J. Shul, and F. Ren, J. Appl. Phys. 86, 1 (1999).
    3.S. Nakamura, Science 281, 956 (1998).
    4.M. A. Khan, J. N. Kuznia, A. R. Bhattarai, and D. T. Olsen, Appl. Phys. Lett. 62, 1786 (1993).
    5.J. I. Pankove, S. S. Chang, H. C. Lee, R. Molnar, T. D. Moustakas, and B. Van Zeghbroeck, Tech. Dig. Int. Electron Devices Mett. 94, 389 (1994).
    6.R. F. Davis, S. Einfeldt, E. A. Preble, A. M. Roskowski, Z. J. Reitmeier, P. Q. Miraglia, Acta Materialia, 51, 5961 (2003)
    7.H. Amano, N. Sawaki, I. Akasaki, and Y. Toyoda, Appl. Phys. Lett. 48, 353 (1986).
    8.H. Amano, M. Kito, K. Hiramatsu, and I. Akasaki, Jpn. J. Appl. Phys., Part 2 28, L2112 (1989).
    9.H. Amano, T. Asahi, and I. Akasaki, Jpn. J. Appl. Phys., Part 2 29, L205 (1990).
    10.I. Akasaki, and H. Amano, Tech. Dig. Int. Electron Device Meet. 96, 231 (1996).
    11.I. Akasaki, and H. Amano, in GaN, edited by J. I. Pankove and T. D. Moustakas (Academic, New York, 1998), Vol. 1, pp 459-72.
    12.T. Takauchi, H. Amano, K. Hiramatsu, N. Sawaki, and I. Akasaki, J. Crys. Growth 115, 634 (1991).
    13.A. Watanabe, T. Takauchi, K. Hirosawa, H. Amano, K. Hiramatsu, and I. Akasaki, J. Crys. Growth 128, 391 (1993).
    14.S. N. Basu, T. Lei, and T. D. Moustakas, J. Mater. Res. 9, 2370 (1994)
    15.W. J. Meng and T. A. Perry, J. Appl. Phys. 76, 7824 (1994).
    16.N. P. Kobayashi, J. T. Kobayashi, P. D. Dapkus, W.-J. Choi, A. E. Bond, and X. Zhang, and D. H. Rich, Appl. Phys. Lett. 71, 3569 (1997).
    17.A. Dadgar, J. Christen, T. Riemann, S. Richter, J. Bläsing, A. Diez, A. Krost, A. Alam and M. Heuken, Appl. Phys. Lett. 78, 2211 (2001).
    18.E. Felton, B. Beaumont, M. laϋgt, P. de Mierry, P. Vennĕguĕs, H. Lahrĕche, M. Lerourx, and P. Gibart, Appl. Phys. Lett. 79, 7230 (2001).
    19.M. Iwaya, S. Terao, H. Hayashi, T. Kashima, H. Amoano, and I. Akasaki, Appl. Surf. Sci. 159-160, 405 (2000).
    20.J. Bläsing, A. Reiher, A. Dadgar, A. Diez, and A. Krost, Appl. Phys. Lett. 81, 2722 (2002).
    21.A. T. Schremer, J. A. Smart, Y. Wang, O. Ambacher, N. C. MacDonald, and J. R. Shealy, Appl. Phys. Lett. 76, 736 (2000).
    22.E. K. Koh, Y. J. Park, E. K. Kim, A. S. Park, S. H. Lee, J. H. Lee, and S. H. Choh, J. Crys. Growth, 218, 214 (2000).
    23.Z. Yang, F. Guarin, I. W. Tao, and W. I. Wang, J. Vac. Sci. Technol. B 13, 789 (1995).
    24.J. Cao, D. Pavlidis, Y. Park, J. Singh, and A. Eisenbach, J. Appl. Phys, 83, 3829 (1998).
    25.S. Zamir, B. Meyler, and Salzman, Appl. Phys. Lett. 78, 288 (2001).
    26.D. Wang, S. Jia, K.J. Chen,K.J. Chen, K. M. Lau, Y. Dikme, P. Van Gemmern, Y. C. Lin, H.Kalisch, R. H. Jansen, R. H. Jansen, and M. Heuken, J. Appl. Phys. 97, 056103-1 (2005).
    27.A. Dadgar, A.Alam, T. Riemann, J. Blasing, A. Diez, M. Poschenrieder, M. Strassburg, M. Heuken, J. Christen, and A. Krost, Phys. stat. sol. 188, 155, (2001).
