研究生: |
黃立德 Huang, Li-Te |
---|---|
論文名稱: |
建構功能化奈米粒子應用於生物分子分離偵測與複合材料的合成 Fabrication of Functionalized Nanoparticles for Biomolecule Detections, Separation and Hybrid Material Syntheses |
指導教授: |
林俊成
Lin, Chun-Cheng |
口試委員: |
林俊宏
Lin, Chun-Hung 林俊成 Lin, Chun-Cheng 吳明道 Wu, Albert M. 林伯樵 Lin, Po-Chiao 陳貴通 Tan, Kui-Thong |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2013 |
畢業學年度: | 102 |
語文別: | 中文 |
論文頁數: | 449 |
中文關鍵詞: | 奈米粒子 、醣衍生物 、抗體晶片 、奈米複合材料 |
外文關鍵詞: | nanoparticles, glycoconjugate, antibody microarray, nanohybrid materials |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於奈米尺度產生的特殊性質,近年來奈米科技已廣泛地應用在各種生活層面,奈米材料經由物理或化學方法進行表面修飾,引入功能性官能基,能夠改變奈米材料表面的性質,提升應用範圍與價值。本論文的研究著重於建構功能化的奈米粒子,應用於偵測、分離生物分子以及複合材料的合成。
凝集素與醣體具有專一性的親和力,因此藉由醣功能化金奈米粒子與凝集素的結合,我們發展三種快速且靈敏的方法偵測凝集素的存在。首先,由於連接醣體與奈米粒子間的連接鏈對於奈米粒子的穩定性有關鍵的影響力,經過詳細的結構比較,我們發現以同時具有親水性(六段乙二醇單元)與親油性(長碳鏈)結構連接鏈(EG6C10)的醣體,並混合30%的基質進行包覆金奈米粒子時,可以得到具有抗蛋白質非專一性吸附與高鹽度環境中穩定懸浮的醣功能化金奈米粒子。根據EG6C10的結構,我們合成七種醣功能化的金奈米粒子並用偵測七種凝集素。經由UV-Vis光譜儀與DLS粒徑儀的量測,可以成功觀察到凝集素與金奈米粒子結合時,產生的吸收峰位移與粒徑的改變。此外,在硼酸位向性固化凝集素抗體晶片上,金奈米粒子與凝集素在抗體上方聚集形成三維的堆疊,經過銀染放大,我們無須任何儀器輔助,可以直接以肉眼觀測凝集素的存在。這三種偵測的實驗結果顯示,偵測極限皆在pM與nM之間,與傳統ELISA的偵測極限相當,使得他們在偵測凝集素上非常具有競爭力。
另一方面,相較於文獻上直接在氧化鋅奈米柱陣列表面還原金屬鹽類得到奈米粒子結合奈米柱的複合材料,金奈米粒子可透過硫辛酸作為分子架橋與氧化鋅奈米柱陣列結合,形成氧化鋅-金複合材料。此方法的優點為操作簡單,可以得到粒徑相當均勻的複合材料外,透過金奈米粒子溶液的濃度可以控制氧化鋅奈米柱陣列表面金的密度,進而詳細的探討金奈米粒子的粒徑與密度對於光催化降解能力的影響。利用螢光染料rhodamine B作為降解的研究標的,實驗結果發現,光催化降解效率原則上隨著金含量增加而增加,在五種粒徑的金奈米粒子中,修飾10 nm金奈米粒子的氧化鋅-金複合材料在UV光照射下,具有最好的光催化降解效率,而相較於氧化鋅奈米柱陣列,催化效率增加8.5倍之多,使得本研究成功得到的氧化鋅-金複合材料,具有發展成為光觸媒產品的潛力。
最後,我們利用醯胺鍵耦合、微波輔助銅催化環化反應、溶膠凝膠反應以及可逆型加成裂解鏈轉移聚合法於磁性奈米粒子表面鍵結硼酸分子,成功合成硼酸功能化奈米粒子。根據紅外光譜量測分析,經由微波輔助銅催化環化反應以及可逆型加成裂解鏈轉移聚合法得到的磁性奈米粒子具有較多硼酸分子的訊號,代表兩者方式的合成效率較佳。目前奈米粒子表面硼酸的定量分析以及上述四種化學方法合成的硼酸功能化奈米粒子,對於樣品中醣蛋白分離純化的效率正在進行評估中。
In recent decades, nanoscience has been involved in a variety of practical applications due to unique properties resulted from nanoscale dimensions. Surface functionalization by chemical and physical modification further improved the performance of nanomaterial and its applications in a diverse area. The works presented in this thesis focuses on fabrications of functionalized nanoparticles for biodetection, bioseparation and hybrid nanomaterial synthesis.
Because of the specific affinity between lectin (carbohydrate-binding protein) and saccharides, we developed three fast and sensitive methods for detecting lectins through glyco-gold nanoparticle (AuNPs) mediated agglutination. On account of the structure, saccharide density and the length of linker between the binding ligand (saccharide) and nanoparticle can affect the stability of AuNPs in buffered saline and modulate the overall binding affinity toward lectins, a detailed study has been conducted for synthesis of stable AuNPs. We discovered that AuNPs covered by 70% of saccharide with linker constructed from six ethylene glycol unit and a ten saturated carbon length (EG6C10) gave the best stability under high salt conditions (600 mM NaCl). Based on the EG6C10 structure, 7 different AuNPs functionalized by mono-, di- and trisaccharide were synthesized and used to form aggregation in the solutions with target lectins. UV-Vis and dynamic light scattering measurements were utilized as readout of the shifts of absorption and the changes of the mean hydrodynamic diameter (DH), respectively, to monitor the extent of AuNPs aggregation. Furthermore, lectin-glyconanoparticle complex captured by a uniformly oriented antibody via boronate formation on microarray chip followed by silver stain permits the detection of the presence of target protein by naked eye. In these strategies, a detection sensitivity within the pico- to nanomolar range (pM - nM) is readily achieved, which are comparable with ELISA-based assays, and therefore, make them as attractive approaches for lectin-sensing applications. In addition, these strategies are rapid, and could be easily implemented and extended to a variety of other carbohydrate-binding proteins.
On the other hand, AuNPs was functionalized by a molecular linker - thioctic acid (TA) and assembled uniformly on the surface of single-crystal ZnO nanorod arrays (ZNA) instead of the procedure to reduce metal salt precursor, which gave poor control of size and shape. The size and loading of AuNPs on ZNA can be easily controlled synchronously in large scale by this synthetic methodology, which are key factors for improving the photocatalytic activities. In the photodegradation study of decomposing rhodamine B dye (RhB), which serves as an example of pollutant in water, 10 nm AuNPs decorated ZNA exhibits the highest photoreaction rate (8.5-fold enhancement compared to bare ZNA) under UV irradiation among 5 different size of AuNPs. Also, the degradation efficiency was found to be proportional to the loading amount of the AuNPs on the ZNA. The high photodegradation rate demonstrated in this study indicated that the ZNA-AuNPs heterostructures are promising candidates for the next-generation photocatalysts.
At last, magnetic nanoparticles (MNPs) functionalized by boronic acid (BA@MNPs) through amide bond formation, microwave-assisted CuAAC reaction, sol-gel process, and RAFT polymerization were synthesized successfully. Based on the FTIR semi-quantitative analysis, BA@MNPs synthesized from CuAAC and RAFT polymerization approaches have shown stronger signal of BA molecule, indicating the better efficiency of immobilization on nanoparticle surface. Quantitative analysis of BA molecule on the MNPs surface and evaluation of BA@MNPs as extracting agent to capture and enrich glycoproteins are being progress.
1. Donohue-Rolfe, A.; Kelley, M. A.; Bennish, M.; Keusch, G. T., Enzyme-linked immunosorbent assay for shigella toxin. J. Clin. Microbiol. 1986, 24, 65-68.
2. Downes, F. P.; Green, J. H.; Greene, K.; Strockbine, N.; Wells, J. G.; Wachsmuth, I. K., Development and evaluation of enzyme-linked immunosorbent assays for detection of Shiga-like toxin I and Shiga-like toxin II. J. Clin. Microbiol. 1989, 27, 1292-1297.
3. Ashkenazi, S.; Cleary, T. G., Rapid method to detect Shiga toxin and Shiga-like toxin I based on binding to globotriosyl ceramide (Gb3), their natural receptor. J. Clin. Microbiol. 1989, 27, 1145-1150.
4. Ashkenazi, S.; Cleary, T. G., A method for detecting Shiga toxin and Shiga-like toxin-l in pure and mixed culture. J. Med. Microbiol. 1990, 32, 255-261.
5. Basta, M.; Karmali, M.; Lingwood, C., Sensitive receptor-specified enzyme-linked immunosorbent assay for Escherichia coli verocytotoxin. J. Clin. Microbiol. 1989, 27, 1617-1622.
6. Hoffmann, B.; Beer, M.; Reid, S. M.; Mertens, P.; Oura, C. A. L.; van Rijn, P. A.; Slomka, M. J.; Banks, J.; Brown, I. H.; Alexander, D. J.; King, D. P., A review of RT-PCR technologies used in veterinary virology and disease control: Sensitive and specific diagnosis of five livestock diseases notifiable to the World Organisation for Animal Health. Vet. microbiol. 2009, 139, 1-23.
7. Spackman, E.; Suarez, D. L., Type A influenza virus detection and quantitation by real-time RT-PCR. Methods Mol. Biol. 2008, 436, 19-26.
8. Pasick, J., Advances in the molecular based techniques for the diagnosis and characterization of avian influenza virus infections. Transbound. Emerg. Dis. 2008, 55, 329-338.
9. Daniel, M.-C.; Astruc, D., Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 2003, 104, 293-346.
10. Hvolbæk, B.; Janssens, T. V. W.; Clausen, B. S.; Falsig, H.; Christensen, C. H.; Nørskov, J. K., Catalytic activity of Au nanoparticles. Nano Today 2007, 2, 14-18.
11. Lopez, N.; Janssens, T. V. W.; Clausen, B. S.; Xu, Y.; Mavrikakis, M.; Bligaard, T.; Nørskov, J. K., On the origin of the catalytic activity of gold nanoparticles for low-temperature CO oxidation. J. Catal. 2004, 223, 232-235.
12. Schmid, G., Metals. In Nanoscale Materials in Chemistry, Klabunde, K. J., Eds., John Wiley & Sons, Inc., 2002, pp. 15-59.
13. Alivisatos, A. P., Semiconductor clusters, nanocrystals, and quantum dots. Science 1996, 271, 933-937.
14. Willets, K. A.; Van Duyne, R. P., Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem. 2007, 58, 267-297.
15. Jain, P. K.; Lee, K. S.; El-Sayed, I. H.; El-Sayed, M. A., Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J. Phys. Chem. B 2006, 110, 7238-7248.
16. Link, S.; El-Sayed, M. A., Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles. J. Phys. Chem. B 1999, 103, 4212-4217.
17. Zhong, Z.; Patskovskyy, S.; Bouvrette, P.; Luong, J. H. T.; Gedanken, A., The surface chemistry of au colloids and their interactions with functional amino acids. J. Phys. Chem. B 2004, 108, 4046-4052.
18. NanoComposix gold nanoparticles: optical Pproperties. http://www.nanocomposix.com/kb/gold/optical-properties.
19. 詹雅存,抗體接枝於矽晶片上之檢測,國立逢甲大學化學工程研究所 碩士論文,2008。
20. 簡裕益,醣奈米粒子作為高親和性探針應用於目標蛋白質濃縮及鑑定,國立台灣大學化學研究所 博士論文,2007。
21. Schmid, G.; Corain, B., Nanoparticulated gold: syntheses, structures, electronics, and reactivities. Eur. J. Inorg. Chem. 2003, 2003, 3081-3098.
22. Mafuné, F.; Kohno, J.-y.; Takeda, Y.; Kondow, T.; Sawabe, H., Formation of gold nanoparticles by laser ablation in aqueous solution of surfactant. J. Phys. Chem. B 2001, 105, 5114-5120.
23. Mafuné, F.; Kohno, J.-y.; Takeda, Y.; Kondow, T., Full Physical preparation of size-selected gold nanoparticles in solution: laser ablation and laser-induced size control. J. Phys. Chem. B 2002, 106, 7575-7577.
24. Schmidt, E.; Klabunde, K. J.; Ponce, A.; Smetana, A.; Heroux, D., Metal Vapor Synthesis of Transition Metal Compounds. In Encyclopedia of Inorganic Chemistry, Bruce King, R., Ed., John Wiley & Sons, 2006.
25. Okitsu, K.; Mizukoshi, Y.; Bandow, H.; Maeda, Y.; Yamamoto, T.; Nagata, Y., Formation of noble metal particles by ultrasonic irradiation. Ultrason. Sonochem. 1996, 3, S249-S251.
26. Okitsu, K.; Yue, A.; Tanabe, S.; Matsumoto, H.; Yobiko, Y., Formation of colloidal gold nanoparticles in an ultrasonic field: control of rate of gold(III) reduction and size of formed gold particles. Langmuir 2001, 17, 7717-7720.
27. Zhou, Y.; Wang, C. Y.; Zhu, Y. R.; Chen, Z. Y., A novel ultraviolet irradiation technique for shape-controlled synthesis of gold nanoparticles at room temperature. Chem. Mater. 1999, 11, 2310-2312.
28. Nakamoto, M.; Yamamoto, M.; Fukusumi, M., Thermolysis of gold(I) thiolate complexes producing novel gold nanoparticles passivated by alkyl groups. Chem. Commun. 2002, 1622-1623.
29. Shimizu, T.; Teranishi, T.; Hasegawa, S.; Miyake, M., Size evolution of alkanethiol-protected gold nanoparticles by heat treatment in the solid state. J. Phys. Chem. B 2003, 107, 2719-2724.
30. Teranishi, T.; Hasegawa, S.; Shimizu, T.; Miyake, M., Heat-induced size evolution of gold nanoparticles in the solid state. Adv. Mater. 2001, 13, 1699-1701.
31. Brust, M.; Walker, M.; Bethell, D.; Schiffrin, D. J.; Whyman, R., Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid-liquid system. J. Chem. Soc., Chem. Commun. 1994, 801-802.
32. Yu, Y.-Y.; Chang, S.-S.; Lee, C.-L.; Wang, C. R. C., Gold nanorods: electrochemical synthesis and optical properties. J. Phys. Chem. B 1997, 101, 6661-6664.
33. Tu, W.; Liu, H., Rapid synthesis of nanoscale colloidal metal clusters by microwave irradiation. J. Mater. Chem. 2000, 10, 2207-2211.
34. Manna, A.; Imae, T.; Yogo, T.; Aoi, K.; Okazaki, M., Synthesis of gold nanoparticles in a Winsor II type microemulsion and their characterization. J. Colloid Interface Sci. 2002, 256, 297-303.
35. Chen, F.; Xu, G.-Q.; Hor, T. S. A., Preparation and assembly of colloidal gold nanoparticles in CTAB-stabilized reverse microemulsion. Mater. Lett. 2003, 57, 3282-3286.
36. Ghosh, P.; Han, G.; De, M.; Kim, C. K.; Rotello, V. M., Gold nanoparticles in delivery applications. Adv. Drug Deliv. Rev. 2008, 60, 1307-1315.
37. You, C.-C.; Agasti, S. S.; Rotello, V. M., Chemical and Biological Sensing Using Gold Nanoparticles. In Nano and Microsensors for Chemical and Biological Terrorism Surveillance, Tok, Jeffrey B. H., Ed., Royal Society of Chemistry, 2008, pp. 29-59.
38. Weare, W. W.; Reed, S. M.; Warner, M. G.; Hutchison, J. E., Improved synthesis of small (dcore ≈ 1.5 nm) phosphine-stabilized gold nanoparticles. J. Am. Chem. Soc. 2000, 122, 12890-12891.
39. Schmid, G.; Pfeil, R.; Boese, R.; Bandermann, F.; Meyer, S.; Calis, G. H. M.; van der Velden, J. W. A., Au55[P(C6H5)3]12Cl6- A gold cluster of an exceptional size. Chem. Ber. 1981, 114, 3634-3642.
40. Schmid, G., Large clusters and colloids. Metals in the embryonic state. Chem. Rev. 1992, 92, 1709-1727.
41. Templeton, A. C.; Wuelfing, W. P.; Murray, R. W., Monolayer-protected cluster molecules. Acc. Chem. Res. 1999, 33, 27-36.
42. Leff, D. V.; Ohara, P. C.; Heath, J. R.; Gelbart, W. M., Thermodynamic control of gold nanocrystal size: experiment and theory. J. Phy. Chem. 1995, 99, 7036-7041.
43. Fink, J.; Kiely, C. J.; Bethell, D.; Schiffrin, D. J., Self-organization of nanosized gold particles. Chem. Mater. 1998, 10, 922-926.
44. Aslam, M.; Fu, L.; Su, M.; Vijayamohanan, K.; Dravid, V. P., Novel one-step synthesis of amine-stabilized aqueous colloidal gold nanoparticles. J. Mater. Chem. 2004, 14, 1795-1797.
45. Hiramatsu, H.; Osterloh, F. E., A simple large-scale synthesis of nearly monodisperse gold and silver nanoparticles with adjustable sizes and with exchangeable surfactants. Chem. Mater. 2004, 16, 2509-2511.
46. Turkevich, J.; Stevenson, P. C.; Hillier, J., A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss. Faraday Soc. 1951, 11, 55-75.
47. Grabar, K. C.; Freeman, R. G.; Hommer, M. B.; Natan, M. J., Preparation and Characterization of Au Colloid Monolayers. Anal. Chem. 1995, 67, 735-743.
48. Frens, G., Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nat. Phy. Sci. 1973, 241, 20-22.
49. Mirkin, C. A., Programming the assembly of two- and three-dimensional architectures with DNA and nanoscale inorganic building blocks. Inorg. Chem. 2000, 39, 2258-2272.
50. Chithrani, B. D.; Chan, W. C. W., Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes. Nano Lett. 2007, 7, 1542-1550.
51. Zhang, Y.; Zhang, Y.; Wang, H.; Yan, B.; Shen, G.; Yu, R., An enzyme immobilization platform for biosensor designs of direct electrochemistry using flower-like ZnO crystals and nano-sized gold particles. J. Electroanal. Chem. 2009, 627, 9-14.
52. Shenton, W.; Davis, S. A.; Mann, S., Directed self-assembly of nanoparticles into macroscopic materials using antibody–antigen recognition. Adv. Mater. 1999, 11, 449-452.
53. Li, H.; Rothberg, L., Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles. Proc. Natl. Acad. Sci. U. S. A. 2004, 101, 14036-14039.
54. Griffin, J.; Singh, A. K.; Senapati, D.; Lee, E.; Gaylor, K.; Jones-Boone, J.; Ray, P. C., Sequence-specific HCV RNA quantification using the size-dependent nonlinear optical properties of gold nanoparticles. Small 2009, 5, 839-845.
55. Kumar, A.; Mukherjee, P.; Guha, A.; Adyantaya, S. D.; Mandale, A. B.; Kumar, R.; Sastry, M., Amphoterization of colloidal gold particles by capping with valine molecules and their phase transfer from water to toluene by electrostatic coordination with fatty amine molecules. Langmuir 2000, 16, 9775-9783.
56. Reum, N.; Fink-Straube, C.; Klein, T.; Hartmann, R. W.; Lehr, C.-M.; Schneider, M., Multilayer coating of gold nanoparticles with drug−polymer coadsorbates. Langmuir 2010, 26, 16901-16908.
57. Choi, J.-W.; Kang, D.-Y.; Jang, Y.-H.; Kim, H.-H.; Min, J.; Oh, B.-K., Ultra-sensitive surface plasmon resonance based immunosensor for prostate-specific antigen using gold nanoparticle–antibody complex. Colloids Surf. A 2008, 313-314, 655-659.
58. Giljohann, D. A.; Seferos, D. S.; Daniel, W. L.; Massich, M. D.; Patel, P. C.; Mirkin, C. A., Gold nanoparticles for biology and medicine. Angew. Chem. Int. Ed. 2010, 49, 3280-3294.
59. Wang, Z.; Ma, L., Gold nanoparticle probes. Coord. Chem. Rev. 2009, 253, 1607-1618.
60. Sperling, R. A.; Rivera Gil, P.; Zhang, F.; Zanella, M.; Parak, W. J., Biological applications of gold nanoparticles. Chem. Soc. Rev. 2008, 37, 1896-1908.
61. Connor, E. E.; Mwamuka, J.; Gole, A.; Murphy, C. J.; Wyatt, M. D., Gold Nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small 2005, 1, 325-327.
62. Boisselier, E.; Astruc, D., Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. Chem. Soc. Rev. 2009, 38, 1759-1782.
63. Cho, E. C.; Glaus, C.; Chen, J.; Welch, M. J.; Xia, Y., Inorganic nanoparticle-based contrast agents for molecular imaging. Trends Mol. Med. 2010, 16, 561-573.
64. Elghanian, R.; Storhoff, J. J.; Mucic, R. C.; Letsinger, R. L.; Mirkin, C. A., Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 1997, 277, 1078-1081.
65. You, C.-C.; Miranda, O. R.; Gider, B.; Ghosh, P. S.; Kim, I.-B.; Erdogan, B.; Krovi, S. A.; Bunz, U. H. F.; Rotello, V. M., Detection and identification of proteins using nanoparticle-fluorescent polymer `chemical nose' sensors. Nat Nano 2007, 2, 318-323.
66. Welch, C.; Compton, R., The use of nanoparticles in electroanalysis: a review. Anal. Bioanal. Chem. 2006, 384, 601-619.
67. Guo, S.; Wang, E., Synthesis and electrochemical applications of gold nanoparticles. Anal. Chim. Acta 2007, 598, 181-192.
68. Guo, S.; Dong, S., Biomolecule-nanoparticle hybrids for electrochemical biosensors. Trends Anal. Chem. 2009, 28, 96-109.
69. Porter, M. D.; Lipert, R. J.; Siperko, L. M.; Wang, G.; Narayanan, R., SERS as a bioassay platform: fundamentals, design, and applications. Chem. Soc. Rev. 2008, 37, 1001-1011.
70. Ghosh, S. K.; Pal, T., Interparticle Coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications. Chem. Rev. 2007, 107, 4797-4862.
71. Cao, X.; Ye, Y.; Liu, S., Gold nanoparticle-based signal amplification for biosensing. Anal. Biochem. 2011, 417, 1-16.
72. Li, F.; Zhao, Q.; Wang, C.; Lu, X.; Li, X.-F.; Le, X. C., Detection of Escherichia coli O157:H7 using gold nanoparticle labeling and inductively coupled plasma mass spectrometry. Anal. Chem. 2010, 82, 3399-3403.
73. Wu, J.; Yan, F.; Zhang, X.; Yan, Y.; Tang, J.; Ju, H., Disposable reagentless electrochemical immunosensor array based on a biopolymer/sol-gel membrane for simultaneous measurement of several tumor markers. Clin. Chem. 2008, 54, 1481-1488.
74. Kuang, H.; Chen, W.; Xu, D.; Xu, L.; Zhu, Y.; Liu, L.; Chu, H.; Peng, C.; Xu, C.; Zhu, S., Fabricated aptamer-based electrochemical “signal-off” sensor of ochratoxin A. Biosens. Bioelectron. 2010, 26, 710-716.
75. Vidal, J.; Duato, P.; Bonel, L.; Castillo, J., Use of polyclonal antibodies to ochratoxin A with a quartz-crystal microbalance for developing real-time mycotoxin piezoelectric immunosensors. Anal. Bioanal. Chem. 2009, 394, 575-582.
76. Liu, D.; Wang, Z.; Jiang, X., Gold nanoparticles for the colorimetric and fluorescent detection of ions and small organic molecules. Nanoscale 2011, 3, 1421-1433.
77. Zhao, W.; Brook, M. A.; Li, Y., Design of gold nanoparticle-based colorimetric biosensing assays. ChemBioChem 2008, 9, 2363-2371.
78. Mammen, M.; Choi, S.-K.; Whitesides, G. M., Polyvalent Interactions in Biological Systems: implications for Design and Use of Multivalent Ligands and Inhibitors. Angew. Chem. Int. Ed. 1998, 37, 2754-2794.
79. Gestwicki, J. E.; Cairo, C. W.; Strong, L. E.; Oetjen, K. A.; Kiessling, L. L., Influencing receptor-ligand binding mechanisms with multivalent ligand architecture. J. Am. Chem. Soc. 2002, 124, 14922-14933.
80. Pieters, R. J., Maximising multivalency effects in protein-carbohydrate interactions. Org. Biomol. Chem. 2009, 7, 2013-2025.
81. Jayaraman, N., Multivalent ligand presentation as a central concept to study intricate carbohydrate-protein interactions. Chem. Soc. Rev. 2009, 38, 3463-3483.
82. Marradi, M.; Chiodo, F.; Garcia, I.; Penades, S., Glyconanoparticles as multifunctional and multimodal carbohydrate systems. Chem. Soc. Rev. 2013, 42, 4728-4745.
83. Schofield, C. L.; Mukhopadhyay, B.; Hardy, S. M.; McDonnell, M. B.; Field, R. A.; Russell, D. A., Colorimetric detection of Ricinus communis Agglutinin 120 using optimally presented carbohydrate-stabilised gold nanoparticles. Analyst 2008, 133, 626-634.
84. Takae, S.; Akiyama, Y.; Otsuka, H.; Nakamura, T.; Nagasaki, Y.; Kataoka, K., Ligand density effect on biorecognition by pegylated gold nanoparticles: regulated interaction of rca120 lectin with lactose installed to the distal end of tethered peg strands on gold surface. Biomacromolecules 2005, 6, 818-824.
85. Otsuka, H.; Akiyama, Y.; Nagasaki, Y.; Kataoka, K., Quantitative and reversible lectin-induced association of gold nanoparticles modified with α-lactosyl-ω-mercapto-poly(ethylene glycol). J. Am. Chem. Soc. 2001, 123, 8226-8230.
86. Schofield, C. L.; Haines, A. H.; Field, R. A.; Russell, D. A., Silver and gold glyconanoparticles for colorimetric bioassays. Langmuir 2006, 22, 6707-6711.
87. Sato, Y.; Murakami, T.; Yoshioka, K.; Niwa, O., 12-Mercaptododecyl β-maltoside-modified gold nanoparticles: specific ligands for concanavalin A having long flexible hydrocarbon chains. Anal. Bioanal. Chem. 2008, 391, 2527-2532.
88. Watanabe, S.; Yoshida, K.; Shinkawa, K.; Kumagawa, D.; Seguchi, H., Thioglucose-stabilized gold nanoparticles as a novel platform for colorimetric bioassay based on nanoparticle aggregation. Colloids Surf. B Biointerfaces 2010, 81, 570-577.
89. Hone, D. C.; Haines, A. H.; Russell, D. A., Rapid, quantitative colorimetric detection of a lectin using mannose-stabilized gold nanoparticles. Langmuir 2003, 19, 7141-7144.
90. Song, E.; Li, J.; Wei, H.; Song, Y., One-step facile synthesis of N-acetylglucosamine-functionalized gold nanoparticles for direct visual and light-scattering detection of lectin from wheat germ. Analytical Methods 2012, 4, 1199-1201.
91. Schofield, C. L.; Field, R. A.; Russell, D. A., Glyconanoparticles for the Colorimetric Detection of Cholera Toxin. Anal. Chem. 2007, 79, 1356-1361.
92. Niikura, K.; Nagakawa, K.; Ohtake, N.; Suzuki, T.; Matsuo, Y.; Sawa, H.; Ijiro, K., Gold nanoparticle arrangement on viral particles through carbohydrate recognition: a non-cross-linking approach to optical virus detection. Bioconjugate Chem. 2009, 20, 1848-1852.
93. Light Scattering from Polymer Solutions and Nanoparticle Dispersions, Schärtl, W., Ed., Springer-Verlag, Berlin, Germany, 2007.
94. Sánchez-Pomales, G.; Morris, T. A.; Falabella, J. B.; Tarlov, M. J.; Zangmeister, R. A., A lectin-based gold nanoparticle assay for probing glycosylation of glycoproteins. Biotechnol. Bioeng. 2012, 109, 2240-2249.
95. Dai, Q.; Liu, X.; Coutts, J.; Austin, L.; Huo, Q., A one-step highly sensitive method for DNA detection using dynamic light scattering. J. Am. Chem. Soc. 2008, 130, 8138-8139.
96. Liu, X.; Dai, Q.; Austin, L.; Coutts, J.; Knowles, G.; Zou, J.; Chen, H.; Huo, Q., A one-step homogeneous immunoassay for cancer biomarker detection using gold nanoparticle probes coupled with dynamic light scattering. J. Am. Chem. Soc. 2008, 130, 2780-2782.
97. Liu, X.; Huo, Q., A washing-free and amplification-free one-step homogeneous assay for protein detection using gold nanoparticle probes and dynamic light scattering. J. Immunol. Methods 2009, 349, 38-44.
98. Driskell, J. D.; Jones, C. A.; Tompkins, S. M.; Tripp, R. A., One-step assay for detecting influenza virus using dynamic light scattering and gold nanoparticles. Analyst 2011, 136, 3083-3090.
99. Wang, X.; Ramström, O.; Yan, M., Quantitative analysis of multivalent ligand presentation on gold glyconanoparticles and the impact on lectin binding. Anal. Chem. 2010, 82, 9082-9089.
100. Wang, X.; Ramstrom, O.; Yan, M., Dynamic light scattering as an efficient tool to study glyconanoparticle-lectin interactions. Analyst 2011, 136, 4174-4178.
101. Lin, C.-C.; Yeh, Y.-C.; Yang, C.-Y.; Chen, C.-L.; Chen, G.-F.; Chen, C.-C.; Wu, Y.-C., Selective binding of mannose-encapsulated gold nanoparticles to type 1 pili in Escherichia coli. J. Am. Chem. Soc. 2002, 124, 3508-3509.
102. Chien, Y.-Y.; Jan, M.-D.; Adak, A. K.; Tzeng, H.-C.; Lin, Y.-P.; Chen, Y.-J.; Wang, K.-T.; Chen, C.-T.; Chen, C.-C.; Lin, C.-C., Globotriose-functionalized gold nanoparticles as multivalent probes for Shiga-like toxin. ChemBioChem 2008, 9, 1100-1109.
103. Chen, M.-L.; Adak, A. K.; Yeh, N.-C.; Yang, W.-B.; Chuang, Y.-J.; Wong, C.-H.; Hwang, K.-C.; Hwu, J.-R. R.; Hsieh, S.-L.; Lin, C.-C., Fabrication of an oriented Fc-fused lectin microarray through boronate formation. Angew. Chem. 2008, 120, 8755-8758.
104. 陳穆麟,硼酸表面微陣列系統的發展及應用,國立清華大學研究所 博士論文,2009。
105. Kulkarni, A. A.; Weiss, A. A.; Iyer, S. S., Glycan-based high-affinity ligands for toxins and pathogen receptors. Med. Res. Rev. 2010, 30, 327-393.
106. Sharon, N.; Lis, H., Lectins as cell recognition molecules. Science 1989, 246, 227-234.
107. Liener, I. E.; Sharon, N., The lectins,properties, function and applications in biology and medicine. Goldstein, I. J., Ed., Academic Press, New York, 1986.
108. Persson, K.; Ly, H. D.; Dieckelmann, M.; Wakarchuk, W. W.; Withers, S. G.; Strynadka, N. C. J., Crystal structure of the retaining galactosyltransferase LgtC from Neisseria meningitidis in complex with donor and acceptor sugar analogs. Nat. Struct. Mol. Biol. 2001, 8, 166-175.
109. 李泗芃,探討嗜熱菌Meiothermus taiwanensis ATCC BAA-400之半乳糖激酶酵素動力學及應用於Pk合成抗原類似物,國立清華大學化學研究所 碩士論文,2011。
110. Ogura, H., Sialic acids derivatives as glycolipoids. In Carbohydrates: Synthetic Methods and Application in Medicinal Chemistry, Ogura, H. H., A.; Suami, T., Ed., John Wiley & Sons, New York, 1992, pp. 298.
111. Teo, C.-F.; Hwang, T.-S.; Chen, P.-H.; Hung, C.-H.; Gao, H.-S.; Chang, L.-S.; Lin, C.-H., Synthesis of sialyl Tn glycopeptides – enzymatic sialylation by α2,6-sialyltransferase from Photobacterium damsela. Adv. Synth. Catal. 2005, 347, 967-972.
112. Barrientos, A. G.; Fuente, J. M. d. l.; Jiménez, M.; Solís, D.; Cañada, F. J.; Martín-Lomas, M.; Penadés, S., Modulating glycosidase degradation and lectin recognition of gold glyconanoparticles. Carbohydr. Res. 2009, 344, 1474-1478.
113. Haiss, W.; Thanh, N. T. K.; Aveyard, J.; Fernig, D. G., Determination of size and concentration of gold nanoparticles from UV-Vis spectra. Anal. Chem. 2007, 79, 4215-4221.
114. Robidillo, C. J. T. Carbohydrate-encapsulated gold nanoparticles as multivalent platforms for probing carbohydrate-protein interactions. 國立清華大學化學研究所 碩士論文,2011。
115. Zolk, M.; Eisert, F.; Pipper, J.; Herrwerth, S.; Eck, W.; Buck, M.; Grunze, M., Solvation of oligo(ethylene glycol)-terminated self-assembled monolayers studied by vibrational sum frequency spectroscopy. Langmuir 2000, 16, 5849-5852.