    28.Y. Honda, Y.Kuroiwa, M. Yamaguchi, and N. Sawaki, Appl. phys. Lett. 80, 222, (2002).
    29.N. Matsuda and I. Akasaki, J. Crys. Growth 45, 192 (1978).
    30.H. Manasevit, Appl. Phys. Lett. 116, 1725 (1969).
    31.H. Manasevit and W. Simpson, J. Electrochem. Soc. 118, 1864 (1971).
    32.H. Manasevit, F. Erdmann, and W. Simpson, J. Electrochem. Soc. 12, 156 (1968).
    33.M. J. Ludowise, , J. Appl. Phys. 58, R31 (1985).
    34.A. C. Jones, J. Cryst. Growth, 129, 728, (1993).
    35.A. G. Thompson, Mater. Lett. 30, 255 (1997).
    36.G. B. Stringfellow, in “Organometallic Vapor-Phase Epitaxy: Theory and Practice. California”, (Academic Press, 1999) Chap 1.
    37.P. Lee, T. Omstead, D. McKenna, and K. Jensen, J. Cryst. Growth, 85, 165 (1987).
    38.M. Yoshida, H. Watanabe, and F. Uesugi, J. Electrochem. Soc. 132, 677 (1985).
    39.V. Roberts, J. Roberts, A. Jones, and S. Rushworth, Mat. Res. Soc. Symp. Proc. 395, 337 (1996).
    40.D. Gaskill, N. Bottka, and M. Lin, Appl. Phys. Lett. 48, 1449 (1986).
    41.A. Freedman and G. Robison, Mat. Res. Soc. Symp. Proc. 395, 73 (1996).
    42.H. Amano, I. Akasaki, T. Kozawa, K. Hiramatsu, N. Sawaki, K. Ikeda, and Y. Ishii, J. Lumin. 40-48, 121 (1988).
    43.H. Amano, M. Kito, K. Hiramatsu, and I. Akasaki, Jpn. J. Appl. Phys. 28, L2112 (1989).
    44.S. Nakamura, N. Iwasa, M. Senoh, and Mukai, Jpn. J. Appl. Phys. 31, 1258 (1992).
    45. R. P. Pawlowski, C. Theodoropoulos, A. G. Salinger, T. J. Mountziaris, H. K. Moffat, J. N. Shadid, and E.J. Thrush J. Crys. Growth 221, 622 (2000)
    46.L. Liu, and J.H. Edgar, Mater. Sci. Eng. R 37, 61 (2002).
    47.S. Strite, J. Ruan, Z. Li, A. Salvador, H. Chen, D. J. Smith, W. J. Choyke, H. J. Morkoc, Vac. Sci. Technol. B 9, 1924 (1991).
    48.M. Leroux, B. Gil, in: J.H. Edgar, S.S. Strite, I. Akasaki, and H. Amano (Eds.), INSPEC, The Institution of Electrical Engineers, Stevenage, UK, 1999, p. 45.
    49.D. C. Look, and J.R. Sizelove, Appl. Phys. Lett. 79, 1133 (2001).
    50.U. Kaufmann, P. Schlotter, H. Obloh, K. Kohler, and M. Maier, Phys. Rev. B 62, 10867 (2000).
    51.S. Porowski, Grzegory, in: J.H. Edgar (Ed.), Properties of Group III Nitrides, INSPEC, The Institution of Electrical Engineers, Stevenage, UK, 1994, p. 76.
    52.S. Krukowski, M. Leszcynski, S. Porowski, in: J.H. Edgar, S.S. Strite, I. Akasaki, H. Amano (Eds.), INSPEC, The Institution of Electrical Engineers, Stevenage, UK, 1999, p. 21.
    53.S.O. Kucheyev, J.E. Bradby, J.S. Williams, C. Jagasish, M. Toth, M.R. Phillips, and M.V. Swain, Appl. Phys. Lett. 77, 3373 (2000).
    54.I. Yonenaga, T. Hoshi, and A. Usui, Jpn. J. Appl. Phys. 39, L200 (2000).
    55.I Yonenaga, and K. Motoki, J. Appl. Phys. 90, 6539 (2001).
    56.R. Juza and H. Hahn, Z. Anorg. Allg. Chem. 234, 282 (1938).
    57.H. P. Maruska and J. J. Tietjen, Appl. Phys. Lett. 15, 327 (1969).