116. Vanderah, D. J.; Arsenault, J.; La, H.; Gates, R. S.; Silin, V.; Meuse, C. W.; Valincius, G., Structural variations and ordering conditions for the self-assembled monolayers of HS(CH2CH2O)3-6CH3. Langmuir 2003, 19, 3752-3756.
117. Bain, C. D.; Troughton, E. B.; Tao, Y. T.; Evall, J.; Whitesides, G. M.; Nuzzo, R. G., Formation of monolayer films by the spontaneous assembly of organic thiols from solution onto gold. J. Am. Chem. Soc. 1989, 111, 321-335.
118. Kulkarni, A. A.; Fuller, C.; Korman, H.; Weiss, A. A.; Iyer, S. S., Glycan encapsulated gold nanoparticles selectively inhibit Shiga toxins 1 and 2. Bioconjugate Chem. 2010, 21, 1486-1493.
119. Aslan, K.; Pérez-Luna, V. H., Surface modification of colloidal gold by chemisorption of alkanethiols in the presence of a nonionic surfactant. Langmuir 2002, 18, 6059-6065.
120. Carter, J. D.; LaBean, T. H., Organization of inorganic nanomaterials via programmable DNA self-assembly and peptide molecular recognition. ACS Nano 2011, 5, 2200-2205.
121. Xu, S.; Yuan, H.; Xu, A.; Wang, J.; Wu, L., Rapid synthesis of stable and functional conjugates of DNA/gold nanoparticles mediated by Tween 80. Langmuir 2011, 27, 13629-13634.
122. Wu, A. M.; Wu, J. H.; Singh, T.; Lai, L.-J.; Yang, Z.; Herp, A., Recognition factors of Ricinus communis agglutinin 1 (RCA1). Mol. Immunol. 2006, 43, 1700-1715.
123. Song, X.; Yu, H.; Chen, X.; Lasanajak, Y.; Tappert, M. M.; Air, G. M.; Tiwari, V. K.; Cao, H.; Chokhawala, H. A.; Zheng, H.; Cummings, R. D.; Smith, D. F., A sialylated glycan microarray reveals novel interactions of modified sialic acids with proteins and viruses. J. Biol. Chem. 2011, 286, 31610-31622.
124. Yu, Y.; Mishra, S.; Song, X.; Lasanajak, Y.; Bradley, K. C.; Tappert, M. M.; Air, G. M.; Steinhauer, D. A.; Halder, S.; Cotmore, S.; Tattersall, P.; Agbandje-McKenna, M.; Cummings, R. D.; Smith, D. F., Functional glycomic analysis of human milk glycans reveals the presence of virus receptors and embryonic stem cell biomarkers. J. Biol. Chem. 2012, 287, 44784-44799.
125. Manimala, J. C.; Roach, T. A.; Li, Z.; Gildersleeve, J. C., High-throughput carbohydrate microarray analysis of 24 lectins. Angew. Chem. Int. Ed. 2006, 45, 3607-3610.
126. Miura, Y.; Sasao, Y.; Dohi, H.; Nishida, Y.; Kobayashi, K., Self-assembled monolayers of globotriaosylceramide (Gb3) mimics: surface-specific affinity with Shiga toxins. Anal. Biochem. 2002, 310, 27-35.
127. Peters, B. P.; Ebisu, S.; Goldstein, I. J.; Flashner, M., Interaction of wheat germ agglutinin with sialic acid. Biochemistry 1979, 18, 5505-5511.
128. Liu, Y.; Feizi, T.; Campanero-Rhodes, M. A.; Childs, R. A.; Zhang, Y.; Mulloy, B.; Evans, P. G.; Osborn, H. M. I.; Otto, D.; Crocker, P. R.; Chai, W., Neoglycolipid probes prepared via oxime ligation for microarray analysis of oligosaccharide-protein interactions. Chem. Biol. 2007, 14, 847-859.
129. Mocak, J. B., A. M.; Mitchell, S.; Scollary, G. , A statistical overview of standard (IUPAC and ACS) and new procedures for determining the limits of detection and quantification: application to voltammetric and stripping techniques (Technical Report). Pure Appl. Chem. 1997, 69, 297-328.
130. Boumrah, D.; Campbell, M. M.; Fenner, S.; Kinsman, R. G., Spacer molecules in peptide sequences: incorporation into analogues of atrial natriuretic factor. Tetrahedron 1997, 53, 6977-6992.
131. Lin, P.-C.; Chen, S.-H.; Wang, K.-Y.; Chen, M.-L.; Adak, A. K.; Hwu, J.-R. R.; Chen, Y.-J.; Lin, C.-C., Fabrication of oriented antibody-conjugated magnetic nanoprobes and their immunoaffinity application. Anal. Chem. 2009, 81, 8774-8782.
132. Lian, W.; Wu, D.; Lim, D. V.; Jin, S., Sensitive detection of multiplex toxins using antibody microarray. Anal. Biochem. 2010, 401, 271-279.
133. Mei, B. C.; Oh, E.; Susumu, K.; Farrell, D.; Mountziaris, T. J.; Mattoussi, H., Effects of ligand coordination number and surface curvature on the stability of gold nanoparticles in aqueous solutions. Langmuir 2009, 25, 10604-10611.
134. Stanley, M.; Martin, S. R.; Birge, M.; Carbain, B.; Streicher, H., Biotin-, fluorescein- and 'clickable' conjugates of phospha-oseltamivir as probes for the influenza virus which utilize selective binding to the neuraminidase. Org. Biomol. Chem. 2011, 9, 5625-5629.
135. Kato, H.; Uzawa, H.; Nagatsuka, T.; Kondo, S.; Sato, K.; Ohsawa, I.; Kanamori-Kataoka, M.; Takei, Y.; Ota, S.; Furuno, M.; Dohi, H.; Nishida, Y.; Seto, Y., Preparation and evaluation of lactose-modified monoliths for the adsorption and decontamination of plant toxins and lectins. Carbohydr. Res. 2011, 346, 1820-1826.
136. Kim, E.; Kim, D.; Jung, H.; Lee, J.; Paul, S.; Selvapalam, N.; Yang, Y.; Lim, N.; Park, C. G.; Kim, K., Facile, template-free synthesis of stimuli-responsive polymer nanocapsules for targeted drug delivery. Angew. Chem. Int. Ed. 2010, 49, 4405-4408.
137. Gonçalves, M.; Estieu-Gionnet, K.; Berthelot, T.; Laïn, G.; Bayle, M.; Canron, X.; Betz, N.; Bikfalvi, A.; Déléris, G., Design, synthesis, and evaluation of original carriers for targeting vascular endothelial growth factor receptor interactions. Pharm. Res. 2005, 22, 1411-1421.
138. Chen, Y.-J.; Chen, S.-H.; Chien, Y.-Y.; Chang, Y.-W.; Liao, H.-K.; Chang, C.-Y.; Jan, M.-D.; Wang, K.-T.; Lin, C.-C., Carbohydrate-encapsulated gold nanoparticles for rapid target-protein identification and binding-epitope mapping. ChemBioChem 2005, 6, 1169-1173.
139. Artner, L. M.; Merkel, L.; Bohlke, N.; Beceren-Braun, F.; Weise, C.; Dernedde, J.; Budisa, N.; Hackenberger, C. P. R., Site-selective modification of proteins for the synthesis of structurally defined multivalent scaffolds. Chem. Commun. 2012, 48, 522-524.
140. Mong, K.-K. T.; Chao, C.-S.; Chen, M.-C.; Lin, C.-W., Tandem one-pot acetalation-acetylation for direct access to differentially protected thioglycosides and o-glycosides with p-toluenesulfonic acid. Synlett 2009, 2009, 603,606.
141. Michalik, D.; Vliegenthart, J. F. G.; Kamerling, J. P., Chemoenzymic synthesis of oligosaccharide fragments of the capsular polysaccharide of Streptococcus pneumoniae type 14. J. Chem. Soc , Perkin Trans. 1 2002, 1973-1981.
142. Chen, C.-T.; Munot, Y. S.; Salunke, S. B.; Wang, Y.-C.; Lin, R.-K.; Lin, C.-C.; Chen, C.-C.; Liu, Y. H., A triantennary dendritic galactoside-capped nanohybrid with a zns/cdse nanoparticle core as a hydrophilic, fluorescent, multivalent probe for metastatic lung cancer cells. Adv. Funct. Mater. 2008, 18, 527-540.
143. Reynolds, A. J.; Haines, A. H.; Russell, D. A., Gold glyconanoparticles for mimics and measurement of metal ion-mediated carbohydrate-carbohydrate interactions. Langmuir 2006, 22, 1156-1163.
144. Mahon, E.; Aastrup, T.; Barboiu, M., Multivalent recognition of lectins by glyconanoparticle systems. Chem. Commun. 2010, 46, 5491-5493.
145. Kitov, P. I.; Bundle, D. R., Synthesis and structure-activity relationships of di- and trisaccharide inhibitors for Shiga-like toxin type 1. J. Chem. Soc., Perkin Trans. 1 2001, 838-853.
146. Deng, L.; Norberg, O.; Uppalapati, S.; Yan, M.; Ramstrom, O., Stereoselective synthesis of light-activatable perfluorophenylazide-conjugated carbohydrates for glycoarray fabrication and evaluation of structural effects on protein binding by SPR imaging. Org. Biomol. Chem. 2011, 9, 3188-3198.
147. Wang, Z.; Zhou, L.; El-Boubbou, K.; Ye, X.-s.; Huang, X., Multi-component one-pot synthesis of the tumor-associated carbohydrate antigen Globo-H based on preactivation of thioglycosyl donors. J. Org. Chem. 2007, 72, 6409-6420.
148. Morvan, F.; Meyer, A.; Jochum, A.; Sabin, C.; Chevolot, Y.; Imberty, A.; Praly, J.-P.; Vasseur, J.-J.; Souteyrand, E.; Vidal, S., Fucosylated pentaerythrityl phosphodiester oligomers (PePOs): automated synthesis of DNA-based glycoclusters and binding to Pseudomonas aeruginosa Lectin (PA-IIL). Bioconjugate Chem. 2007, 18, 1637-1643.
149. Norberg, O.; Deng, L.; Aastrup, T.; Yan, M.; Ramström, O., Photo-click immobilization on quartz crystal microbalance sensors for selective carbohydrate−protein interaction analyses. Anal. Chem. 2010, 83, 1000-1007.
150. Sallas, F.; Nishimura, S.-I., Chemo-enzymatic synthesis of glycopolymers and sequential glycopeptides bearing lactosamine and sialyl Lewis x unit pendant chains. J. Chem. Soc., Perkin Trans. 1 2000, 2091-2103.
151. Amvam-Zollo, P.-H.; Sinaÿ, P., Streptococcus pneumoniae type XIV polysaccharide: synthesis of a repeating branched tetrasaccharide with dioxa-type spacer-arms. Carbohydr. Res. 1986, 150, 199-212.
152. Marra, A.; Sinay, P., Acetylation of N-acetylneuraminic acid and its methyl ester. Carbohydr. Res. 1989, 190, 317-322.
153. Deng, J.; Sheng, Z.; Zhou, K.; Duan, M.; Yu, C.-y.; Jiang, L., Construction of effective receptor for recognition of avian influenza H5N1 protein HA1 by assembly of monohead glycolipids on polydiacetylene vesicle surface. Bioconjugate Chem. 2009, 20, 533-537.
154. Warner, T. G.; Lee, L. A., An azidoaryl thioglycoside of sialic acid. A potential photoaffinity probe of sialidases and sialic acid-binding proteins. Carbohydr. Res. 1988, 176, 211-218.
155. Sakamoto, J.-I.; Koyama, T.; Miyamoto, D.; Yingsakmongkon, S.; Hidari, K. I. P. J.; Jampangern, W.; Suzuki, T.; Suzuki, Y.; Esumi, Y.; Nakamura, T.; Hatano, K.; Terunuma, D.; Matsuoka, K., Systematic syntheses of influenza neuraminidase inhibitors: a series of carbosilane dendrimers uniformly functionalized with thioglycoside-type sialic acid moieties. Bioorg. Med. Chem. 2009, 17, 5451-5464.
156. Allanson, N. M.; Davidson, A. H.; Floyd, C. D.; Martin, F. M., The synthesis of novel mimics of the sialyl Lewis X determinant. Tetrahedron Asymmetry 1994, 5, 2061-2076.
157. 游景晴,奈米粒子系統應用:酵素固化與高通量酵素篩選平台開發,國立清華大學化學研究所 博士論文,2012。
158. Wong, L. S.; Janusz, S. J.; Sun, S.; Leggett, G. J.; Micklefield, J., Nanoscale Biomolecular structures on self-assembled monolayers generated from modular pegylated disulfides. Chem. Eur. J. 2010, 16, 12234-12243.
159. Coleman, V. A.; Jagadish, C., Basic Properties and Applications of ZnO. In Zinc Oxide Bulk, Thin Films and Nanostructure, Jagadish, C.; Pearton, S., Ed., Elsevier, London, UK, 2006.
160. Comparelli, R.; Fanizza, E.; Curri, M. L.; Cozzoli, P. D.; Mascolo, G.; Agostiano, A., UV-induced photocatalytic degradation of azo dyes by organic-capped ZnO nanocrystals immobilized onto substrates. Appl. Catal. B: Environ. 2005, 60, 1-11.
161. Huang, M. H.; Mao, S.; Feick, H.; Yan, H.; Wu, Y.; Kind, H.; Weber, E.; Russo, R.; Yang, P., Room-temperature ultraviolet nanowire nanolasers. Science 2001, 292, 1897-1899.
162. Pan, Z. W.; Dai, Z. R.; Wang, Z. L., Nanobelts of semiconducting oxides. Science 2001, 291, 1947-1949.
163. Djurisic, A. B.; Chen, X.; Leung, Y. H.; Man Ching Ng, A., ZnO nanostructures: growth, properties and applications. J. Mater. Chem. 2012, 22, 6526-6535.
164. Heo, Y. W.; Norton, D. P.; Tien, L. C.; Kwon, Y.; Kang, B. S.; Ren, F.; Pearton, S. J.; LaRoche, J. R., ZnO nanowire growth and devices. Mater. Sci. Eng. R. Rep. 2004, 47, 1-47.
165. Wang, Z. L., Splendid one-dimensional nanostructures of zinc oxide: a new nanomaterial family for nanotechnology. ACS Nano 2008, 2, 1987-1992.
166. Heo, Y. W.; Varadarajan, V.; Kaufman, M.; Kim, K.; Norton, D. P.; Ren, F.; Fleming, P. H., Site-specific growth of ZnO nanorods using catalysis-driven molecular-beam epitaxy. Appl. Phys. Lett. 2002, 81, 3046-3048.
167. Park, W. I.; Yi, G. C.; Kim, M.; Pennycook, S. J., ZnO nanoneedles grown vertically on Si substrates by non-catalytic vapor-phase epitaxy. Adv. Mater. 2002, 14, 1841-1843.
168. Sun, Y.; Fuge, G. M.; Ashfold, M. N. R., Growth of aligned ZnO nanorod arrays by catalyst-free pulsed laser deposition methods. Chem. Phys. Lett. 2004, 396, 21-26.
169. Chen, S.-W.; Wu, J.-M., Nucleation mechanisms and their influences on characteristics of ZnO nanorod arrays prepared by a hydrothermal method. Acta Mater. 2011, 59, 841-847.
170. Law, M.; Greene, L. E.; Johnson, J. C.; Saykally, R.; Yang, P., Nanowire dye-sensitized solar cells. Nat. Mater. 2005, 4, 455-459.
171. Chao, Y.-C.; Chen, C.-Y.; Lin, C.-A.; He, J.-H., Light scattering by nanostructured anti-reflection coatings. Energy Environ. Sci. 2011, 4, 3436-3441.
172. Chang, H.-C.; Lai, K.-Y.; Dai, Y.-A.; Wang, H.-H.; Lin, C.-A.; He, J.-H., Nanowire arrays with controlled structure profiles for maximizing optical collection efficiency. Energy Environ. Sci. 2011, 4, 2863-2869.
173. Zhou, H.; Qu, Y.; Zeid, T.; Duan, X., Towards highly efficient photocatalysts using semiconductor nanoarchitectures. Energy Environ. Sci. 2012, 5, 6732-6743.
174. Liu, G.; Wang, L.; Yang, H. G.; Cheng, H.-M.; Lu, G. Q., Titania-based photocatalysts-crystal growth, doping and heterostructuring. J. Mater. Chem. 2010, 20, 831-843.
175. Kim, J.; Monllor-Satoca, D.; Choi, W., Simultaneous production of hydrogen with the degradation of organic pollutants using TiO2 photocatalyst modified with dual surface components. Energy Environ. Sci. 2012, 5, 7647-7656.
176. Bi, Y.; Hu, H.; Ouyang, S.; Jiao, Z.; Lu, G.; Ye, J., Selective growth of Ag3PO4 submicro-cubes on Ag nanowires to fabricate necklace-like heterostructures for photocatalytic applications. J. Mater. Chem. 2012, 22, 14847-14850.
177. Chen, C.-Y.; Retamal, J. R. D.; Wu, I. W.; Lien, D.-H.; Chen, M.-W.; Ding, Y.; Chueh, Y.-L.; Wu, C.-I.; He, J.-H., Probing surface band bending of surface-engineered metal oxide nanowires. ACS Nano 2012, 6, 9366-9372.
178. Chu, F.-H.; Huang, C.-W.; Hsin, C.-L.; Wang, C.-W.; Yu, S.-Y.; Yeh, P.-H.; Wu, W.-W., Well-aligned ZnO nanowires with excellent field emission and photocatalytic properties. Nanoscale 2012, 4, 1471-1475.
179. Sinha, G.; Depero, L. E.; Alessandri, I., Recyclable SERS substrates based on Au-coated ZnO nanorods. ACS Appl. Mater. Interfaces 2011, 3, 2557-2563.
180. Li, P.; Wei, Z.; Wu, T.; Peng, Q.; Li, Y., Au-ZnO Hybrid Nanopyramids and Their Photocatalytic Properties. J. Am. Chem. Soc. 2011, 133, 5660-5663.
181. Thiyagarajan, P.; Ahn, H.-J.; Lee, J.-S.; Yoon, J.-C.; Jang, J.-H., Hierarchical metal/semiconductor nanostructure for efficient water splitting. Small 2013, 9, 2341-2347.
182. Geng, J.; Song, G.-H.; Jia, X.-D.; Cheng, F.-F.; Zhu, J.-J., Fast one-step synthesis of biocompatible ZnO/Au nanocomposites with hollow doughnut-like and other controlled morphologies. J. Phys. Chem. C 2012, 116, 4517-4525.
183. Kundu, P.; Singhania, N.; Madras, G.; Ravishankar, N., ZnO-Au nanohybrids by rapid microwave-assisted synthesis for CO oxidation. Dalton Trans. 2012, 41, 8762-8766.
184. Strunk, J.; Kähler, K.; Xia, X.; Comotti, M.; Schüth, F.; Reinecke, T.; Muhler, M., Au/ZnO as catalyst for methanol synthesis: the role of oxygen vacancies. Appl. Catal. A General 2009, 359, 121-128.
185. Gonzalez-Bejar, M.; Peters, K.; Hallett-Tapley, G. L.; Grenier, M.; Scaiano, J. C., Rapid one-pot propargylamine synthesis by plasmon mediated catalysis with gold nanoparticles on ZnO under ambient conditions. Chem. Commun. 2013, 49, 1732-1734.
186. Tatsunori, S.; Yuto, T.; Ryo, N.; Nikolay, N. N.; Petar, A. A.; Toshiharu, S.; Minoru, O., Surface enhanced Raman scattering properties using Au-coated ZnO nanorods grown by two-step, off-axis pulsed laser deposition. J. Phys. Appl. Phys. 2008, 41, 235304.
187. Cheng, C.; Yan, B.; Wong, S. M.; Li, X.; Zhou, W.; Yu, T.; Shen, Z.; Yu, H.; Fan, H. J., Fabrication and SERS performance of silver-nanoparticle-decorated Si/ZnO nanotrees in ordered arrays. ACS Appl. Mater. Interfaces 2010, 2, 1824-1828.
188. Chen, Z. H.; Tang, Y. B.; Liu, C. P.; Leung, Y. H.; Yuan, G. D.; Chen, L. M.; Wang, Y. Q.; Bello, I.; Zapien, J. A.; Zhang, W. J.; Lee, C. S.; Lee, S. T., Vertically aligned ZnO nanorod arrays sentisized with gold nanoparticles for schottky barrier photovoltaic cells. J. Phys. Chem. C 2009, 113, 13433-13437.
189. Tarwal, N. L.; Devan, R. S.; Ma, Y. R.; Patil, R. S.; Karanjkar, M. M.; Patil, P. S., Spray deposited localized surface plasmonic Au-ZnO nanocomposites for solar cell application. Electrochim. Acta 2012, 72, 32-39.
190. Wu, J.-J.; Tseng, C.-H., Photocatalytic properties of nc-Au/ZnO nanorod composites. Appl. Catal. B Environ. 2006, 66, 51-57.
191. Sun, L.; Zhao, D.; Song, Z.; Shan, C.; Zhang, Z.; Li, B.; Shen, D., Gold nanoparticles modified ZnO nanorods with improved photocatalytic activity. J. Colloid Interface Sci. 2011, 363, 175-181.
192. Ren, C.; Yang, B.; Wu, M.; Xu, J.; Fu, Z.; lv, Y.; Guo, T.; Zhao, Y.; Zhu, C., Synthesis of Ag/ZnO nanorods array with enhanced photocatalytic performance. J. Hazard. Mater. 2010, 182, 123-129.
193. Iliev, V.; Tomova, D.; Bilyarska, L.; Tyuliev, G., Influence of the size of gold nanoparticles deposited on TiO2 upon the photocatalytic destruction of oxalic acid. J. Mol. Catal. Chem. 2007, 263, 32-38.
194. Tak, Y.; Kim, H.; Lee, D.; Yong, K., Type-II CdS nanoparticle-ZnO nanowire heterostructure arrays fabricated by a solution process: enhanced photocatalytic activity. Chem. Commun. 2008, 4585-4587.
195. Jian, D.; Gao, P.-X.; Cai, W.; Allimi, B. S.; Pamir Alpay, S.; Ding, Y.; Wang, Z. L.; Brooks, C., Synthesis, characterization, and photocatalytic properties of ZnO/(La,Sr)CoO3 composite nanorod arrays. J. Mater. Chem. 2009, 19, 970-975.
196. Li, X.; Chen, G.; Yang, L.; Jin, Z.; Liu, J., Multifunctional Au-Coated TiO2 Nanotube Arrays as Recyclable SERS Substrates for Multifold Organic Pollutants Detection. Adv. Funct. Mater. 2010, 20, 2815-2824.
197. Zhu, H.; Yang, B.; Xu, J.; Fu, Z.; Wen, M.; Guo, T.; Fu, S.; Zuo, J.; Zhang, S., Construction of Z-scheme type CdS-Au-TiO2 hollow nanorod arrays with enhanced photocatalytic activity. Appl. Catal. B Environ. 2009, 90, 463-469.
198. Yang, H. Y.; Yu, S. F.; Lau, S. P.; Zhang, X.; Sun, D. D.; Jun, G., Direct growth of ZnO nanocrystals onto the surface of porous TiO2 nanotube arrays for highly efficient and recyclable photocatalysts. Small 2009, 5, 2260-2264.
199. Huang, Y.-C.; Chang, S.-Y.; Lin, C.-F.; Tseng, W. J., Synthesis of ZnO nanorod grafted TiO2 nanotube 3-D arrayed heterostructure as supporting platform for nanoparticle deposition. J. Mater. Chem. 2011, 21, 14056-14061.
200. Zhang, Y.-n.; Zhao, G.; Lei, Y.; Li, P.; Li, M.; Jin, Y.; Lv, B., CdS-encapsulated TiO2 nanotube arrays lidded with ZnO nanorod layers and their photoelectrocatalytic applications. ChemPhysChem 2010, 11, 3491-3498.
201. Smith, W.; Zhao, Y. P., Superior photocatalytic performance by vertically aligned core–shell TiO2/WO3 nanorod arrays. Catal. Commun. 2009, 10, 1117-1121.
202. Kogo, A.; Sakai, N.; Tatsuma, T., Photocatalysis of Au25-modified TiO2 under visible and near infrared light. Electrochem. Commun. 2010, 12, 996-999.
203. Kogo, A.; Sakai, N.; Tatsuma, T., Photoelectrochemical analysis of size-dependent electronic structures of gold clusters supported on TiO2. Nanoscale 2012, 4, 4217-4221.
204. Lee, J.; Shim, H. S.; Lee, M.; Song, J. K.; Lee, D., Size-controlled electron transfer and photocatalytic activity of ZnO-Au nanoparticle composites. J. Phy. Chem. Lett. 2011, 2, 2840-2845.
205. Subramanian, V.; Wolf, E. E.; Kamat, P. V., Catalysis with TiO2/gold nanocomposites. Effect of metal particle size on the fermi level equilibration. J. Am. Chem. Soc. 2004, 126, 4943-4950.
206. Leschkies, K. S.; Divakar, R.; Basu, J.; Enache-Pommer, E.; Boercker, J. E.; Carter, C. B.; Kortshagen, U. R.; Norris, D. J.; Aydil, E. S., Photosensitization of ZnO nanowires with CdSe quantum dots for photovoltaic devices. Nano Lett. 2007, 7, 1793-1798.
207. Zeng, T.-W.; Liu, I. S.; Huang, K.-T.; Liao, H.-C.; Chien, C.-T.; Wong, D. K.-P.; Chen, C.-W.; Wu, J.-J.; Chen, Y.-F.; Su, W.-F., Effects of bifunctional linker on the optical properties of ZnO nanocolumn-linker-CdSe quantum dots heterostructure. J. Colloid Interface Sci. 2011, 358, 323-328.
208. Lin, S.-Y.; Tsai, Y.-T.; Chen, C.-C.; Lin, C.-M.; Chen, C.-h., Two-step functionalization of neutral and positively charged thiols onto citrate-stabilized Au nanoparticles. J. Phys. Chem. B 2004, 108, 2134-2139.
209. Westermark, K.; Rensmo, H.; Lees, A. C.; Vos, J. G.; Siegbahn, H., Electron spectroscopic studies of bis-(2,2‘-bipyridine)-(4,4‘-dicarboxy-2,2‘-bipyridine)- ruthenium(II) and bis-(2,2‘-bipyridine)-(4,4‘-dicarboxy-2,2‘-bipyridine)- osmium(II) adsorbed on nanostructured TiO2 and ZnO surfaces. J. Phys. Chem. B 2002, 106, 10108-10113.
210. Sundararajan, S. P.; Grady, N. K.; Mirin, N.; Halas, N. J., Nanoparticle-induced enhancement and suppression of photocurrent in a silicon photodiode. Nano Lett. 2008, 8, 624-630.
211. Peh, C. K. N.; Ke, L.; Ho, G. W., Modification of ZnO nanorods through Au nanoparticles surface coating for dye-sensitized solar cells applications. Mater. Lett. 2010, 64, 1372-1375.
212. Roduner, E., Size matters: why nanomaterials are different. Chem. Soc. Rev. 2006, 35, 583-592.
213. Zangmeister, C. D.; Picraux, L. B.; van Zee, R. D.; Yao, Y.; Tour, J. M., Energy-level alignment and work function shifts for thiol-bound monolayers of conjugated molecules self-assembled on Ag, Cu, Au, and Pt. Chem. Phys. Lett. 2007, 442, 390-393.
214. Konstantinou, I. K.; Albanis, T. A., TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: a review. Appl. Catal. B Environ. 2004, 49, 1-14.
215. Tian, B.; Zhang, J.; Tong, T.; Chen, F., Preparation of Au/TiO2 catalysts from Au(I)-thiosulfate complex and study of their photocatalytic activity for the degradation of methyl orange. Appl. Catal. B Environ. 2008, 79, 394-401.
216. Pearson, A.; Jani, H.; Kalantar-zadeh, K.; Bhargava, S. K.; Bansal, V., Gold nanoparticle-decorated keggin ions/TiO2 photococatalyst for improved solar light photocatalysis. Langmuir 2011, 27, 6661-6667.
217. Arabatzis, I. M.; Stergiopoulos, T.; Andreeva, D.; Kitova, S.; Neophytides, S. G.; Falaras, P., Characterization and photocatalytic activity of Au/TiO2 thin films for azo-dye degradation. J. Catal. 2003, 220, 127-135.
218. Johnson, S. R.; Evans, S. D.; Brydson, R., Influence of a terminal functionality on the physical properties of surfactant-stabilized gold nanoparticles. Langmuir 1998, 14, 6639-6647.
219. Mulfinger, L.; Solomon, S. D.; Bahadory, M.; Jeyarajasingam, A. V.; Rutkowsky, S. A.; Boritz, C., Synthesis and study of silver nanoparticles. J. Chem. Educ. 2007, 84, 322.
220. Oh, E.; Susumu, K.; Blanco-Canosa, J. B.; Medintz, I. L.; Dawson, P. E.; Mattoussi, H., Preparation of stable maleimide-functionalized Au nanoparticles and their use in counting surface ligands. Small 2010, 6, 1273-1278.
221. Aslan, K.; Lakowicz, J. R.; Geddes, C. D., Nanogold-plasmon-resonance-based glucose sensing. Anal. Biochem. 2004, 330, 145-155.
222. Liu, X.; Atwater, M.; Wang, J.; Huo, Q., Extinction coefficient of gold nanoparticles with different sizes and different capping ligands. Colloids Surf. B Biointerfaces 2007, 58, 3-7.
223. Wang, P.-S.; Wu, I. W.; Wu, C.-I., Enhancement of current injection in inverted organic light emitting diodes with thermal annealing. J. Appl. Phys. 2010, 108, 103714-103714.
224. Rudd, P. M.; Morgan, B. P.; Wormald, M. R.; Harvey, D. J.; van den Berg, C. W.; Davis, S. J.; Ferguson, M. A. J.; Dwek, R. A., The glycosylation of the complement regulatory protein, human erythrocyte CD59. J. Biol. Chem. 1997, 272, 7229-7244.
225. Varki, A., Biological roles of oligosaccharides: all of the theories are correct. Glycobiology 1993, 3, 97-130.
226. Crocker, P. R.; Feizi, T., Carbohydrate recognition systems: functional triads in cell-cell interactions. Curr. Opin. Struct. Biol. 1996, 6, 679-691.
227. Lis, H.; Sharon, N., Lectins: carbohydrate-specific proteins that mediate cellular recognition. Chem. Rev. 1998, 98, 637-674.
228. Lee, Y. C.; Lee, R. T., Carbohydrate-protein interactions: basis of glycobiology. Acc. Chem. Res. 1995, 28, 321-327.
229. Drake, R. R.; Schwegler, E. E.; Malik, G.; Diaz, J.; Block, T.; Mehta, A.; Semmes, O. J., Lectin capture strategies combined with mass spectrometry for the discovery of serum glycoprotein biomarkers. Mol. Cell. Proteomics 2006, 5, 1957-1967.
230. Kim, Y.-S.; Yoo, H. S.; Ko, J. H., Implication of aberrant glycosylation in cancer and use of lectin for cancer biomarker discovery Protein Pept. Lett. 2009, 16, 499-507.
231. Stanley, P.; Schachter, H.; Taniguchi, N., N-Glycans. In Essentials of Glycobiology, 2nd edition, Varki, A.; Cummings, R. D.; Esko, J. D.; Freeze, H. H.; Stanley, P.; Bertozzi, C. R.; Hart, G. W.; Etzler, E. M., Ed., Cold Spring Harbor Laboratory Press, NY, 2009.
232. Stanley, P.; Schachter, H.; Taniguchi, N., O-GalNAc Glycans. In Essentials of Glycobiology, 2nd edition ed.; Varki, A.; Cummings, R. D.; Esko, J. D.; Freeze, H. H.; Stanley, P.; Bertozzi, C. R.; Hart, G. W.; Etzler, E. M., Ed., Cold Spring Harbor Laboratory Press, NY, 2009.
233. Chen, M.; Lu, Y.; Ma, Q.; Guo, L.; Feng, Y.-Q., Boronate affinity monolith for highly selective enrichment of glycopeptides and glycoproteins. Analyst 2009, 134, 2158-2164.
234. Liu, X.; Ma, L.; Lia, J., Recent Developments in the Enrichment of Glycopeptides for Glycoproteomics. Anal. Lett. 2008, 41, 268-277.
235. Zhang, L.; Lu, H.; Yang, P., Specific enrichment methods for glycoproteome research. Anal. Bioanal. Chem. 2010, 396, 199-203.
236. Tian, Y.; Zhang, H., Glycoproteomics and clinical applications. Proteomics Clin. Appl. 2010, 4, 124-132.
237. Tousi, F.; Hancock, W. S.; Hincapie, M., Technologies and strategies for glycoproteomics and glycomics and their application to clinical biomarker research. Anal. Methods 2011, 3, 20-32.
238. Hirabayashi, J., Lectin-based structural glycomics: glycoproteomics and glycan profiling. Glycoconjugate J. 2004, 21, 35-40.