    58.S. Yoshida, S. Misawa, and S. Gonda, Appl. Phys. Lett. 42, 427 (1983).
    59.H. Amano, I. Akasaki, T. Kozawa, K. Hiramatsu, N. Sawaka, K. Ikeda, and Y. Ishi, J. Lumin, 40-41, 121 (1988).
    60.H. Amano, N. Sawaki, I. Akasaki, and Y. Toyoda, Appl. Phys. Lett. 48, 353 (1986).
    61.H. Amano, M. Kito, K. Hiramatsu, and I. Akasaki, Jpn. J. Appl. Phys., Part 2 28, L2112 (1989).
    62.H. Amano, T. Asahi, and I. Akasaki, Jpn. J. Appl. Phys., Part 2 29, L205 (1990).
    63.I. Akasaki, and H. Amano, Tech. Dig. Int. Electron Device Meet. 96, 231 (1996).
    64.I. Akasaki, and H. Amano, in GaN, edited by J. I. Pankove and T. D. Moustakas (Academic, New York, 1998), Vol. 1, pp 459-72.
    65.J. Gonzalez-Hernandez, G. H. Azarbayejani, R. Tsu, and F. H. Pollak, Appl. Phys. Lett. 47, 1350 (1985).
    66.Yihe Huang, Peter Y. Yu, Marie-Noelle Charasse, Yuhua Lo, and Shyh Wang, Appl. Phys. Lett. 51, 192 (1987).
    67.M. Ramsteiner and J. Wagner, Appl. Phys. Lett. 51, 1355 (1987).
    68.M. Yoshikawa, G. Katagiri, H. Ishida, A. Ishitani, and T. Akamatsu, Appl. Phys. Lett. 52, 1639 (1988).
    69.John R. Ferraro and Kazuo Nakamoto, Introduction Raman Spectroscopy (Academic press, UK, 1994), pp15-16.
    70.J. R. Ferraro, and J. S. Ziomek, Introduction Group Theory and Its Application to Molecular Structure, (Plenum Press, New York, 2nd ed., 1969) p. 239.
    71.M. Born, and M. Bradburn, Proc. Roy. Soc. A188, 161 (1947).
    72.R. Loudon, Proc. Roy. Soc. A275, 218 (1963).
    73.E. Ruiz, S. Alvarez, and P. Alemany, Phys. Rev. B 49, 7115 (1994).
    74.A. K. Chin, C. L. Zipfel, S. Mahajan, F. Ermanis, and M. A. DiGiuseppe, Appl. Phys. Lett. 41,555 (1982).
    75.A. K. Chin, R. Caruso, M. S. S. Young, and A. R. Von Neida, Appl. Phys. Lett. 45,552 (1984).
    76.Michael E. Hoenk, Howard Z. Chen, Amnon Yariv, Hadis Morkoç, and Kerry J. Vahala, Appl. Phys. Lett. 54,1347 (1989).
    77.B. G. Yacobi and D. B. Holt, Cathodoluminescence Microscopy of Inorganic Soilds, (Plenum Press, New York and London 1990), pp.24.
    78.Kittel, “ Introduction to Solid State Physics”
    79.J. J. Song and W. Shan, in Group III Nitride Semiconductor Compounds, edited by B. Gil (Clarendon, Oxford 1998) , pp. 182-241.
    80.J. R. Haynes, Phys. Rev. Lett. 4, 361. (1971).
    81.F. E. Williams, Phys Status Solidi, 25, 493 (1968).
    82.R. Dingle and M. Ilegems, Solid State Commun. 9, 175 (1971).
    83.B. K. Meyer, D. Volm, A. Graber, H. C. Alt, T. Detchprohm, H. Amano, and I. Akasaki. Solid State Commun. 95, 597 (1995).
    84.T. Ogion and M. Aoki, Jpn. J. Appl. Phys. 19, 2395 (1980).
    85.R. Singh, R. J. Molnar, M. S. Unlu, and T. D. Moustakas, Appl. Phys. Lett. 64, 336 (1994).
    86.C. Wetzel, D. Volm, B. K. Meyer, K. Pressel, S. Nilsson, E. N. Mokhov, and P. G. Baranonov, Appl. Phys. Lett. 65, 1033 (1994).
    87.J. I. Pankove, J. A. Hutchby, J. Appl. Phys. 47, 5387 (1976).