239. Yang, Z.; Hancock, W. S., Approach to the comprehensive analysis of glycoproteins isolated from human serum using a multi-lectin affinity column. J. Chromatogr. A 2004, 1053, 79-88.
240. Wang, Y.; Wu, S.-l.; Hancock, W. S., Approaches to the study of N-linked glycoproteins in human plasma using lectin affinity chromatography and nano-HPLC coupled to electrospray linear ion trap—Fourier transform mass spectrometry. Glycobiology 2006, 16, 514-523.
241. Ohyama, C.; Hosono, M.; Nitta, K.; Oh-eda, M.; Yoshikawa, K.; Habuchi, T.; Arai, Y.; Fukuda, M., Carbohydrate structure and differential binding of prostate specific antigen to Maackia amurensis lectin between prostate cancer and benign prostate hypertrophy. Glycobiology 2004, 14, 671-679.
242. Sturiale, L.; Barone, R.; Palmigiano, A.; Ndosimao, C. N.; Briones, P.; Adamowicz, M.; Jaeken, J.; Garozzo, D., Multiplexed glycoproteomic analysis of glycosylation disorders by sequential yolk immunoglobulins immunoseparation and MALDI-TOF MS. Proteomics 2008, 8, 3822-3832.
243. Cho, W.; Jung, K.; Regnier, F. E., Use of Glycan targeting antibodies to identify cancer-associated glycoproteins in plasma of breast cancer patients. Anal. Chem. 2008, 80, 5286-5292.
244. Liu, X.; Li, X.; Chan, K.; Zou, W.; Pribil, P.; Li, X.-F.; Sawyer, M. B.; Li, J., “One-pot” methylation in glycomics application: esterification of sialic acids and permanent charge construction. Anal. Chem. 2007, 79, 3894-3900.
245. Wada, Y.; Tajiri, M.; Yoshida, S., Hydrophilic affinity isolation and MALDI multiple-stage tandem mass spectrometry of glycopeptides for glycoproteomics. Anal. Chem. 2004, 76, 6560-6565.
246. Tajiri, M.; Yoshida, S.; Wada, Y., Differential analysis of site-specific glycans on plasma and cellular fibronectins: application of a hydrophilic affinity method for glycopeptide enrichment. Glycobiology 2005, 15, 1332-1340.
247. Hägglund, P.; Bunkenborg, J.; Elortza, F.; Jensen, O. N.; Roepstorff, P., A new strategy for identification of N-glycosylated proteins and unambiguous assignment of their glycosylation sites using HILIC enrichment and partial deglycosylation. J. Proteome Res. 2004, 3, 556-566.
248. Takegawa, Y.; Deguchi, K.; Ito, H.; Keira, T.; Nakagawa, H.; Nishimura, S.-I., Simple separation of isomeric sialylated N-glycopeptides by a zwitterionic type of hydrophilic interaction chromatography. J. Sep. Sci. 2006, 29, 2533-2540.
249. Gemeiner, P.; Viskupic, E., Stepwise immobilization of proteins via their glycosylation. J. Biochem. Biophys. Methods 1981, 4, 309-319.
250. 249. Zhang, H.; Li, X.-j.; Martin, D. B.; Aebersold, R., Identification and quantification of N-linked glycoproteins using hydrazide chemistry, stable isotope labeling and mass spectrometry. Nat Biotech 2003, 21, 660-666.
251. McDonald, C. A.; Yang, J. Y.; Marathe, V.; Yen, T.-Y.; Macher, B. A., Combining results from lectin affinity chromatography and glycocapture approaches substantially improves the coverage of the glycoproteome. Mol. Cell. Proteomics 2009, 8, 287-301.
252. Lee, A.; Kolarich, D.; Haynes, P. A.; Jensen, P. H.; Baker, M. S.; Packer, N. H., Rat liver membrane glycoproteome: enrichment by phase partitioning and glycoprotein capture. J. Proteome Res. 2009, 8, 770-781.
253. Boronic Acids Preparation and Applications in Organic Synthesis and Medicine, Hall, D. G. Ed., Wiley-VCH, Weinheim, 2005.
254. Yan, J.; Fang, H.; Wang, B., Boronolectins and fluorescent boronolectins: an examination of the detailed chemistry issues important for the design. Med. Res. Rev. 2005, 25, 490-520.
255. Jin, S.; Cheng, Y.; Reid, S.; Li, M.; Wang, B., Carbohydrate recognition by boronolectins, small molecules, and lectins. Med. Res. Rev. 2010, 30, 171-257.
256. Weith, H. L.; Wiebers, J. L.; Gilham, P. T., Synthesis of cellulose derivatives containing the dihydroxyboryl group and a study of their capacity to form specific complexes with sugars and nucleic acid components. Biochemistry 1970, 9, 4396-4401.
257. Rosenberg, M.; Wiebers, J. L.; Gilham, P. T., Interactions of nucleotides, polynucleotides, and nucleic acids with dihydroxyboryl-substituted celluloses. Biochemistry 1972, 11, 3623-3628.
258. Schott, H.; Rudloff, E.; Schmidt, P.; Roychoudhury, R.; Koessel, H., Dihydroxyboryl-substituted methacrylic polymer for the column chromatographic separation of mononucleotides, oligonucleotides, and transfer ribonucleic acid. Biochemistry 1973, 12, 932-938.
259. Adamczyk, M.; Chen, Y.-Y.; Johnson, D. D.; Mattingly, P. G.; Moore, J. A.; Pan, Y.; Reddy, R. E., Chemiluminescent acridinium-9-carboxamide boronic acid probes: application to a homogeneous glycated hemoglobin assay. Bioorg. Med. Chem. Lett. 2006, 16, 1324-1328.
260. Gontarev, S.; Shmanai, V.; Frey, S. K.; Kvach, M.; Schweigert, F. J., Application of phenylboronic acid modified hydrogel affinity chips for high-throughput mass spectrometric analysis of glycated proteins. Rapid Commun. Mass Spectrom. 2007, 21, 1-6.
261. Mallia, A. K.; Hermanson, G. T.; Krohn, R. I.; Fujimoto, E. K.; Smith, P. K., Preparation and use of a boronic acid affinity support for separation and quantitation of glycosylated hemoglobins. Anal. Lett. 1981, 14, 649-661.
262. Yue, D. K.; McLennan, S.; Church, D. B.; Turtle, J. R., The measurement of glycosylated hemoglobin in man and animals by aminophenylboronic acid affinity chromatography. Diabetes 1982, 31, 701-705.
263. Herold, D.; Boyd, J.; Bruns, D.; Emerson, J.; Burns, K.; Bray, R.; Vandenhoff, G.; Freedlender, A.; Fortier, G.; Pohl, S.; et, a., Measurement of glycosylated hemoglobins using boronate affinity chromatography. Ann. Clin. Lab. Sci. 1983, 13, 482-488.
264. Flückiger, R.; Woodtli, T.; Berger, W., Quantitation of glycosylated hemoglobin by boronate affinity chromatography. Diabetes 1984, 33, 73-76.
265. Sparbier, K.; Wenzel, T.; Kostrzewa, M., Exploring the binding profiles of ConA, boronic acid and WGA by MALDI-TOF/TOF MS and magnetic particles. J. Chromatogr. B 2006, 840, 29-36.
266. Zhou, W.; Yao, N.; Yao, G.; Deng, C.; Zhang, X.; Yang, P., Facile synthesis of aminophenylboronic acid-functionalized magnetic nanoparticles for selective separation of glycopeptides and glycoproteins. Chem. Commun. 2008, 5577-5579.
267. Lee, J. H.; Kim, Y.; Ha, M. Y.; Lee, E. K.; Choo, J., Immobilization of aminophenylboronic acid on magnetic beads for the direct determination of glycoproteins by matrix assisted laser desorption ionization mass spectrometry. J. Am. Soc. Mass Spectrom. 2005, 16, 1456-1460.
268. Sparbier, K.; Koch, S.; Kessler, I.; Wenzel, T.; Kostrzewa, M., Selective isolation of glycoproteins and glycopeptides for MALDI-TOF MS detection supported by magnetic particles. J. Biomol. Tech. 2005, 16, 407–413.
269. Sparbier, K.; Asperger, A.; Resemann, A.; Kessler, I.; Koch, S.; Wenzel, T.; Stein, G.; Vorwerg, L.; Suckau, D.; Kostrzewa, M., Analysis of glycoproteins in human serum by means of glycospecific magnetic bead separation and LC-MALDI-TOF/TOF analysis with automated glycopeptide detection. J. Biomol. Tech. 2007, 18, 252-258.
270. Xu, Y.; Wu, Z.; Zhang, L.; Lu, H.; Yang, P.; Webley, P. A.; Zhao, D., Highly specific enrichment of glycopeptides using boronic acid-functionalized mesoporous silica. Anal. Chem. 2009, 81, 503-508.
271. Zhang, L.; Xu, Y.; Yao, H.; Xie, L.; Yao, J.; Lu, H.; Yang, P., Boronic acid functionalized core–satellite composite nanoparticles for advanced enrichment of glycopeptides and glycoproteins. Chem. Eur. J. 2009, 15, 10158-10166.
272. Yao, G.; Zhang, H.; Deng, C.; Lu, H.; Zhang, X.; Yang, P., Facile synthesis of 4-mercaptophenylboronic acid functionalized gold nanoparticles for selective enrichment of glycopeptides. Rapid Commun. Mass Spectrom. 2009, 23, 3493-3500.
273. Tang, J.; Liu, Y.; Qi, D.; Yao, G.; Deng, C.; Zhang, X., On-plate-selective enrichment of glycopeptides using boronic acid-modified gold nanoparticles for direct MALDI-QIT-TOF MS analysis. Proteomics 2009, 9, 5046-5055.
274. Krisp, C.; Kubutat, C.; Kyas, A.; Steinsträßer, L.; Jacobsen, F.; Wolters, D., Boric acid gel enrichment of glycosylated proteins in human wound fluids. J. Proteomics 2011, 74, 502-509.
275. Frolov, A.; Hoffmann, R., Analysis of amadori peptides enriched by boronic acid affinity chromatography. Ann. N. Y. Acad. Sci. 2008, 1126, 253-256.
276. Lin, Z. A.; Pang, J. L.; Lin, Y.; Huang, H.; Cai, Z. W.; Zhang, L.; Chen, G. N., Preparation and evaluation of a phenylboronate affinity monolith for selective capture of glycoproteins by capillary liquid chromatography. Analyst 2011, 136, 3281-3288.
277. Lin, Z.; Pang, J.; Yang, H.; Cai, Z.; Zhang, L.; Chen, G., One-pot synthesis of an organic-inorganic hybrid affinity monolithic column for specific capture of glycoproteins. Chem. Commun. 2011, 47, 9675-9677.
278. Li, Y.; Larsson, E. L.; Jungvid, H.; Galaev, I. Y.; Mattiasson, B., Shielding of protein-boronate interactions during boronate chromatography of neoglycoproteins. J. Chromatogr. A 2001, 909, 137-145.
279. Wang, Z.; Hart, G., Glycomic approaches to study GlcNAcylation: protein identification, site-mapping, and site-specific O-GlcNAc quantitation. Clin. Proteomics 2008, 4, 5-13.
280. Wu, W.; He, Q.; Jiang, C., Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies. Nano. Res. Lett. 2008, 3, 397-415.
281. Laurent, S.; Forge, D.; Port, M.; Roch, A.; Robic, C.; Vander Elst, L.; Muller, R. N., Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem. Rev. 2008, 108, 2064-2110.
282. Lu, A.-H.; Salabas, E. L.; Schüth, F., Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew. Chem. Int. Ed. 2007, 46, 1222-1244.
283. Gupta, A. K.; Gupta, M., Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 2005, 26, 3995-4021.
284. Tartaj, P.; del Puerto Morales, M.; Veintemillas-Verdaguer, S.; González-Carreño, T.; J Serna, C., The preparation of magnetic nanoparticles for applications in biomedicine. J. Phys. Appl. Phys. 2003, 36, R182.
285. Schladt, T. D.; Schneider, K.; Schild, H.; Tremel, W., Synthesis and bio-functionalization of magnetic nanoparticles for medical diagnosis and treatment. Dalton Trans. 2011, 40, 6315-6343.
286. 葉晨聖;鄭豐裕,磁性奈米材料之生醫檢測及應用。生醫奈米技術,葉晨聖編輯,教育部顧問室,台北,台灣,2007,18-59。
287. Teja, A. S.; Koh, P.-Y., Synthesis, properties, and applications of magnetic iron oxide nanoparticles. Prog. Cryst. Growth Charact. Mater. 2009, 55, 22-45.
288. Kang, Y. S.; Risbud, S.; Rabolt, J. F.; Stroeve, P., Synthesis and characterization of nanometer-size Fe3O4 and γ-Fe2O3 particles. Chem. Mater. 1996, 8, 2209-2211.
289. Wu, K. T.; Kuo, P. C.; Yao, Y. D.; Tsai, E. H., Magnetic and optical properties of Fe3O4 nanoparticle ferrofluids prepared by coprecipitation technique. IEEE Trans. Magn. 2001, 37, 2651-2653.
290. Sun, S.; Zeng, H.; Robinson, D. B.; Raoux, S.; Rice, P. M.; Wang, S. X.; Li, G., monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles. J. Am. Chem. Soc. 2004, 126, 273-279.
291. Redl, F. X.; Black, C. T.; Papaefthymiou, G. C.; Sandstrom, R. L.; Yin, M.; Zeng, H.; Murray, C. B.; O'Brien, S. P., Magnetic, electronic, and structural characterization of nonstoichiometric iron oxides at the nanoscale. J. Am. Chem. Soc. 2004, 126, 14583-14599.
292. Park, J.; An, K.; Hwang, Y.; Park, J.-G.; Noh, H.-J.; Kim, J.-Y.; Park, J.-H.; Hwang, N.-M.; Hyeon, T., Ultra-large-scale syntheses of monodisperse nanocrystals. Nat. Mater. 2004, 3, 891-895.
293. Sun, S.; Zeng, H., Size-controlled synthesis of magnetite nanoparticles. J. Am. Chem. Soc. 2002, 124, 8204-8205.
294. Feltin, N.; Pileni, M. P., New technique for synthesizing iron ferrite magnetic nanosized particles. Langmuir 1997, 13, 3927-3933.
295. López-Quintela, M. A.; Rivas, J., Chemical reactions in microemulsions: a powerful method to obtain ultrafine particles. J. Colloid Interface Sci. 1993, 158, 446-451.
296. Vidal-Vidal, J.; Rivas, J.; López-Quintela, M. A., Synthesis of monodisperse maghemite nanoparticles by the microemulsion method. Colloids Surf. A 2006, 288, 44-51.
297. Deng, Y.; Wang, L.; Yang, W.; Fu, S.; Elaı̈ssari, A., Preparation of magnetic polymeric particles via inverse microemulsion polymerization process. J. Magn. Magn. Mater. 2003, 257, 69-78.
298. Liu, C.; Zou, B.; Rondinone, A. J.; Zhang, Z. J., Reverse micelle synthesis and characterization of superparamagnetic MnFe2O4 spinel ferrite nanocrystallites. J. Phys. Chem. B 2000, 104, 1141-1145.
299. Chin, A. B.; Yaacob, I. I., Synthesis and characterization of magnetic iron oxide nanoparticles via w/o microemulsion and Massart's procedure. J. Mater. Process Technol. 2007, 191, 235-237.
300. Lee, Y.; Lee, J.; Bae, C. J.; Park, J. G.; Noh, H. J.; Park, J. H.; Hyeon, T., Large-scale synthesis of uniform and crystalline magnetite nanoparticles using reverse micelles as nanoreactors under reflux conditions. Adv. Funct. Mater. 2005, 15, 503-509.
301. Wang, J.; Sun, J.; Sun, Q.; Chen, Q., One-step hydrothermal process to prepare highly crystalline Fe3O4 nanoparticles with improved magnetic properties. Mater. Res. Bull. 2003, 38, 1113-1118.
302. Giri, S.; Samanta, S.; Maji, S.; Ganguli, S.; Bhaumik, A., Magnetic properties of α-Fe2O3 nanoparticle synthesized by a new hydrothermal method. J. Magn. Magn. Mater. 2005, 285, 296-302.
303. Wang, X.; Zhuang, J.; Peng, Q.; Li, Y., A general strategy for nanocrystal synthesis. Nature 2005, 437, 121-124.
304. Jing, Z.; Wu, S., Synthesis and characterization of monodisperse hematite nanoparticles modified by surfactants via hydrothermal approach. Mater. Lett. 2004, 58, 3637-3640.
305. Zheng, Y.-h.; Cheng, Y.; Bao, F.; Wang, Y.-s., Synthesis and magnetic properties of Fe3O4 nanoparticles. Mater. Res. Bull. 2006, 41, 525-529.
306. Daou, T. J.; Pourroy, G.; Bégin-Colin, S.; Grenèche, J. M.; Ulhaq-Bouillet, C.; Legaré, P.; Bernhardt, P.; Leuvrey, C.; Rogez, G., Hydrothermal synthesis of monodisperse magnetite nanoparticles. Chem. Mater. 2006, 18, 4399-4404.
307. Kumar, R. V.; Diamant, Y.; Gedanken, A., Sonochemical synthesis and characterization of nanometer-size transition metal oxides from metal acetates. Chem. Mater. 2000, 12, 2301-2305.
308. Kumar, R. V.; Koltypin, Y.; Cohen, Y. S.; Cohen, Y.; Aurbach, D.; Palchik, O.; Felner, I.; Gedanken, A., Preparation of amorphous magnetite nanoparticles embedded in polyvinyl alcohol using ultrasound radiation. J. Mater. Chem. 2000, 10, 1125-1129.
309. Suslick, K. S.; Fang, M.; Hyeon, T., Sonochemical synthesis of iron colloids. J. Am. Chem. Soc. 1996, 118, 11960-11961.
310. Suslick, K. S.; Hyeon, T.; Fang, M., Nanostructured materials generated by high-intensity ultrasound: sonochemical synthesis and catalytic studies. Chem. Mater. 1996, 8, 2172-2179.
311. Hee Kim, E.; Sook Lee, H.; Kook Kwak, B.; Kim, B.-K., Synthesis of ferrofluid with magnetic nanoparticles by sonochemical method for MRI contrast agent. J. Magn. Magn. Mater. 2005, 289, 328-330.
312. Shafi, K. V. P. M.; Ulman, A.; Yan, X.; Yang, N.-L.; Estournès, C.; White, H.; Rafailovich, M., Sonochemical synthesis of functionalized amorphous iron oxide nanoparticles. Langmuir 2001, 17, 5093-5097.
313. Cao, X.; Prozorov, R.; Koltypin, Y.; Kataby, G.; Felner, I.; Gedanken, A., Synthesis of pure amorphous Fe2O3. J. Mater. Res. 1997, 12, 402-406.
314. Vijayakumar, R.; Koltypin, Y.; Felner, I.; Gedanken, A., Sonochemical synthesis and characterization of pure nanometer-sized Fe3O4 particles. Mater. Sci. Eng. A 2000, 286, 101-105.
315. Pinkas, J.; Reichlova, V.; Zboril, R.; Moravec, Z.; Bezdicka, P.; Matejkova, J., Sonochemical synthesis of amorphous nanoscopic iron(III) oxide from Fe(acac)3. Ultrason. Sonochem. 2008, 15, 257-264.
316. Bang, J. H.; Suslick, K. S., Sonochemical synthesis of nanosized hollow hematite. J. Am. Chem. Soc. 2007, 129, 2242-2243.
317. Veintemillas-Verdaguer, S.; Morales, M. P.; Serna, C. J., Continuous production of γ-Fe2O3 ultrafine powders by laser pyrolysis. Mater. Lett. 1998, 35, 227-231.
318. Veintemillas-Verdaguer, S.; Bomatı́-Miguel, O.; Morales, M. P., Effect of the process conditions on the structural and magnetic properties of γ-Fe2O3 nanoparticles produced by laser pyrolysis. Scr. Mater. 2002, 47, 589-593.
319. Veintemillas-Verdaguer, S.; Morales, M. P.; Serna, C. J., Effect of the oxidation conditions on the maghemites produced by laser pyrolysis. Appl. Organomet. Chem. 2001, 15, 365-372.
320. Bomatí-Miguel, O.; Mazeina, L.; Navrotsky, A.; Veintemillas-Verdaguer, S., Calorimetric study of maghemite nanoparticles synthesized by laser-induced pyrolysis. Chem. Mater. 2008, 20, 591-598.
321. González-Carreño, T.; Morales, M. P.; Gracia, M.; Serna, C. J., Preparation of uniform γ-Fe2O3 particles with nanometer size by spray pyrolysis. Mater. Lett. 1993, 18, 151-155.
322. Basak, S.; Chen, D.-R.; Biswas, P., Electrospray of ionic precursor solutions to synthesize iron oxide nanoparticles: modified scaling law. Chem. Eng. Sci. 2007, 62, 1263-1268.
323. Pascal, C.; Pascal, J. L.; Favier, F.; Elidrissi Moubtassim, M. L.; Payen, C., Electrochemical Synthesis for the control of γ-Fe2O3 nanoparticle size. Morphology, microstructure, and magnetic behavior. Chem. Mater. 1999, 11, 141-147.
324. Cabrera, L.; Gutierrez, S.; Menendez, N.; Morales, M. P.; Herrasti, P., Magnetite nanoparticles: electrochemical synthesis and characterization. Electrochim. Acta 2008, 53, 3436-3441.
325. Franger, S.; Berthet, P.; Berthon, J., Electrochemical synthesis of Fe3O4 nanoparticles in alkaline aqueous solutions containing complexing agents. J. Solid State Electrochem. 2004, 8, 218-223.
326. Ying, T. Y.; Yiacoumi, S.; Tsouris, C., An electrochemical method for the formation of magnetite particles. J. Dispersion Sci. Technol. 2002, 23, 569-576.
327. Gash Alexander, E.; Simpson Randall, L.; Satcher Joe, H., Direct preparation of nanostructured energetic materials using sol-gel methods. In Defense Applications of Nanomaterials, Miziolek, A. W.; Karna, S. P.; Mauro, J. M.; Vaia, R. A. Ed., American Chemical Society, 2005, vol. 891, pp. 198-210.
328. Tillotson, T. M.; Gash, A. E.; Simpson, R. L.; Hrubesh, L. W.; Satcher Jr, J. H.; Poco, J. F., Nanostructured energetic materials using sol-gel methodologies. J. Non-Cryst. Solids 2001, 285, 338-345.
329. Adel Ali, I., Synthesis and characterization of Y2O3/Fe2O3/TiO2 nanoparticles by sol-gel method. Appl. Catal. B Environ. 2005, 58, 115-121.
330. Bharde, A. A.; Parikh, R. Y.; Baidakova, M.; Jouen, S.; Hannoyer, B.; Enoki, T.; Prasad, B. L. V.; Shouche, Y. S.; Ogale, S.; Sastry, M., Bacteria-mediated precursor-dependent biosynthesis of superparamagnetic iron oxide and iron sulfide nanoparticles. Langmuir 2008, 24, 5787-5794.
331. Roh, Y.; Vali, H.; Phelps, T. J.; Moon, J. W., Extracellular synthesis of magnetite and metal-substituted magnetite nanoparticles. J. Nanosci. Nanotechnol. 2006, 6, 3517-3520.
332. Okamura, Y.; Takeyama, H.; Matsunaga, T., A magnetosome-specific GTPase from the magnetic bacterium magnetospirillum magneticum AMB-1. J. Biol. Chem. 2001, 276, 48183-48188.
333. Salazar-Alvarez, G.; Muhammed, M.; Zagorodni, A. A., Novel flow injection synthesis of iron oxide nanoparticles with narrow size distribution. Chem. Eng. Sci. 2006, 61, 4625-4633.
334. Viau, G.; Fievet-Vincent, F.; Fievet, F., Monodisperse iron-based particles: precipitation in liquid polyols. J. Mater. Chem. 1996, 6, 1047-1053.
335. Viau, G.; Fiévet-Vincent, F.; Fiévet, F., Nucleation and growth of bimetallic CoNi and FeNi monodisperse particles prepared in polyols. Solid State Ionics 1996, 84, 259-270.
336. The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses. 2nd edition, Cornell, R. M.; Schwertmann, U., Ed., Wiley-VCH, Weinheim, 2003.
337. O'Handley, R. C., Modern Magnetic Materials: Principles and Applications, O'Handley, R. C., Ed., John Wiley & Sons, New York, 2000, pp. 125.
338. Jolivet, J.-P.; Chaneac, C.; Tronc, E., Iron oxide chemistry. From molecular clusters to extended solid networks. Chem. Commun. 2004, 477-483.
339. Qiu, X.-P., Synthesis and characterization of magnetic nano particles. Chin. J. Chem. 2000, 18, 834-837.
340. Gribanov, N. M.; Bibik, E. E.; Buzunov, O. V.; Naumov, V. N., Physico-chemical regularities of obtaining highly dispersed magnetite by the method of chemical condensation. J. Magn. Magn. Mater. 1990, 85, 7-10.
341. Massart, R.; Cabuil, V., Effect of some parameters on the formation of colloidal magnetite in alkaline medium: yield and particle size control J. Chim. Phys. 1987, 84, 967-973.
342. Jolivet, J.-P.; Froidefond, C.; Pottier, A.; Chaneac, C.; Cassaignon, S.; Tronc, E.; Euzen, P., Size tailoring of oxide nanoparticles by precipitation in aqueous medium. A semi-quantitative modelling. J. Mater. Chem. 2004, 14, 3281-3288.
343. Vayssières, L.; Chanéac, C.; Tronc, E.; Jolivet, J. P., Size tailoring of magnetite particles formed by aqueous precipitation: an example of thermodynamic stability of nanometric oxide particles. J. Colloid Interface Sci. 1998, 205, 205-212.
344. Metal Oxide Chemistry and Synthesis: From Solution to Solid State, 1st edition, Jolivet, J.-P., Ed., Wiley, New York, 2000.
345. Tartaj, P.; Morales, M. P.; Veintemillas-Verdaguer, S.; Gonzalez-Carreno, T.; Serna, C. J., Synthesis, properties and biomedical applications of magnetic nanoparticles. In Handbook of Magnetic Materials, Buschow, K. H. J., Ed., Elsevier, Amsterdam, Netherlands, 2006, pp 403.
346. Jolivet, J.-P.; Tronc, É.; Chanéac, C., Synthesis of iron oxide-based magnetic nanomaterials and composites. C. R. Chim. 2002, 5, 659-664.
347. Si, S.; Kotal, A.; Mandal, T. K.; Giri, S.; Nakamura, H.; Kohara, T., Size-controlled synthesis of magnetite nanoparticles in the presence of polyelectrolytes. Chem. Mater. 2004, 16, 3489-3496.
348. Rockenberger, J.; Scher, E. C.; Alivisatos, A. P., A new nonhydrolytic single-precursor approach to surfactant-capped nanocrystals of transition metal oxides. J. Am. Chem. Soc. 1999, 121, 11595-11596.
349. Jana, N. R.; Chen, Y.; Peng, X., Size- and shape-controlled magnetic (Cr, Mn, Fe, Co, Ni) oxide nanocrystals via a simple and general approach. Chem. Mater. 2004, 16, 3931-3935.
350. Li, Y.; Afzaal, M.; O'Brien, P., The synthesis of amine-capped magnetic (Fe, Mn, Co, Ni) oxide nanocrystals and their surface modification for aqueous dispersibility. J. Mater. Chem. 2006, 16, 2175-2180.
351. Hyeon, T.; Lee, S. S.; Park, J.; Chung, Y.; Na, H. B., Synthesis of highly crystalline and monodisperse maghemite nanocrystallites without a size-selection process. J. Am. Chem. Soc. 2001, 123, 12798-12801.
352. Farrell, D.; Majetich, S. A.; Wilcoxon, J. P., Preparation and characterization of monodisperse Fe nanoparticles. J. Phys. Chem. B 2003, 107, 11022-11030.
353. Park, J.; Lee, E.; Hwang, N.-M.; Kang, M.; Kim, S. C.; Hwang, Y.; Park, J.-G.; Noh, H.-J.; Kim, J.-Y.; Park, J.-H.; Hyeon, T., One-nanometer-scale size-controlled synthesis of monodisperse magnetic iron oxide nanoparticles. Angew. Chem. Int. Ed. 2005, 44, 2872-2877.
354. Li, Z.; Chen, H.; Bao, H.; Gao, M., One-pot reaction to synthesize water-soluble magnetite nanocrystals. Chem. Mater. 2004, 16, 1391-1393.
355. Li, Z.; Sun, Q.; Gao, M., Preparation of water-soluble magnetite nanocrystals from hydrated ferric salts in 2-pyrrolidone: mechanism leading to Fe3O4. Angew. Chem. Int. Ed. 2005, 44, 123-126.
356. Hu, F. Q.; Wei, L.; Zhou, Z.; Ran, Y. L.; Li, Z.; Gao, M. Y., Preparation of biocompatible magnetite nanocrystals for in vivo magnetic resonance detection of cancer. Adv. Mater. 2006, 18, 2553-2556.
357. Pisanic Ii, T. R.; Blackwell, J. D.; Shubayev, V. I.; Fiñones, R. R.; Jin, S., Nanotoxicity of iron oxide nanoparticle internalization in growing neurons. Biomaterials 2007, 28, 2572-2581.
358. Mahmoudi, M.; Laurent, S.; Shokrgozar, M. A.; Hosseinkhani, M., Toxicity evaluations of superparamagnetic iron oxide nanoparticles: cell “vision” versus physicochemical properties of nanoparticles. ACS Nano 2011, 5, 7263-7276.
359. Hanini, A.; Schmitt, A.; Kacem, K.; Chau, F.; Ammar, S.; Gavard, J., Evaluation of iron oxide nanoparticle biocompatibility Int. J. Nanomed. 2011 6, 787-794.
360. Kim, J. S.; Yoon, T.-J.; Yu, K. N.; Kim, B. G.; Park, S. J.; Kim, H. W.; Lee, K. H.; Park, S. B.; Lee, J.-K.; Cho, M. H., Toxicity and tissue distribution of magnetic nanoparticles in mice. Toxicol. Sci. 2006, 89, 338-347.
361. Häfeli, U. O.; Riffle, J. S.; Harris-Shekhawat, L.; Carmichael-Baranauskas, A.; Mark, F.; Dailey, J. P.; Bardenstein, D., Cell uptake and in vitro toxicity of magnetic nanoparticles suitable for drug delivery. Mol. Pharm. 2009, 6, 1417-1428.
362. Shen, L.; Laibinis, P. E.; Hatton, T. A., Bilayer surfactant stabilized magnetic fluids: aynthesis and interactions at interfaces. Langmuir 1998, 15, 447-453.
363. Tourinho, F.; Franck, R.; Massart, R.; Perzynski, R., Synthesis and mangeitc properties of managanese and cobalt ferrite ferrite ferrofluids. In Trends in Colloid and Interface Science III, Bothorel, P.; Dufourc, E., Ed., Springer Berlin / Heidelberg, 1989, vol. 79, pp. 128-134.
364. Fritz, G.; Schädler, V.; Willenbacher, N.; Wagner, N. J., Electrosteric stabilization of colloidal dispersions. Langmuir 2002, 18, 6381-6390.
365. Bacri, J.-C.; Perzynski, R.; Salin, D.; Cabuil, V.; Massart, R., Ionic ferrofluids: a crossing of chemistry and physics. J. Magn. Magn. Mater. 1990, 85, 27-32.
366. Iron Oxides in the Laboratory: Preparation and Characterization. 2nd edition, Cornell, R. M.; Schertmann, U., Ed., U.Wiley-VCH, Weinheim, Germany, 1991.
367. Sahoo, Y.; Goodarzi, A.; Swihart, M. T.; Ohulchanskyy, T. Y.; Kaur, N.; Furlani, E. P.; Prasad, P. N., Aqueous ferrofluid of magnetite nanoparticles: fluorescence labeling and magnetophoretic control. J. Phys. Chem. B 2005, 109, 3879-3885.
368. Fauconnier, N.; Bee, A.; Roger, J.; Pons, J., Adsorption of gluconic and citric acids on maghemite particles in aqueous medium. in Trends in Colloid and Interface Science X. Solans, C.; Infante, M.; García-Celma, M., Ed., Springer Berlin, Heidelberg, 1996, vol. 100, pp. 212-216.
369. Mutin, P. H.; Guerrero, G.; Vioux, A., Organic-inorganic hybrid materials based on organophosphorus coupling molecules: from metal phosphonates to surface modification of oxides. C. R. Chim. 2003, 6, 1153-1164.
370. Sahoo, Y.; Pizem, H.; Fried, T.; Golodnitsky, D.; Burstein, L.; Sukenik, C. N.; Markovich, G., Alkyl Phosphonate/phosphate coating on magnetite nanoparticles: a comparison with fatty acids. Langmuir 2001, 17, 7907-7911.
371. Yee, C.; Kataby, G.; Ulman, A.; Prozorov, T.; White, H.; King, A.; Rafailovich, M.; Sokolov, J.; Gedanken, A., Self-assembled monolayers of alkanesulfonic and phosphonic acids on amorphous iron oxide nanoparticles. Langmuir 1999, 15, 7111-7115.
372. Cushing, B. L.; Kolesnichenko, V. L.; O'Connor, C. J., Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chem. Rev. 2004, 104, 3893-3946.
373. Molday, R. S.; Mackenzie, D., Immunospecific ferromagnetic iron-dextran reagents for the labeling and magnetic separation of cells. J. Immunol. Methods 1982, 52, 353-367.
374. Paul, K. G.; Frigo, T. B.; Groman, J. Y.; Groman, E. V., Synthesis of ultrasmall superparamagnetic iron oxides using reduced polysaccharides. Bioconjugate Chem. 2004, 15, 394-401.
375. Kim, D. K.; Zhang, Y.; Kehr, J.; Klason, T.; Bjelke, B.; Muhammed, M., Characterization and MRI study of surfactant-coated superparamagnetic nanoparticles administered into the rat brain. J. Magn. Magn. Mater. 2001, 225, 256-261.
376. Butterworth, M. D.; Illum, L.; Davis, S. S., Preparation of ultrafine silica- and PEG-coated magnetite particles. Colloids Surf. A 2001, 179, 93-102.
377. Zhang, Y.; Kohler, N.; Zhang, M., Surface modification of superparamagnetic magnetite nanoparticles and their intracellular uptake. Biomaterials 2002, 23, 1553-1561.
378. Lee, J.; Isobe, T.; Senna, M., Preparation of ultrafine Fe3O4 particles by precipitation in the presence of PVA at high pH. J. Colloid Interface Sci. 1996, 177, 490-494.
379. Chastellain, M.; Petri, A.; Hofmann, H., Particle size investigations of a multistep synthesis of PVA coated superparamagnetic nanoparticles. J. Colloid Interface Sci. 2004, 278, 353-360.
380. Lee, J.; Isobe, T.; Senna, M., Magnetic properties of ultrafine magnetite particles and their slurries prepared via in-situ precipitation. Colloids Surf. A 1996, 109, 121-127.
381. Sipos, P.; Berkesi, O.; Tombácz, E.; St. Pierre, T. G.; Webb, J., Formation of spherical iron(III) oxyhydroxide nanoparticles sterically stabilized by chitosan in aqueous solutions. J. Inorg. Biochem. 2003, 95, 55-63.
382. Rivas, J.; Sánchez, R. D.; Fondado, A.; Izco, C.; García‐Bastida, A. J.; García‐Otero, J.; Mira, J.; Baldomir, D.; González, A.; Lado, I.; Quintela, M. A. L.; Oseroff, S. B., Structural and magnetic characterization of Co particles coated with Ag J. Appl. Phys. 1994, 76, 6564-6566.
383. Mandal, M.; Kundu, S.; Ghosh, S. K.; Panigrahi, S.; Sau, T. K.; Yusuf, S. M.; Pal, T., Magnetite nanoparticles with tunable gold or silver shell. J. Colloid Interface Sci. 2005, 286, 187-194.
384. Carpenter, E. E.; Sangregorio, C.; O'Connor, C. J., Effects of shell thickness on blocking temperature of nanocomposites of metal particles with gold shells. IEEE T. Magn. 1999, 35, 3496-3498.
385. Shon, Y.-S.; Dawson, G. B.; Porter, M.; Murray, R. W., Monolayer-protected bimetal cluster synthesis by core metal galvanic exchange reaction. Langmuir 2002, 18, 3880-3885.
386. Lyon, J. L.; Fleming, D. A.; Stone, M. B.; Schiffer, P.; Williams, M. E., Synthesis of Fe oxide core/Au shell nanoparticles by iterative hydroxylamine seeding. Nano Lett. 2004, 4, 719-723.
387. Ban, Z.; Barnakov, Y. A.; Li, F.; Golub, V. O.; O'Connor, C. J., The synthesis of core-shell iron@gold nanoparticles and their characterization. J. Mater. Chem. 2005, 15, 4660-4662.
388. Cho, S.-J.; Idrobo, J.-C.; Olamit, J.; Liu, K.; Browning, N. D.; Kauzlarich, S. M., Growth mechanisms and oxidation resistance of gold-coated iron nanoparticles. Chem. Mater. 2005, 17, 3181-3186.
389. Wang, L.; Luo, J.; Maye, M. M.; Fan, Q.; Rendeng, Q.; Engelhard, M. H.; Wang, C.; Lin, Y.; Zhong, C.-J., Iron oxide-gold core-shell nanoparticles and thin film assembly. J. Mater. Chem. 2005, 15, 1821-1832.
390. Lin, J.; Zhou, W.; Kumbhar, A.; Wiemann, J.; Fang, J.; Carpenter, E. E.; O'Connor, C. J., Gold-coated iron (Fe@Au) nanoparticles: synthesis, characterization, and magnetic field-induced self-assembly. J. Solid State Chem. 2001, 159, 26-31.
391. Zhang, J.; Post, M.; Veres, T.; Jakubek, Z. J.; Guan, J.; Wang, D.; Normandin, F.; Deslandes, Y.; Simard, B., Laser-assisted synthesis of superparamagnetic Fe@Au core-shell nanoparticles. J. Phys. Chem. B 2006, 110, 7122-7128.
392. Everett E, C., Iron nanoparticles as potential magnetic carriers. J. Magn. Magn. Mater. 2001, 225, 17-20.
393. Kim, J.; Park, S.; Lee, J. E.; Jin, S. M.; Lee, J. H.; Lee, I. S.; Yang, I.; Kim, J.-S.; Kim, S. K.; Cho, M.-H.; Hyeon, T., Designed fabrication of multifunctional magnetic gold nanoshells and their application to magnetic resonance imaging and photothermal therapy. Angew. Chem. Int. Ed. 2006, 45, 7754-7758.
394. Wei, W.; et al., Sonochemical synthesis, structure and magnetic properties of air-stable Fe3O4/Au nanoparticles. Nanotechnology 2007, 18, 145609.
395. Stoeva, S. I.; Huo, F.; Lee, J.-S.; Mirkin, C. A., Three-layer composite magnetic nanoparticle probes for DNA. J. Am. Chem. Soc. 2005, 127, 15362-15363.
396. WangWang; Luo, J.; Fan, Q.; Suzuki, M.; Suzuki, I. S.; Engelhard, M. H.; Lin, Y.; Kim, N.; Wang, J. Q.; Zhong, C.-J., Monodispersed core-shell Fe3O4@Au nanoparticles. J. Phys. Chem. B 2005, 109, 21593-21601.
397. Park, J.-I.; Cheon, J., Synthesis of “solid solution” and “core-shell” type cobalt-platinum magnetic nanoparticles via transmetalation reactions. J. Am. Chem. Soc. 2001, 123, 5743-5746.
398. Teng, X.; Black, D.; Watkins, N. J.; Gao, Y.; Yang, H., Platinum-maghemite core-shell nanoparticles using a sequential synthesis. Nano Lett. 2003, 3, 261-264.
399. Hong, R. Y.; Zhang, S. Z.; Di, G. Q.; Li, H. Z.; Zheng, Y.; Ding, J.; Wei, D. G., Preparation, characterization and application of Fe3O4/ZnO core/shell magnetic nanoparticles. Mater. Res. Bull. 2008, 43, 2457-2468.
400. Li, Y.; Liu, Y.; Tang, J.; Lin, H.; Yao, N.; Shen, X.; Deng, C.; Yang, P.; Zhang, X., Fe3O4@Al2O3 magnetic core–shell microspheres for rapid and highly specific capture of phosphopeptides with mass spectrometry analysis. J. Chromatogr. A 2007, 1172, 57-71.
401. Chen, W.-J.; Tsai, P.-J.; Chen, Y.-C., Functional Fe3O4/TiO2 core/shell magnetic nanoparticles as photokilling agents for pathogenic bacteria. Small 2008, 4, 485-491.
402. Chen, C.-T.; Chen, Y.-C., Fe3O4/TiO2 core/shell nanoparticles as affinity probes for the analysis of phosphopeptides using TiO¬2 surface-assisted laser desorption/ionization mass spectrometry. Anal. Chem. 2005, 77, 5912-5919.
403. Núñez, N. O.; Tartaj, P.; Morales, M. P.; Bonville, P.; Serna, C. J., Yttria-coated FeCo magnetic nanoneedles. Chem. Mater. 2004, 16, 3119-3124.
404. Scott, J. H. J.; Majetich, S. A., Morphology, structure, and growth of nanoparticles produced in a carbon arc. Phy. Rev. B 1995, 52, 12564.
405. Wang, Z.; Guo, H.; Yu, Y.; He, N., Synthesis and characterization of a novel magnetic carrier with its composition of Fe3O4/carbon using hydrothermal reaction. J. Magn. Magn. Mater. 2006, 302, 397-404.
406. Li, Q.; Li, H.; Pol, V. G.; Bruckental, I.; Koltypin, Y.; Calderon-Moreno, J.; Nowik, I.; Gedanken, A., Sonochemical synthesis, structural and magnetic properties of air-stable Fe/Co alloy nanoparticles. New J. Chem. 2003, 27, 1194-1199.
407. Nikitenko, S. I.; Koltypin, Y.; Palchik, O.; Felner, I.; Xu, X. N.; Gedanken, A., Synthesis of highly magnetic, air-stable iron-iron carbide nanocrystalline particles by using power ultrasound. Angew. Chem. Int. Ed. 2001, 40, 4447-4449.
408. Chan, H. B. S.; Ellis, B. L.; Sharma, H. L.; Frost, W.; Caps, V.; Shields, R. A.; Tsang, S. C., Carbon-encapsulated radioactive 99mTc nanoparticles. Adv. Mater. 2004, 16, 144-149.
409. Geng, J.; Jefferson, D. A.; Johnson, B. F. G., Direct conversion of iron stearate into magnetic Fe and Fe3C nanocrystals encapsulated in polyhedral graphite cages. Chem. Commun. 2004, 2442-2443.
410. Lu, A.-H.; Li, W.-C.; Matoussevitch, N.; Spliethoff, B.; Bonnemann, H.; Schuth, F., Highly stable carbon-protected cobalt nanoparticles and graphite shells. Chem. Commun. 2005, 98-100.
411. Baranauskas, V. V.; Zalich, M. A.; Saunders, M.; St. Pierre, T. G.; Riffle, J. S., Poly(styrene-b-4-vinylphenoxyphthalonitrile)-cobalt complexes and their conversion to oxidatively stable cobalt nanoparticles. Chem. Mater. 2005, 17, 5246-5254.
412. Chen, M.; Yamamuro, S.; Farrell, D.; Majetich, S. A., Gold-coated iron nanoparticles for biomedical applications. J. Appl. Phys. 2003, 93, 7551-7553.
413. Lu, Y.; Yin, Y.; Mayers, B. T.; Xia, Y., Modifying the surface properties of superparamagnetic iron oxide nanoparticles through a sol-gel approach. Nano Lett. 2002, 2, 183-186.
414. Chang, S.-Y.; Liu, L.; Asher, S. A., Creation of templated complex topological morphologies in colloidal silica. J. Am. Chem. Soc. 1994, 116, 6745-6747.
415. Santra, S.; Tapec, R.; Theodoropoulou, N.; Dobson, J.; Hebard, A.; Tan, W., Synthesis and characterization of silica-coated iron oxide nanoparticles in microemulsion: the effect of nonionic surfactants. Langmuir 2001, 17, 2900-2906.
416. Tago, T.; Hatsuta, T.; Miyajima, K.; Kishida, M.; Tashiro, S.; Wakabayashi, K., Novel synthesis of silica-coated ferrite nanoparticles prepared using water-in-oil microemulsion. J. Am. Ceram. Soc. 2002, 85, 2188-2194.
417. Tartaj, P.; Serna, C. J., Synthesis of monodisperse superparamagnetic Fe/silica nanospherical composites. J. Am. Chem. Soc. 2003, 125, 15754-15755.
418. Vestal, C. R.; Zhang, Z. J., Synthesis and magnetic characterization of Mn and Co spinel ferrite-silica nanoparticles with tunable magnetic core. Nano Lett. 2003, 3, 1739-1743.
419. Stober, W., Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci. 1968, 26, 62-69.
420. Ulman, A., Formation and structure of self-assembled monolayers. Chem. Rev. 1996, 96, 1533-1554.
421. Smith, J. E.; Medley, C. D.; Tang, Z.; Shangguan, D.; Lofton, C.; Tan, W., Aptamer-conjugated nanoparticles for the collection and detection of multiple cancer cells. Anal. Chem. 2007, 79, 3075-3082.
422. Wu, X.; Wu, S.; Yang, L.; Han, J.; Han, S., Cytosolic delivery of proteins mediated by aldehyde-displaying silica nanoparticles with pH-responsive characteristics. J. Mater. Chem. 2012, 22, 17121-17127.
423. Yoon, T.-J.; Yu, K. N.; Kim, E.; Kim, J. S.; Kim, B. G.; Yun, S.-H.; Sohn, B.-H.; Cho, M.-H.; Lee, J.-K.; Park, S. B., Specific targeting, cell sorting, and bioimaging with smart magnetic silica core-shell nanomaterials. Small 2006, 2, 209-215.
424. Li, D.; Teoh, W. Y.; Gooding, J. J.; Selomulya, C.; Amal, R., Functionalization strategies for protease immobilization on magnetic nanoparticles. Adv. Funct. Mater. 2010, 20, 1767-1777.
425. Isenbügel, K.; Ritter, H.; Branscheid, R.; Kolb, U., Nanoparticle vesicles through self assembly of cyclodextrin- and adamantyl-modified silica. Macromol. Rapid Commun. 2010, 31, 2121-2126.
426. Riente, P.; Yadav, J.; Pericàs, M. A., A click strategy for the immobilization of macmillan organocatalysts onto polymers and magnetic nanoparticles. Org. Lett. 2012, 14, 3668-3671.
427. Ninjbadgar, T.; Brougham, D. F., Epoxy ring opening phase transfer as a general route to water dispersible superparamagnetic Fe3O4 nanoparticles and their application as positive MRI contrast Agents. Adv. Funct. Mater. 2011, 21, 4769-4775.
428. Beygzadeh, M.; Alizadeh, A.; Khodaei, M. M.; Kordestani, D., Biguanide/Pd(OAc)2 immobilized on magnetic nanoparticle as a recyclable catalyst for the heterogeneous Suzuki reaction in aqueous media. Catal. Commun. 2013, 32, 86-91.
429. Williams, R. L.; Hadley, M. J.; Jiang, P. J.; Rowson, N. A.; Mendes, P. M.; Rappoport, J. Z.; Grover, L. M., Thiol modification of silicon-substituted hydroxyapatite nanocrystals facilitates fluorescent labelling and visualisation of cellular internalisation. J. Mater. Chem. B 2013, 1, 4370-4378.
430. Wang, X.; Ramstrom, O.; Yan, M., Dye-doped silica nanoparticles as efficient labels for glycans. Chem. Commun. 2011, 47, 4261-4263.
431. Ngo, V. G.; Bressy, C.; Leroux, C.; Margaillan, A., Synthesis of hybrid TiO2 nanoparticles with well-defined poly(methyl methacrylate) and poly(tert-butyldimethylsilyl methacrylate) via the RAFT process. Polymer 2009, 50, 3095-3102.
432. Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B., A Stepwise Huisgen cycloaddition process: copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew. Chem. Int. Ed. 2002, 41, 2596-2599.
433. Huisgen, R., Centenary lecture - 1,3-dipolar cycloadditions. Proc. Chem. Soc. 1961, 357-396.
434. Kolb, H. C.; Finn, M. G.; Sharpless, K. B., Click chemistry: diverse chemical function from a few good reactions. Angew. Chem. Int. Ed. 2001, 40, 2004-2021.
435. Himo, F.; Lovell, T.; Hilgraf, R.; Rostovtsev, V. V.; Noodleman, L.; Sharpless, K. B.; Fokin, V. V., Copper(I)-catalyzed synthesis of azoles. DFT study predicts unprecedented reactivity and intermediates. J. Am. Chem. Soc. 2005, 127, 210-216.
436. Bock, V. D.; Hiemstra, H.; van Maarseveen, J. H., CuI-catalyzed alkyne–azide “click” cycloadditions from a mechanistic and synthetic perspective. Eur. J. Org. Chem. 2006, 2006, 51-68.
437. Lutz, J.-F.; Zarafshani, Z., Efficient construction of therapeutics, bioconjugates, biomaterials and bioactive surfaces using azide-alkyne “click” chemistry. Adv. Drug Delivery Rev. 2008, 60, 958-970.
438. Golas, P. L.; Matyjaszewski, K., Marrying click chemistry with polymerization: expanding the scope of polymeric materials. Chem. Soc. Rev. 2010, 39, 1338-1354.
439. Liang, L.; Astruc, D., The copper(I)-catalyzed alkyne-azide cycloaddition (CuAAC) “click” reaction and its applications. An overview. Coord. Chem. Rev. 2011, 255, 2933-2945.
440. Nandivada, H.; Lahann, J., Copper-Catalyzed ‘Click’ Chemistry for Surface Engineering. In Click Chemistry for Biotechnology and Materials Science, Lahann, J., Ed., John Wiley & Sons, Ltd, 2009, pp. 91-307.
441. Li, N.; Binder, W. H., Click-chemistry for nanoparticle-modification. J. Mater. Chem. 2011, 21, 16717-16734.
442. Rodionov, V. O.; Presolski, S. I.; Gardinier, S.; Lim, Y.-H.; Finn, M. G., Benzimidazole and related ligands for Cu-catalyzed azide-alkyne cycloaddition. J. Am. Chem. Soc. 2007, 129, 12696-12704.
443. Wang, Q.; Chan, T. R.; Hilgraf, R.; Fokin, V. V.; Sharpless, K. B.; Finn, M. G., Bioconjugation by copper(I)-catalyzed azide-alkyne [3 + 2] cycloaddition. J. Am. Chem. Soc. 2003, 125, 3192-3193.
444. Chan, T. R.; Hilgraf, R.; Sharpless, K. B.; Fokin, V. V., Polytriazoles as copper(I)-stabilizing ligands in catalysis. Org. Lett. 2004, 6, 2853-2855.
445. Gupta, S. S.; Kuzelka, J.; Singh, P.; Lewis, W. G.; Manchester, M.; Finn, M. G., Accelerated bioorthogonal conjugation: a practical method for the ligation of diverse functional molecules to a polyvalent virus scaffold. Bioconjugate Chem. 2005, 16, 1572-1579.
446. Lewis, W. G.; Magallon, F. G.; Fokin, V. V.; Finn, M. G., Discovery and characterization of catalysts for azide-alkyne cycloaddition by fluorescence quenching. J. Am. Chem. Soc. 2004, 126, 9152-9153.
447. Rodionov, V. O.; Presolski, S. I.; Díaz Díaz, D.; Fokin, V. V.; Finn, M. G., Ligand-accelerated Cu-catalyzed azide-alkyne cycloaddition: a mechanistic report. J. Am. Chem. Soc. 2007, 129, 12705-12712.
448. Soriano del Amo, D.; Wang, W.; Jiang, H.; Besanceney, C.; Yan, A. C.; Levy, M.; Liu, Y.; Marlow, F. L.; Wu, P., Biocompatible copper(I) catalysts for in vivo imaging of glycans. J. Am. Chem. Soc. 2010, 132, 16893-16899.
449. Besanceney-Webler, C.; Jiang, H.; Zheng, T.; Feng, L.; Soriano del Amo, D.; Wang, W.; Klivansky, L. M.; Marlow, F. L.; Liu, Y.; Wu, P., Increasing the efficacy of bioorthogonal click reactions for bioconjugation: a comparative study. Angew. Chem. Int. Ed. 2011, 50, 8051-8056.
450. Wang, W.; Hong, S.; Tran, A.; Jiang, H.; Triano, R.; Liu, Y.; Chen, X.; Wu, P., Sulfated ligands for the copper(I)-catalyzed azide-alkyne cycloaddition. Chem. Asian J. 2011, 6, 2796-2802.
451. Hong, V.; Udit, A. K.; Evans, R. A.; Finn, M. G., Electrochemically protected copper(I)-catalyzed azide-alkyne cycloaddition. ChemBioChem 2008, 9, 1481-1486.
452. Hong, V.; Presolski, S. I.; Ma, C.; Finn, M. G., Analysis and optimization of copper-catalyzed azide–alkyne cycloaddition for bioconjugation. Angew. Chem. Int. Ed. 2009, 48, 9879-9883.
453. Ayres, N., Polymer brushes: applications in biomaterials and nanotechnology. Polym. Chem. 2010, 1, 769-777.
454. Azzaroni, O., Polymer brushes here, there, and everywhere: recent advances in their practical applications and emerging opportunities in multiple research fields. J. Polym. Sci. Polym. Chem. 2012, 50, 3225-3258.
455. Handbook of Radical Polymerization, Matyjaszewski, K.; Davis, T. P., Ed., Wiley, Hoboken, NJ, 2002.
456. Braunecker, W. A.; Matyjaszewski, K., Controlled/living radical polymerization: features, developments, and perspectives. Prog. Polym. Sci. 2007, 32, 93-146.
457. Brinks, M. K.; Studer, A., Polymer brushes by nitroxide-mediated polymerization. Macromol. Rapid Commun. 2009, 30, 1043-1057.
458. Matyjaszewski, K.; Xia, J., Atom transfer radical polymerization. Chem. Rev. 2001, 101, 2921-2990.
459. Chiefari, J.; Chong, Y. K.; Ercole, F.; Krstina, J.; Jeffery, J.; Le, T. P. T.; Mayadunne, R. T. A.; Meijs, G. F.; Moad, C. L.; Moad, G.; Rizzardo, E.; Thang, S. H., Living free-radical polymerization by reversible addition-fragmentation chain transfer: the RAFT process. Macromolecules 1998, 31, 5559-5562.
460. Moad, G.; Rizzardo, E.; Thang, S. H., Living radical polymerization by the RAFT process - a second update. Aust. J. Chem. 2009, 62, 1402-1472.
461. Minko, S., Grafting on Solid Surfaces: “Grafting to” and “Grafting from” Methods Polymer Surfaces and Interfaces. In Polymer Surfaces and Interfaces, Stamm, M., Ed., Springer, Berlin Heidelberg, 2008, pp. 215-234.
462. 李昆峰;高肇鴻;陳錚誼;趙啟民;卓慧如;林玉娟,磁性奈米粒子於生醫領域之應用,科儀新知,2006, 153, 61-69.
463. Lacroix, L.-M.; Ho, D.; Sun, S., Magnetic nanoparticles as both imaging probes and therapeutic agents. Curr. Top. Med. Chem. 2010, 10, 1184-1197.
464. Ho, D.; Sun, X.; Sun, S., Monodisperse magnetic nanoparticles for theranostic applications. Acc. Chem. Res. 2011, 44, 875-882.
465. Arruebo, M.; Fernández-Pacheco, R.; Ibarra, M. R.; Santamaría, J., Magnetic nanoparticles for drug delivery. Nano Today 2007, 2, 22-32.
466. Beveridge, J. S.; Stephens, J. R.; Williams, M. E., The Use of Magnetic nanoparticles in analytical chemistry. Annu. Rev. Anal. Chem. 2011, 4, 251-273.
467. Graham, D. L.; Ferreira, H. A.; Freitas, P. P., Magnetoresistive-based biosensors and biochips. Trends Biotechnol. 2004, 22, 455-462.
468. Walsh, C. T.; Garneau-Tsodikova, S.; Gatto, G. J., Protein posttranslational modifications: the chemistry of proteome diversifications. Angew. Chem. Int. Ed. 2005, 44, 7342-7372.
469. Mann, M.; Jensen, O. N., Proteomic analysis of post-translational modifications. Nat. Biotech. 2003, 21, 255-261.
470. 周建成,發展磁性奈米探針用以鑑定和純化硫基亞硝基化胜肽,國立清華大學化學研究所 碩士論文,2011。
471. Wu, H.-T.; Hsu, C.-C.; Tsai, C.-F.; Lin, P.-C.; Lin, C.-C.; Chen, Y.-J., Nanoprobe-based immobilized metal affinity chromatography for sensitive and complementary enrichment of multiply phosphorylated peptides. Proteomics 2011, 11, 2639-2653.
472. Lin, P.-C.; Chou, P.-H.; Chen, S.-H.; Liao, H.-K.; Wang, K.-Y.; Chen, Y.-J.; Lin, C.-C., Ethylene Glycol-protected magnetic nanoparticles for a multiplexed immunoassay in human plasma. Small 2006, 2, 485-489.
473. Chou, P.-H.; Chen, S.-H.; Liao, H.-K.; Lin, P.-C.; Her, G.-R.; Lai, A. C.-Y.; Chen, J.-H.; Lin, C.-C.; Chen, Y.-J., Nanoprobe-based affinity mass spectrometry for selected protein profiling in human Plasma. Anal. Chem. 2005, 77, 5990-5997.
474. Wang, K.-Y.; Chuang, S.-A.; Lin, P.-C.; Huang, L.-S.; Chen, S.-H.; Ouarda, S.; Pan, W.-H.; Lee, P.-Y.; Lin, C.-C.; Chen, Y.-J., Multiplexed immunoassay: quantitation and profiling of serum biomarkers using magnetic nanoprobes and MALDI-TOF MS. Anal. Chem. 2008, 80, 6159-6167.
475. Hsiao, H.-Y.; Chen, M.-L.; Wu, H.-T.; Huang, L.-D.; Chien, W.-T.; Yu, C.-C.; Jan, F.-D.; Sahabuddin, S.; Chang, T.-C.; Lin, C.-C., Fabrication of carbohydrate microarrays through boronate formation. Chem. Commun. 2011, 47, 1187-1189.
476. 吳煥婷,功能化磁性奈米粒子應用於目標分子純化與偵測,國立清華大學化學研究所 博士論文,2010。
477. Lai, C.-H.; Lin, C.-Y.; Wu, H.-T.; Chan, H.-S.; Chuang, Y.-J.; Chen, C.-T.; Lin, C.-C., Galactose encapsulated multifunctional nanoparticle for HepG2 cell internalization. Adv. Funct. Mater. 2010, 20, 3948-3958.
478. Khorev, O.; Stokmaier, D.; Schwardt, O.; Cutting, B.; Ernst, B., Trivalent, Gal/GalNAc-containing ligands designed for the asialoglycoprotein receptor. Bioorg. Med. Chem. 2008, 16, 5216-5231.
479. Zhou, Y.; Wang, S.; Xie, K.; Dai, Y.; Ma, W., Versatile functionalization of Fe3O4 nanoparticles via RAFT polymerization and click chemistry. Appl. Surf. Sci. 2011, 257, 10384-10389.
480. Jin, S.; Choudhary, G.; Cheng, Y.; Dai, C.; Li, M.; Wang, B., Fluoride protects boronic acids in the copper(I)-mediated click reaction. Chem. Commun. 2009, 5251-5253.
481. von Maltzahn, G.; Ren, Y.; Park, J.-H.; Min, D.-H.; Kotamraju, V. R.; Jayakumar, J.; Fogal, V.; Sailor, M. J.; Ruoslahti, E.; Bhatia, S. N., In vivo tumor cell targeting with “Click” nanoparticles. Bioconjugate Chem. 2008, 19, 1570-1578.
482. Binder, W. H.; Lomoschitz, M.; Sachsenhofer, R.; Friedbacher, G., Reversible and irreversible binding of nanoparticles to polymeric surfaces. J. Nanomater. 2009, 2009, article ID 613813.
483. Brennan, J. L.; Hatzakis, N. S.; Tshikhudo, T. R.; Razumas, V.; Patkar, S.; Vind, J.; Svendsen, A.; Nolte, R. J. M.; Rowan, A. E.; Brust, M., Bionanoconjugation via click chemistry: the creation of functional hybrids of lipases and gold nanoparticles. Bioconjugate Chem. 2006, 17, 1373-1375.
484. O'Reilly, R. K.; Joralemon, M. J.; Wooley, K. L.; Hawker, C. J., Functionalization of micelles and shell cross-linked nanoparticles using click chemistry. Chem. Mater. 2005, 17, 5976-5988.
485. Appukkuttan, P.; Dehaen, W.; Fokin, V. V.; Van der Eycken, E., A microwave-assisted click chemistry synthesis of 1,4-disubstituted 1,2,3-triazoles via a copper(I)-catalyzed three-component reaction. Org. Lett. 2004, 6, 4223-4225.
486. Tie, S.-L.; Lee, H.-C.; Bae, Y.-S.; Kim, M.-B.; Lee, K.; Lee, C.-H., Monodisperse Fe3O4/Fe@SiO2 core/shell nanoparticles with enhanced magnetic property. Colloids Surf. A 2007, 293, 278-285.
487. Moad, G.; Chong, Y. K.; Postma, A.; Rizzardo, E.; Thang, S. H., Advances in RAFT polymerization: the synthesis of polymers with defined end-groups. Polymer 2005, 46, 8458-8468.
488. Moad, G.; Rizzardo, E.; Thang, S. H., End-functional polymers, thiocarbonylthio group removal/transformation and reversible addition–fragmentation–chain transfer (RAFT) polymerization. Polym. Int. 2011, 60, 9-25.
489. Ranjan, R.; Brittain, W. J., Tandem RAFT polymerization and click chemistry: an efficient approach to surface modification. Macromol. Rapid Commun. 2007, 28, 2084-2089.
490. Ranjan, R.; Brittain, W. J., Synthesis of high density polymer brushes on nanoparticles by combined RAFT polymerization and click chemistry. Macromol. Rapid Commun. 2008, 29, 1104-1110.
491. del Campo, A.; Sen, T.; Lellouche, J.-P.; Bruce, I. J., Multifunctional magnetite and silica-magnetite nanoparticles: synthesis, surface activation and applications in life sciences. J. Magn. Magn. Mater. 2005, 293, 33-40.
492. van de Waterbeemd, M.; Sen, T.; Biagini, S.; Bruce, I. J., Surface functionalisation of magnetic nanoparticles: quantification of surface to bulk amine density. Micro & Nano Lett. 2010, 5, 282-285.
493. Kamruzzahan, A. S. M.; Ebner, A.; Wildling, L.; Kienberger, F.; Riener, C. K.; Hahn, C. D.; Pollheimer, P. D.; Winklehner, P.; Hölzl, M.; Lackner, B.; Schörkl, D. M.; Hinterdorfer, P.; Gruber, H. J., Antibody linking to atomic force microscope tips via disulfide bond formation. Bioconjugate Chem. 2006, 17, 1473-1481.
494. Crouse, C. A.; Barron, A. R., Reagent control over the size, uniformity, and composition of Co-Fe-O nanoparticles. J. Mater. Chem. 2008, 18, 4146-4153.
495. Agard, N. J.; Prescher, J. A.; Bertozzi, C. R., A strain-promoted [3+2] azide-alkyne cycloaddition for covalent modification of biomolecules in living systems. J. Am. Chem. Soc. 2004, 126, 15046-15047.
496. Schultz, M. K.; Parameswarappa, S. G.; Pigge, F. C., Synthesis of a DOTA-biotin conjugate for radionuclide chelation via Cu-free click chemistry. Org. Lett. 2010, 12, 2398-2401.
497. Yameen, B.; Ali, M.; Alvarez, M.; Neumann, R.; Ensinger, W.; Knoll, W.; Azzaroni, O., A facile route for the preparation of azide-terminated polymers. "Clicking" polyelectrolyte brushes on planar surfaces and nanochannels. Polymer Chemistry 2010, 1, 183-192.
498. Miller, G. J.; Gardiner, J. M., Adaptable synthesis of C-glycosidic multivalent carbohydrates and succinamide-linked derivatization. Org. Lett. 2010, 12, 5262-5265.
499. Biraboneye, A. C. s.; Madonna, S. b.; Laras, Y.; Krantic, S.; Maher, P.; Kraus, J.-L., Potential neuroprotective drugs in cerebral ischemia: new saturated and polyunsaturated lipids coupled to hydrophilic moieties: synthesis and biological activity. J. Med. Chem. 2009, 52, 4358-4369.
500. Funder, E. D.; Jensen, A. B.; Tørring, T.; Kodal, A. L. B.; Azcargorta, A. R.; Gothelf, K. V., Synthesis of dopamine and serotonin derivatives for immobilization on a solid support. J. Org. Chem. 2012, 77, 3134-3142.
501. Zhang, X.; He, X.; Chen, L.; Zhang, Y., Boronic acid modified magnetic nanoparticles for enrichment of glycoproteins via azide and alkyne click chemistry. J. Mater. Chem. 2012, 22, 16520-16526.
502. Roy, D.; Cambre, J. N.; Sumerlin, B. S., Sugar-responsive block copolymers by direct RAFT polymerization of unprotected boronic acid monomers. Chem. Commun. 2008, 2477-2479.
503. 張宗哲,合成具有多價性醣體之新穎光親和性探針並用於探討碳水化合物與凝集素之交互作用,國立清華大學化學研究所 博士論文,2012。
504. Wu, A.; Lisowska, E.; Duk, M.; Yang, Z., Lectins as tools in glycoconjugate research. Glycoconjugate J. 2009, 26, 899-913.
505. Geng, M.; Zhang, X.; Bina, M.; Regnier, F., Proteomics of glycoproteins based on affinity selection of glycopeptides from tryptic digests. J. Chromatogr. B Biomed. Sci. Appl. 2001, 752, 293-306.