    88.E. R. Glaser, T. A. Kennedy, K. Doverspike, L. B. Roweland, D. K. Gaskill, J. A. Freitas, Jr., M. Asifkhan, D. T. Olson, J. N. Kuznia, and D. K. Wickenden, Phys. Rev. B 51, 13326 (1995).
    89.M. Kuball, Surf. Interface Analysis, 31, 987 (2001).
    90.1. U. Kaiser, P. D. Brown, I. Khodos, C. J. Humphreys, H. P. D. Schenk, and W. Richter, J. Mater. Res. 14, 2036 (1999).
    91.F. A. Ponce, D. P. Bour, W. Götz, and P. J. Wright, Appl. Phys. Lett. 68, 57 (1996).
    92.K. S. Yen, in “Study of hexgonal hillocks on AlxGa1-x thin film“, (NTCU, MA thesis, 2004), p.31
    93.T. Kozawa, T. Kachi, H. Kano, H. Nagase, N. Koide, and K. Manabe, J. Appl. Phys. 77, 4389 (1995).
    94.W. Rieger, T. Metzger, H. Angerer, R. Dimitrov, O. Ambacher, and M. Stutzmznn, Appl. Phys. Lett. 68,970 (1996).
    95.P. Perlin, C. Jauberthie–Carillon, Jean Paul Itie, and Alfonso San Miguel, I. Grzegory, and A. Polian, Phys. Rev. B 45, 83 (1992).
    96.D.-H. Wei, Y.-J. Hsu, R. Klauser, I.-H. Hong, G.-C. Yin,and T. J. Chung, Surf. Rev. Lett. 10, 617 (2003).
    97.R. Klauser, I.-H. Hong, T. -H. Lee, G.-C. Yin, D. -H. Wei, K. -L. Tsang, T. J. Chung, S. C. Wang, S. Gwo, Michael Zharnikov, and J. D. Laio, Surf. Rev. Lett. 9, 213 (2002).
    98.S. Zamir, B. Meyler, and Salzman, Appl. Phys. Lett. 78, 288 (2001).
    99.D. Wang, S. Jia, K.J. Chen,K.J. Chen, K. M. Lau, Y. Dikme, P. Van Gemmern, Y. C. Lin, H.Kalisch, R. H. Jansen, R. H. Jansen, and M. Heuken, J. Appl. Phys. 97, 056103-1 (2005).
    100.A. Dadgar, A.Alam, T. Riemann, J. Blasing, A. Diez, M. Poschenrieder, M. Strassburg, M. Heuken, J. Christen, and A. Krost, Phys. stat. sol. 188, 155, (2001).
    101.Y. Honda, Y.Kuroiwa, M. Yamaguchi, and N. Sawaki, Appl. phys. Lett. 80, 222 (2002).
    102.N. Matsuda and I. Akasaki, J. Crys. Growth 45, 192 (1978).
    103.U. Kaiser, P. D. Brown, I. Khodos, C. J. Humphreys, H. P. D. Schenk, and W. Richter, J. Mater. Res. 14, 2036 (1999).
    104.R. P. Pawlowski, C. Theodoropoulos, A. G. Salinger, T. J. Mountziaris, H. K. Moffat, J. N. Shadid, and E. J. Thrush, J. Crys. Growth. 221, 622 (2000).
    105.F. A. Ponce, D. P. Bour, and W. Göntz, and P. J. Wright, Appl. phys. Lett. 68, 57 (1996).
    106.M. Smith, J. Y. Lin, H. X. Jiang, and M. Asif Khan, Appl. Phys. Lett. 71,635 (1997)
    107.Glen A. Slacka, Leo J. Schowalter, Donald Morellic, A. Jaime. Freitas Jr., J. Crys. Growth. 246, 287 (2002).
    108.M. Toth, K. Fleischer, and M. R. Phillips, Phys. Rev. B 59, 1575 (1999).
    109.W. Gotz, M. N. Johnson, C. Chen, H. Liu, C. Kuo, W. Imler, Appl. Phys Lett. 68, 3144 (1996).
    110.S. Zamir, B. Meyler, and J. Salzman, Appl. Phys. Lett. 78, 288 (2001).
    111.D. Wang, S. Jia, K.J. Chen,K.J. Chen, K. M. Lau, Y. Dikme, P. Van Gemmern, Y. C. Lin, H.Kalisch, R. H. Jansen, R. H. Jansen, and M. Heuken, J. Appl. Phys. 97, 056103-1 (2005).
    112.A. Dadgar, A.Alam, T. Riemann, J. Blasing, A. Diez, M. Poschenrieder, M. Strassburg, M. Heuken, J. Christen, and A. Krost, Phys. stat. sol. 188, 155, (2001).
    113.Y. Honda, Y.Kuroiwa, M. Yamaguchi, and N. Sawaki, Appl. phys. Lett. 80, 222, (2002).
    114.N. Matsuda and I. Akasaki, J. Crys. Growth 45, 192 (1978).
    115.U. Kaiser, P. D. Brown, I. Khodos, C. J. Humphreys, H. P. D. Schenk, and W. Richter, J. Mater. Res. 14, 2036 (1999).
    116.T. Kozawa, T. Kachi, H. Kano, H. Nagase, N. Koide, and K. Manabe, J. Appl. Phys. 77, 4389 (1995).
    117.W. Rieger, T. Metzger, H. Angerer, R. Dimitrov, O. Ambacher, and M. Stutzmznn, Appl. Phys. Lett. 68,970 (1996).
    118.P. Perlin, C. Jauberthie–Carillon, Jean Paul Itie, and Alfonso San Miguel, I. Grzegory, and A. Polian, Phys. Rev. B 45, 83 (1992).
    119. C. Kisielowski, J. Krüger, S. Ruvimov, T. Suski, J. W. Ager, III, E. Jones, Z. Liliental-Weber, M. Rubin, E. R. Weber, M. D. Bremser, and R. F. Davis Phys. Rev. B 54, 17745 (1996).
    120. W. D. Callister, Jr., Material Science and Engineering an Introduction, 6th ed. (Wiley, New York, 2003), p. 199.
    121. A. Krost and A. Dadgar, Phys. Status Solidi A 194, 261 (2002).
    122. A. G. Lanin, V. N. Antsiferov, and V. G. Gilyov, in Silicon Nitride 93, edited by M. J. Hoffmann, P. F. Becher, and G. Petzow (Trans Tech Publications, Switzerland, 1994), p. 654.
    123.H. Amano, N. Sawaki, I. Akasaki , and Y. Toyoda, Appl. Phys. Lett. 48, 353 (1986).
    124.T. Takauchi, H. Amano, K. Hiramatsu, N. Sawaki, and I. Akasaki, J. Crys. Growth 115, 634 (1991).
    125.A. Watanabe, T. Takauchi, K. Hirosawa, H. Amano, K. Hiramatsu, and I. Akasaki, J. Crys. Growth 128, 391 (1993).
    126.S. N. Basu, T. Lei, and T. D. Moustakas, J. Mater. Res. 9, 2370 (1994)
    127.W. J. Meng and T. A. Perry, J. Appl. Phys. 76, 7824 (1994).
    128.N. P. Kobayashi, J. T. Kobayashi, P. D. Dapkus, W.-J. Choi, A. E. Bond, and X. Zhang, and D. H. Rich, Appl. Phys. Lett. 71, 3569 (1997).
    129.A. Dadgar, J. Christen, T. Riemann, S. Richter, J. Bläsing, A. Diez, A. Krost, A. Alam and M. Heuken, Appl. Phys. Lett. 78, 2211 (2001).
    130.S. Zamir, B. Meyler, and Salzman, Appl. Phys. Lett. 78, 288 (2001).
    131.N. Matsuda and I. Akasaki, J. Crys. Growth 45, 192 (1978).
    132.A. Dadgar, A.Alam, T. Riemann, J. Blasing, A. Diez, M. Poschenrieder, M. Strassburg, M. Heuken, J. Christen, and A. Krost, Phys. stat. sol. 188, 155 (2001).
    133.Y. Honda, Y.Kuroiwa, M. Yamaguchi, and N. Sawaki, Appl. phys. Lett. 80, 222 (2002).
    134.C. -H. Chen, C.-M. Yeh, J. Hwang, T.-L. Tsai, C.-H. Chiang, C.-S. Chang, and T.-P. Chen, J. Appl. Phys. 98, 093509 (2005)
    135.T. Kozawa, T. Kachi, H. Kano, H. Nagase, N. Koide, and K. Manabe, J. Appl. Phys. 77, 4389 (1995).
    136.W. Rieger, T. Metzger, H. Angerer, R. Dimitrov, O. Ambacher, and M. Stutzmznn, Appl. Phys. Lett. 68,970 (1996).
    137.P. Perlin, C. Jauberthie–Carillon, Jean Paul Itie, and Alfonso San Miguel, I. Grzegory, and A. Polian, Phys. Rev. B 45, 83 (1992).
    138.M. Smith, J. Y. Lin, H. X. Jiang, and M. Asif Khan, Appl. Phys. Lett. 71,635 (1997)
    139.D. Rudloff, T. Riemann, J. Christen, Q. K. K. Liu, A. Kaschner, A. Hoffmann, Ch. Thomsen, K. Vogeler, M. Diesselberg, S. Einfeldt, and D. Hommel, Appl. Phys. Lett. 82, 367 (2003).
    140.J. –M. Wagner and F. Bechstedt, Appl. Phys. Lett. 93, 2065 (2000).
    141.S. Tripathy, S. J. Chua, P. Chen, and Z. L. Miao, J. Appl. Phys. 92, 3503 (2002).
    142.D. G. Zhao, S. J. Xu, M. H. Xie, and S. Y. Yang, Appl. Phys. Lett. 83, 677 (2003).
    143. R. Klauser, I.-H. Hong, T.-H. Lee, G.-C. Yin, D.-H. Wei, K.-L. Tsang, T. J. Chuang, S.-C. Wang, S. Gwo, M. Zharnikov, and J.-D. Liao, Surf. Rev. Lett. 9 (2002) 213.
    144. S. Günther, B. Kaulich, L. Gregoratti, and M. Kiskinova, Progr. Surf. Sci. 70 (2002)187.
    145. M. K. Lee, H. J. Shin, G. B. Kim, C. K. Hong, O. H. Kim, C. H. Chang, Surf. Rev. Lett. 9 (2002) 497.
    146. R. Klauser, I.-H.Hong, H.-J. Su, T. T. Chen, S. Gwo, S.-C. Wang, T. J. Chuang and V. A. Gritsenko, Appl. Phys. Lett. 79 (2001) 3143.
    147. J. W. Chiou, C.L. Yueh, J. C. Jan, H. M. Tsai, W. F. Pong, I. H. Hong, R. Klauser, M. H. Tsai, Y. K. Chang, Y. Y. Chen, C. T. Wu, K. H. Chen, S. L. Wei, C. Y. Wen, L. C. Chen, and T. J. Chang, Appl. Phys. Lett. 81 (2002) 4189.
    148. A. J. Nelson, M. Danailov, A. Barinov, B. Kaulich, L. Gregoratti, and M. Kiskinova, Appl. Phys. Lett. 81 (2002) 3981.
    149. R. Klauser, I.-H. Hong, S.-C. Wang, M. Zharnikov, A. Paul, A. Gölzhäuser, A. Terfort and T. J. Chuang, J. Phys. Chem. B 107 2003) 3133.
    150. R. Klauser, M. L. Huang, S.C. Wang, C. H. Chen, T. J. Chung, A. Terfort, and M. Zharnikov, Langmuir 20 (2004) 2050.
    151. W. M. Lau, J.Appl. Phys. 67 (1990) 1504.
    152. H. J. Shin and M. K. Lee, Appl. Phys. Lett. 79 (2001)1057.
    153. H. J. Shin, H. J. Song, M. K. Lee, G. B. Kim, and C. K Hong, J.Appl. Phys. 93 (2003) 8982.
    154. E. Dutarde, S. Dinculescu, and T. Lebey, Conference Record of the 2000 IEEE International Symposium on Electrical Insulation, Anaheim, CA USA, April 2-5 2000 (2000) 172
    155. Yue Kuo, Thin film transistors: materials and processes vol.1 (Kluwer Academic Publishers, 2004)
    156. D. Cai, F. Xu, J. Kang, P. Gibart, and B. Beaumont, Appl. Phys. Lett. 86, 211917-1 (2005).
    156. Cho et. al., Appl. Phys. Lett. 79, 215 (2001).
    157. F. A. Ponce, D. P. Bour, W. T. Young, M. Saunders, and J. W. Steeds, Appl. Phys. Lett. 69, 337 (1996).
    158. L. T. Romano, J. E. Northrup, and M. A. O’Keefe, Appl. Phys. Lett. 69, 2394 (1996).
    159. S. Fuke, H. Teshigawara, K. Kuwahara, Y. Takano, T. Ito, M. Yanagihara, and K. Ohtsuka, J. Appl. Phys. 83, 764 (1998).
    160. J. L. Rouviere, J. L. Weyher, M. Seelmann-Eggerbert, and S. Porowski, Appl. Phys. Lett. 73, 668 (1998).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE