簡易檢索 / 詳目顯示

研究生: 郭信甫
Hsin-Fu Kuo
論文名稱: 奈米碳管之功能化:表面修飾與摻雜效應
Functionalized Carbon Nanotubes:Surface Decoration and Doping Effect
指導教授: 徐文光
Wen-Kuang Hsu
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 70
中文關鍵詞: 奈米碳管氣體靈敏度表面張力彎曲效應
外文關鍵詞: carbon nanotubes, gas sensitivity, surface tension, bending effect
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要

    本研究主要討論表面修飾(非共價性交互作用)與摻雜對奈米碳管的物理以及化學性質之影響。例如,藉由表面反應造成表面張力改變,氣體偵測的靈敏度增加以及碳管純化的效果。眾所皆知,在傳統矽晶圓半導體元件中,摻雜是調變電性最有效的方法,對於奈米碳管的電性改質亦是如此,然而較少有人討論形變對於元件電性的影響。因此在本論文中,我們針對「彎曲效應」對於不同碳管(實驗中採用了摻雜硼的多壁碳管與純單壁碳管)的電性影響做進一步探討。

    第一章
    首先簡介藉由不同分子(例如:高分子、介面活性劑等)對碳管表面進行改質的基本觀念。藉利用紅外線光譜的變化來辨別、鑑定分別來自管內與管外兩種不同吸附機制所產生的效應,並深入討論之。

    第二章
    再進入主題前,本章節先介紹實驗所使用的儀器、步驟、方法與本論文所利用的實驗概念。

    第三章
    此章節主要探討如何使用氨去除碳管表面雜質(例如:非晶形碳、催化劑),實驗中發現藉由浸泡氨水可使碳管表面吸附氨分子。再透過閃光燈(提供紫外光源)的照射(產生鳴爆),可將碳管表面的非晶形碳與金屬催化劑有效去除而得到純碳管。實驗結果發現經由上述步驟處理過的碳管對於氣體感測能力有大幅度的提昇(約增加3.8倍)。

    第四章
    透過觀測去離子水液滴形狀的改變與遷移,並進一步利用理論計算得知氨分子對碳管薄膜的表面改質所造成之表面張力變化。藉由對照組實驗提出合理的機制並預測液滴在外加的電磁場中的行為。

    第五章
    對照純碳管與摻硼碳管在受力彎曲時的電性改變行為,進一步探討電子穿隧。實驗數據配合理論計算建立電子於形變碳管中的穿隧行為乃一量子化的結果。

    第六章
    總結以上各章節的結果並提供未來可供研究之議題。


    Abstract

    The works presented in this thesis discuss the effects of non-covalent interaction with carbon nanotubes and molecules as well as Boron-dopants modify electronic structure of carbon nanotubes. Surface decoration has been proved to be important in changing the physico-chemical properties of nanotubes. For example, surface tension, gas sensing and purification via surface reaction are discussed in this study. Doping is well known effective in changing electrical properties of Si-based devices, and it also works in carbon nanotubes. In this study, we demonstrate how bending effect electrical properties in Boron-doped carbon nanotubes (BCNTs) and single-walled carbon nanotubes (SWCNTs).

    Chapter 1 introduces the basic concept of nanotubes surface decoration by different molecules, e.g. polymers, surfactants, and others chemical species. Two attachments will be discussed, inside and outside the tube, along with the influence of infrared spectroscope analyses.

    Chapter 2 will discuss the experimental methods, and characterization techniques employed in this study.

    Chapter 3 shows the ammonia blast on nanotube surface. This work demonstrates the removal of carbonaceous impurities and catalytic particles from carbon nanotube surfaces by ammonia explosion and data reveals that gas sensitivity of purified nanotubes becomes faster by a factor of 3.8 compared with pristine materials.
    Chapter 4 discusses the observations of surface tension change upon NH3 attachment and droplet (deionized water) migration on nanotube surface. Droplet moving rate, surface tensions of pristine and decorated nanotube films are calculated from experiment information. Feasible mechanism is proposed and influence of droplet migration by external magnetic field is also predicted.

    Chapter 5 mainly focuses on electron tunneling through boron doped carbon nanotubes. We also show the difference electronic behavior between undoped and B-doped nanotubes. In this chapter, we describe the phenomenon of nanotube deflection driven electron transmission.

    Chapter 6 concludes results of our experiments.

    Contents Abstract………………………..……………………………………………………. I Acknowledgement…………………………………………………………………...V Contents……………………..……………………………………………………..VII Table list……………………………………………………………………….……IX Figure Captions………………………………………………………………….…..X Chapter 1 Introduction 1-1 Electronic structure of carbon nanotubes……………………………..…….. .1 1-2 Absorption on carbon nanotubes…………………………………….……....5 1-2-1 A description to interactions of molecules and carbon nanotubes…….5 1-2-2 Non-covalent interaction of carbon nanotubes with gas molecules…...6 1-2-3 Infrared (IR) spectroscopy of gas decorated carbon nanotubes….…....8 1-2-4 Interaction of carbon nanotubes and surfactants……………..…..…..10 1-2-5 Molecules ordering inside the nanotubes……………….……..…….12 1-3 Electrical properties of doped carbon nanotubes……………………………14 References………………………………………………………………………..16 Chapter 2 Experimental 2-1 Sample preparation……………………….…….…………………….……...20 2-1-1 Device fabrication for experiments of ammonia explosion and surface tension……………………………………………………..………..20 2-1-2 BCNT resonant tunneling diodes (RTDs)……….……………...…21 2-2 Characterization instruments…………….…………………………..…...….22 References………………………………………………………………………..24 Chapter 3 Ammonia blast on carbon nanotubes………………………………….25 References………………………………………………………………………..41 Chapter 4 Droplet migration on carbon nanotube film 4-1 Non-dipolar liquid migration on carbon nanotube films at low field………...43 4-2 Influence of magnetic field to liquid migration on carbon nanotube films: the theoretical prediction……………………………………………….………...51 References…………………………………………………………………….…..54 Chapter 5 Quantum switches based on deflected doped carbon nanotubes….....55 References………………………………………………………………………..67 Chapter 6 Conclusions……………………….…………………………………….69 Table list Table 1.1 Effects of interactions with nanotubes on IR spectra of small molecules….9 Table 3.1 Selective area of EDX data…………………………………………….…27 Table 3.2 Fitted exponential decay function………………………………………...40 Table 4.1 Surface tensions of deionized water and ethylene glycol……………...…47 Table 4.2 CA and estimated surface tensions of as-made, treated, and voltage applied to treated SWNTF…………………………………………………………48 Table 4.3 The , , specific capacitance and reduced dielectric constant of treated SWNTF……………………………………………………………………50 Table 5.1 Fitting differential conductance spectrum of θ=32o by infinite quantum well model. The results are shown in table……….….….………………….….63 Table 5.2 ΔEadd at different bending angles……………….………………………..66 Figure Captions Figure 1.1 Schematic representation of a 2D graphite layer with the lattice vectors a1 and a2 and the roll-up vector Ch na1 ma2. Achiral tubes exhibit roll-up vectors derived from (n,0) (zigzag) or (n,n) (armchair). The translation vector T is parallel to the tube axis and defines the 1D unit cell. The rectangle represents an unrolled unit cell, defined by T and Ch. In this example, (n,m)=(4,2)………………………………........2 Figure 1.2 Idealized representation of defect-free (n,m) SWNTs with open ends. (a) A metallic conducting (10,10) tube (armchair), (b) a chiral, semiconducting (12,7) tube, and (c) a conducting (15,0) tube (zigzag). The armchair (a) and zigzag (c) tubes are achiral. All the (n,n) armchair tubes are metallic, whilst this is only the case with chiral or zigzag tubes if (n-m)/3 is a whole number, otherwise, they are semiconductors………………………………………………………………………..3 Figure 1.3 Schematic diagram of a bundle of nanotubes (a) cross-section view and (b) side view. Possible adsorption sites for small molecules: grooves of bundles – A, outer surface of sidewalls – B, interstitial cavities – C, and nanotube cavities – D…..4 Figure 1.4 Schematic diagrams of small molecules exohedrally (blue) and endohedrally (red) adsorbed on nanotubes of different diameters (dmolecule is van der Waals diameter of molecule, and dNT is internal van der Waals diameter of nanotube): (a) dNT ? dmolecule, (b) dNT ~ dmolecule, (c) dNT ? dmolecule, (d) dNT ?? dmolecule, (e) dNT ~? ….……………………………………………………………………………………..6 Figure 1.5 Functionalization possibilities for SWNTs: (a) defect-group functionalization, (b) covalent sidewall functionalization, (c) noncovalent exohedral functionalization with surfactants, (d) noncovalent exohedral functionalization with polymers, and (e) endohedral functionalization with, for example, C60. For methods B-E, the tubes are drawn in idealized fashion, but defects are found in real situations………………………………………………………………………………7 Figure 1.6 Chemical structures of (a) sodium dodecylsulfate, (b) tetraalkylammonium bromide, and (c) sodium dodecylbenzene sulfonate……………………………..….12 Figure 1.7 Different phases of C60 assembled in carbon nanotubes of different diameters……………………………………………………………………………..13 Figure 2.1 (a) The device with suspended SWNTF, which is connected to electrodes by Ag paste, and (b) Height image of SWNTF………………………………………21 Figure 2.2 (a) Basic structure of RTDs. Insulators work as barriers to prevent a thermionic current, (b) Our design of BCNT RTD…………………………………..22 Figure 3.1 (a) Experimental set up, (b)treated-flashd SWCNT film, (c)materials found at trench region below film, and (d) enhanced image of trench materials……………………….……………………………………………………..26 Figure 3.2 SEM images of (a) pristine and (b) NH4OH treated-flashed SWNT films. (c) Selective area EDX of pristine, and (d) NH4OH treated-flashed SWNT films……………………………………………………………………..……….…...27 Figure 3.3 (a) Enhanced SEM image of treated-flashed SWCNTs; arrows denote the residual particles at crisis-crossed tubes, (b) TEM image of treated-flashed SWCNTs; arrows denote the residual particles clamped by crisis-crossed tubes (left, b) and enhanced TEM images verify that particles are defective carbon cages (right, b)…..28 Figure 3.4 (a) Raman, and (b) TGA analysis of untreated and treated films………..30 Figure 3.5 (a) NH4OH wetted (denoted as A), and unwetted regions (denoted as B), and boundary between two regions, (b) enhanced SEM image at regions A and B, (c) wetted region after flashes, and (d) unwetted region after flashes…………….……..33 Figure 3.6 (a) Variation of SWCNT resistances with consecutive flashes; insert shows the magnitude of resistance reduction at each flash. (b) Photoacoustic response of background (dark), pristine (red) and NH4OH treated SWCNT films (blue), and (c) H2 generation by consecutive flashes for background (dark), pristine (red) and NH4OH treated SWCNT film (blue); red overlaps with dark curves........................................36 Figure 3.7 (a) R/Ro variations of SWCNT film before (dark) and after NH4OH-flash treatment (red) with air evacuation from 760 to 10-4 torr and onset of chamber ventilation (blue lines), (b) fitted exponential decay function of pristine (dark) and purified samples (red) upon chamber ventilation…………..………………………...38 Figure 4.1 The relationship between surface tensions……………………….……...44 Figure 4.2 (a) A SEM image of SWNTF, and (b) structure of droplet on SWNTF with electrodes…………………………………..…………...……….….…………….….45 Figure 4.3 In-situ CA of water droplet on (a) as-made, (b) NH4OH treated SWNTF without applied electric field, and (c) NH4OH treated SWNTF with applied electric field (6V). Glycol droplets on (d) as-made, (e) NH4OH treated SWNTF without applied electric field, and (f) NH4OH treated SWNTF with applied electric field (6V). Pictures were taken at the same magnification and droplets were situated at the center of the film. …………………………………………………………………………..46 Figure 4.4 In situ observation of liquid transportation under voltage (6V) to anode by OM. (a)-(d) shows water moves to anode and (e)-(h) are the movement of glycol to anode. Note that the droplet was located near the electrode. Red circle mark a small amount of liquid on the tip of electrode. The magnification of the image is the same with figure 4.3……………………………………………………………………….49 Figure 4.5 Experimental set up of Hall effect……………………………………….52 Figure 4.6 Surface tension change due to Hall effect. The magnitude of Hall voltage will determine density of EDL……………………………………………………….53 Figure 5.1 (a) our experimental design. W-tip was always grounded and voltage was scaned from -10V to 10V through SS electrode. Both electrodes were deposited with oxides for barrier layers. (b) The energy level diagram at thermal equilibrium……..57 Figure 5.2 SEM image of different bending case, (a) non-bending, (b) θ=30o, and (c) θ=57o+ 32o……………………………………………………………………………58 Figure 5.3 (a) I-V curve of different bending. The inset diagram is ranged from -3V to 3V, which exhibits behavior as normal semiconductor nanotubes. From -10V to 10V voltage scan, tunneling current appear when bending angle over 30o, the turn on voltage is reduced via increasing bending angle. Peak at -3.7V is suggested a lower energy state. (b) Energy level diagram of electron flow from SS to W-tip and electron as applying reverse bias. Electrons accumulate at quantum islands are considered because of a thicker barrier. (c) At forward bias, electrons mainly accumulate at W-tip, as shown in diagram………………………………………………………………….60 Figure 5.4 Differential conductance spectra for (a) forward and (b) reverse bias; blue and orange filled peaks denote “on” and “off” states.……………..…………….…..62 Figure 5.5 Bending of a single-walled carbon nanotube bundle at (a) 0o, (b) 40o, (c) 80o and (d) 90o (kinking). (e) The Corresponding I-V characteristic of bent SWNTs at 0o (black line), 40o (red line), 80o (green) and 90o (blue line)…………………….…64 Figure 5.6 Bent BCNT and location of BC3 domains at (a) side wall, (b) inner rim, (c) outer rim, and the corresponding LDOS diagrams at (d) side wall, (e) inner rim and (f) outer rim.……………………………………………………….………………….…65

    Chapter 1

    [1] R. Saito, G. Dresselhaus, M. S. Dresselhaus, Physical Properties of Carbon Nanotubes, Imperial College Press, London, 1998.
    [2] N. Wang, Z. K. Tang, G. D. Li, J. S. Chen, Nature 408, 50 (2000)
    [3] Q. H. Yang, S. Bai, J. L. Sauvajol, J. B. Bai, Adv. Mater. 15, 792 (2003)
    [4] S. Iijima, Nature, 354, 56 (1991)
    [5] L. A. Girifalco, M. Hodak, R. S. Lee, Phys. Rev. B: Condens. Matter 62, 13,104 (2000)
    [6] A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D. Tomanek, J. E. Fischer, R. E. Smalley, Science 273, 483. (1996)
    [7] J. Chen, M. A. Hamon, H. Hu, Y. S. Chen, A. M. Rao, P. C. Eklund, R. C. Haddon, Science 282, 95 (1998)
    [8] A. Hirsch, Angew. Chem., Int. Ed. 41, 1853 (2002)
    [9] L. A. Girifalco and M. Hodak, Phys. Rev. B: Condens. Matter 65, 125404 (2002)
    [10] J. Liu, A. G. Rinzler, H. Dai, J. H. Hafner, R. K. Bradley, P. J. Boul, A. Lu, T. Iverson, K. Shelimov, C. B. Huffman, F. Rodriguez-Macias, Y.-S. Shon, T. R. Lee, D. T. Colbert, R. E. Smalley, Science 280, 1253-1256 (1998)
    [11] M. A. Hamon, H. Hu, P. Bhowmik, S. Niyogi, B. Zhao, M. E. Itkis, R. C. Haddon, Chem. Phys. Lett. 347, 8-12 (2001)
    [12] D. B. Mawhinney, V. Naumenko, A. Kuznetsova, J. T. Yates, J. Liu, R. E. Smalley, Chem. Phys. Lett. 324, 213-216. (2000)
    [13] M. Monthioux, B. W. Smith, B. Burteaux, A. Claye, J. E. Fischer, D. E. Luzzi, Carbon 39, 1251-1272 (2001)
    [14] M. A. Hamon, J. Chen, H. Hu, Y. Chen, M. E. Itkis, A. M. Rao, P. C. Eklund, R. C. Haddon, Adv. Mater. 11, 834-840 (1999)
    [15] M. Eswaramoorthy, R. Sen and C. N. R. Rao, Chem. Phys. Lett. 304, 207 (1999)
    [16] S. Bandow, A. M. Rao, K. A. Williams, A. Thess, R. E. Smalley, P. C. Eklund, J. Phys. Chem. B 101, 8839-8842 (1997)
    [17] K. Hirahara, S. Bandow, K. Suenaga, H. Kato, T. Okazaki, H. Shinohara and S. Iijima, Phys. Rev. B: Condens. Matter 64, 115420 (2001)
    [18] M. D. Ellison, A. P. Good, C. S. Kinnaman and N. E. Padgett, J. Phys. Chem. B 109, 10640 (2005)
    [19] W. F. Du, L. Wilson, J. Ripmeester, R. Dutrisac, B. Simard, S. Denommee, Nano Lett. 2, 343 (2002)
    [20] C. Matranga and B. Bockrath, J. Phys. Chem. B 109, 4853 (2005)
    [21] M. K. Kostov, E. E. Santiso, A. M. George, K. E. Gubbins, M. B. Nardelli, Phys. Rev. Lett. 95, 136105 (2005)
    [22] W. L. Yim, O. Byl, J. T. Yates and J. K. Johnson, J. Chem. Phys. 120, 5377 (2004)
    [23] C. Matranga and B. Bockrath, J. Phys. Chem. B 109, 9209 (2005)
    [24] X. Feng, S. Irle, H. Witek, K. Morokuma, R. Vidic E. Borguet, J. Am. Chem. Soc. 127, 10533 (2005)
    [25] W. L. Yim, O. Byl, J. T. Yates J. K. Johnson, J. Chem. Phys. 120, 5377 (2004)
    [26] G. S. Duesberg, M. Burghard, J. Muster, G. Philipp, S. Roth, Chem. Commun. 435-436 (1998)
    [27] V. Krstic, G. S. Duesberg, J. Muster, M. Burghard, S. Roth, Chem. Mater. 10, 2338-2340 (1998)
    [28] M. J. O’Connell, S. M. Bachilo, C. B. Huffman, V. C. Moore, M. S. Strano, E. H. Haroz, K. L. Rialon, P. J. Boul, W. H. Noon, C. Kittrell, J. P. Ma, R. H. Hauge, R. B. Weisman, R. E. Smalley, Science 297, 593 (2002)
    [29] V. C. Moore, M. S. Strano, E. H. Haroz, R. H. Hauge, R. E. Smalley, J. Schmidt and Y. Talmon, Nano Lett. 3, 1379. (2003)
    [30] M. F. Islam, E. Rojas, D. M. Bergey, A. T. Johnson, A. G. Yodh, Nano Lett. 3, 269. (2003)
    [31] R. J. Chen, Y. G. Zhan, D. W. Wang, H. J. Dai, J. Am. Chem. Soc. 123, 3838 (2001)
    [32] F. J. Gomez, R. J. Chen, D. W. Wang, R. M. Waymouth, H. J. Dai, Chem. Commun. 190. (2003)
    [33] J. Zhang, J. K. Lee, Y. Wu, R. W. Murray, Nano Lett. 3, 403 (2003)
    [34] S. Okada, S. Saito and A. Oshiyama, Phys. Rev. Lett. 86, 3835 (2001)
    [35] M. Hodak and L. A. Girifalco, Phys. Rev. B: Condens. Matter. 67, 075419 (2003)
    [36] A. N. Khlobystov, D. A. Britz, A. Ardavan, G. A. D. Briggs, Phys. Rev. Lett. 92, 245507 (2004)
    [37] G. Hummer, J. C. Rasaiah, J. P. Noworyta, Nature 414, 188 (2001)
    [38] K. Koga, G. T. Gao, H. Tanaka, X. C. Zeng, Nature 412, 802 (2001)
    [39] W. H. Noon, K. D. Ausman, R. E. Smalley, J. P. Ma, Chem. Phys. Lett. 355, 445 (2002)
    [40] R. J. Mashl, S. Joseph, N. R. Aluru, E. Jakobsson, Nano Lett. 3, 589 (2003)
    [41] Y. Maniwa, H. Kataura, M. Abe, S. Suzuki, Y. Achiba, H. Kira, K. Matsuda, J. Phys. Soc. Jpn. 71, 2863 (2002)
    [42] Y. Maniwa, H. Kataura, M. Abe, A. Udaka, S. Suzuki, Y. Achiba, H. Kira, K. Matsuda, H. Kadowaki, Y. Okabe, Chem. Phys. Lett. 401, 534 (2005)
    [43] A. I. Kolesnikov, J. M. Zanotti, C. K. Loong, P. Thiyagarajan, A. P. Moravsky, R. O. Loutfy, C. J. Burnham, Phys. Rev. Lett. 93, 035503 (2004)
    [44] M. S. Dresselhaus, Intercalation in layered materials. Plenum, (1987)
    [45] M. S. Dresselhaus, G. Dresselhaus, P. C. Eklund, Science of Fullerenes & Carbon Nanotubes. Imperial College (1998)
    [46] R. S. Lee, H. J. Kim, J. E. Fischer, et al., Nature 388, 255 (1997)
    [47] B. Ruzicka, L. Degiorgi, R. Gaal, et al., Phys. Rev. B 61, R2468 (2000)
    [48] C. Jo, C. Kim, Y. H. Lee, Phys. Rev. B 65, 035420 (2002)
    [49] J. Kong, C. Zhou, E. Yenilmez, et al., Appl. Phys. Lett. 77, 3977 (2000)
    [50] R. J. Baierle, S. B. Fagan, R. Mota, et al., Phys. Rev. B 64, 085413 (2001)
    [51] K. Liu, Ph. Avouris, R. Martel et al., Phys. Rev. B 63, 161404 (2001)
    [52] V. Barone, J. E. Peralta, J. Uddin, G. E. Scuseria, The J. Chem. Phys. 124, 024709 (2006)
    [53] W.-K. Hsu, T. Nakajima, Carbon 40, 462 (2002)
    [54] K. Liu, Ph. Avouris, R. Martel, W.-K. Hsu, Phys. Rev. B 63, 161404 (2001)
    [55] W.-K. Hsu, S. Y. Chu, E. Munoz-Picone, J. L. Boldu, et al., Chem. Phys. Lett. 323, 572 (2000)
    [56] X. Bai, D. Golberg, Y. Bando, C. Zhi, C. Tang, M. Mitome, K. Kurashima, Nano Lett. 7, 632 (2007)
    [57] T. W. Tombler, C. Zhou, L. Alexseyev, J. Kong, H. Dai, et al., Nature 405, 769 (2000)
    [58] A. Rochefort, D. R. Salahub, Ph. Avouris, Chem. Phys. Lett. 297, 45 (1998)
    [59] A. A. Farajian, B. I. Yakobson, H. Mizuseki, Y. Kawazoe, Phys. Rev. B 67, 205423 (2003)

    Chapter 2

    [1] H. M. Cheng, F. Li, X. San, S. D. M. Brown, M. A. Pimenta, A. Marucci, G. Dresselhaus, M. S. Dresselhaus, Chem. Phys. Lett. 289, 602 (1998)
    [2] W. K. Hsu, S. Firth, P. Redlich, M. Terrones, H. Terrones, Y. Q. Zhu, N. Grobert, A. Schilder, R. J. H. Clark, H. W. Kroto, D. R. M. Walton, J. Mater. Chem. 10, 1425 (2000)
    [3] S.-Y. Lu, W.-K. Hsu, ChemPhysChem 6, 1040 (2005)
    [4] P. Redlich, J. Loeffler, P. M. Ajayan, J. Bill, F. Aldinger, M. Ruhle, Chem. Phys. Lett. 260, 465 (1996)
    [5] S.-Y. Lu, W.-K. Hsu, Carbon 43, 2215 (2005)

    Chapter 3

    [1] T. W. Ebbesen, P. M. Ajayan, H. Hiura, K. Tanigaki, Nature 367, 519 (1994)
    [2] I. W. Chiang, B. E. Brinson, R. E. Smalley, J. L. Margrave, R. H. Hauge, J. Phys. Chem. B 105, 1157 (2001)
    [3] I. W. Chiang, B. E. Brinson, A. Y. Huang, P. A. Willis, B M. J. ronikowski, J. L. Margrave, R. E. Smalley, R. H. Hauge, J. Phys. Chem. B 105, 8297 (2001)
    [4] H.-T. Fang, C.-G. Liu, C. Liu, F. Li, M. Liu, H.-M. Cheng, Chem. Mater. 16, 5744 (2004)
    [5] J. Thien-Nga, K. Hernadi, E. Ljubovic, S. Garaj, L. Forro, Nano Lett. 2, 1349 (2002)
    [6] P. M. Ajayan, M. Terrones, A. D. L. Guardia, V. Huc, N. Grobert, B. Q. Wei, H. Lezec, G. Ramanath, T. W. Ebbesen, Science 296, 705 (2002)
    [7] B. Bockrath, J. K. Johnson, D. S. Sholl, B. Howard, C. Matranga, W. Shi, D. Sorescu, P. M. Ajayan, G. Ramanath, M. Terrones, T. W. Ebbesen, Science 297, 192 (2002)
    [8] D.-H. Lien, H.-F. Kuo, W.-K. Hsu Appl. Phys. Lett. 88, 093113 (2006)
    [9] H. M. Cheng, F. Li, X. San, S. D. M. Brown, M. A. Pimenta, A. Marucci, G. Dresselhaus, M. S. Dresselhaus, Chem. Phys. Lett. 289, 602 (1998)
    [10] P. C. P. Watts, W.-K. Hsu, H. W. Kroto, D. R. M. Walton, Nano lett, 3, 549 (2003)
    [11] S. Bandow, A. M. Rao, K. A. W illiams, A. Thess, R. E. Smalley, P. C. Eklund, J. Phys. Chem. B 101, 8839 (1997)
    [12] N. Braidy, G. A. Botton, A. Adronov, Nano lett. 2, 1277 (2002)
    [13] P. Bernier, W. Maser, C. Journet, A. Loiseau, M. L. D. L. Chapelle, S. Lefrant, R. Lee, J. E. Fischer, Carbon 36, 675 (1998)
    [14] A. M. Rao, E. Richter, S. Bandow, B. Chase, P. C. Eklund, K. A. Williams, S. Fang, K. R. Subbaswamy, M. Menon, A. Thess, R. E. Smalley, G. Dresselhaus, M. S. Dresselhaus, Science 275, 187 (1997)
    [15] D. Bom, R. Andrews, D. Jacques, J. Anthony, B. Chen, M. S. Meier, J. P. Selegue, Nano lett. 2, 615. (2002)
    [16] V. O. Schliephake, A. V. Nagel, J. Schemel, Angew. Chemie. 43, 302 (1930)
    [17] K. Bradley, J. C. P. Gabriel, M. Briman, A. Star, G. Gr?ner, Phys. Rev. Lett. 91, 218301 (2003)
    [18] D. E. Ellison, M. J. Crotty, D. Koh, S R. L. pray, K. E. Tate, J. Phys. Chem B 108, 7938 (2004)
    [19] A. Peigney, C. Laurent, E. Flahaut, R. R. Bacsa, A. Rousset, Carbon 39, 507 (2001)
    [20] H. Dai, E. W. Wong, C. M. Leiber, Science 272, 524 (1996)
    [21] R. Roescu, I. Dumitriu, A. Tomescu, Romanian Report in Physics 56, 607 (2004)

    Chapter 4

    [1] O. D. Velev, B. G. Prevo, and K. H. Bhatt, Nature 426, 515 (2003)
    [2] T. Thorsen, S. J. Maerkl, and S. R. Quake, Science 298, 580 (2002)
    [3] R. H. Baughman, C. Cui, A. A. Zakhidov, Z. lqbal, J. N. Barisci, G. M. Spinks, G. G. Wallace, A. Mazzoldi, D. D. Rossi, A. G. Rinzler, O. Jaschinski, S. Roth, and M. Kertesz, Science 284, 1340 (1999)
    [4] J. Lee, H. Moon, J. Fowler, T. Schoellhammer, and C.-J. Kim, Sens. and actua. A 95, 259 (2002)
    [5] M. G. Lippmann, Ann. Chim. Phys. 5, 494 (1875)
    [6] T. B. Jones, M. Gunji, M. Washizu, and M. J. Feldman, J. Appl. Phys. 89, 1441 (2001)
    [7] M. Gunji and M. Washizu, J. Phys. D: Appl. Phys. 38, 2417 (2005)
    [8] M. G. Pollack, R. B. Fair, and A. D. Shenderov, Appl. Phys. Lett. 77, 1725 (2000)
    [9] M. Vallet, B. Berge, and L. Vovelle, Polymer 37, 2465 (1996)
    [10] E. Dujardin, T. W. Ebbesen, H. Hiura, and K. Tanigaki, Science 265, 1850 (1994); T. W. Ebbesen, J. Phys. Chem. Solid 57, 951 (1996)
    [11] A. H. Barber, S. R. Cohn and H. D. Wagner, Phys. Rev. Lett. 92, 186103 (2004)
    [12] S. Nuriel, L. Liu, A. H. Barber and H. D. Wagner, Chem. Phys. Lett. 404, 263 (2005)
    [13] A. V. Neimark, J. Adhes. Sci. Technol. 13, 1137 (1999)
    [14] T. Werder, J. H. Walther, R. L. Jaffe, T. Halicioglu, F. Noca and P. Koumoutsakos, Nano Lett. 1, 697 (2001)
    [15] H. Li, X. Wang, Y. Song, Y. Liu, Q. Li, L. Jiang and D. Zhu, Angew. Chem. Int. Ed. 40, 1743 (2001)
    [16] H. M. Cheng, F. Li, X. San, S. D. M. Brown, M. A. Pimenta, A. Marucci, G. Dresselhaus, M. S. Dresselhaus, Chem. Phys. Lett. 289, 602 (1998)
    [17] X. Feng, S. Irle, H. Witek, K. Morokuma, R. Vidic, E. Borguet, J. Am. Chem. Soc. 127, 10533 (2005)
    [18] D. K. Owen, and R. C. Wendt, J. appl. Poly. Sci. 13, 1741 (1969)
    [19] F. M. Fowkes, Ind. Engr. Chem. 56, 40, (1964)
    [20] K. Bradley, J.-C. P. Gabriel, M. Briman, A. Star, and G. Gr?ner, Phys. Rev. Lett. 91, 218301 (2003)
    [21] from Wikipedia, http://www.wikipedia.org/

    Chapter 5
    [1] Z. J. Donhauser, B. A. Mantooth, K. F. Kelly, L. A. Bumm, J. D. Monnell, J. J. Stapleton, D. W. Price Jr., A. M. Rawlett, D. L. Allara, J. M. Tour, P. S. Weiss, Sciecne 292, 2303 (2001)
    [2] C. Joachim, J. K. Gimzewski, A. Aviram, Nature 408, 541 (2000)
    S. W. Wu, G. V. Nazin, X. Chen, X. H. Qiu, W. Ho, Phys. Rev. Lett. 93, 236802 (2004)
    [3] A. R. Champagne, A. N. Pasupathy, D. C. Ralph, Nano. Lett. 5, 305 (2005)
    [4] M. D. Valle, R. Gutierrez, C. Tejedor, G. Cunibertu, Nature Nanotech. 2, 176, (2007)
    [5] N. Jin, S-Y Chung, R.M. Heyns, P. R. Berger, R.Yu, P. E. Thompson, S. L. Rommel, IEEE Elect. Dev. Lett. 25, pp. 646-648 (2004)
    [6] N. Hamada, S.I, Sawada, A. Oshiyama, Phys .Rev. Lett. 68, 1579-1581 (1992)
    [7] C.T. White, D.H. Robertson, J.W. Mintmire, Phys. Rev B 47, 5485-5488 (1993)
    [8] S. Frank, P. Poncharal, Z-L. Wang, W.A.de. Heer, Science 280, 1744-1746 (1998)
    [9] H-J Li, W-G Lu, X-D Bai, C-Z Gu, Phys. Rev. Lett. 95, 086601 (2005)
    [10] W. K. Hsu, T. Nakajima, carbon, 40, 445 (2002)
    [11] K. Liu, Ph. Avouris, R. Martel, W. K. Hsu, Phys. Rev. B 63, 161404R (2001)
    [12] T.W. Tombler, C-G Zhou, L. A lexseyev, J Kong, H-G Dai, L Liu, C.S. Jayanthi, M-J Tang, S-Y Wu, Nature 405, 769-772 (2000)
    [13] L Liu, C. S. Jayanthi, M.-J. Tang, S.-Y. Wu, T. W. Tombler, C.-G. Zhou, L. A lexseyev, J Kong, H.-G. Dai, Phys. Rev. Lett. 84, 4950-4953 (2000)
    [14] W. K. Hsu, S. Firth, P. Redlich, M. Terrones, H. Terrones, Y. Q. Zhu, N. Grobert, A. Schilder, R. J. H. Clark, H. W. Kroto, D. R. M. Walton, J. Mater. Chem. 10, 1425 (2000)
    [15] W. K. Hsu, S. Y. Chu, E. Munoz-Picone, J. L. Boldu, S. Firth, P. Franchi, B. P. Roberts, A. Schilder, H. Terrones, N. Grobert, Y. Q. Zhu, M. Terrones, M. E. McHenry, H. W. Kroto, D. R. M. Walton, Chem. Phys. Lett., 323, 572 (2000)
    [16] S.-Y. Lu, W.-K. Hsu, ChemPhysChem 6, 1040 (2005)
    [17] I. Zhang, Eur. Phys. J. Appl. Phys. 35, 131 (2006)
    [18] S.Trigwell, N. Grable, C.U. Yurteri, M.K. Mazumder, IEEE Transactions on Industry Applications 39, 79 (2003)
    [19] Ver?nica Barone, Juan E. Peralta, Jamal Uddin, and Gustavo E. Scuseria, The J. of Chem. Phys. 124, 024709 (2006)
    [20] M. Bockrath, J. Hone, A. Zettl, P. L. McEuen, A. G. Rinzler, R. E. Smalley, Phys. Rev. B 61, R10606 (2000)
    [21] L. L. Chang, E. E. Mendez, C. Tejedor, “Resonant Tunneling in Semiconductors. Physics and Application”, (Plenum, Newyork, 1990)
    [22] M. Tewordt, L. Martin-Moreno, J. T. Nicholls, M. Pepper, M. J. Kelly, V. J. Law, D. A. Ritchie, J. E. F. Frost, G. A. C. Jones, Phys. Rev. B 45, 14407 (1992)
    [23] G. G. Fuentes, E. Borowiak-Palen, M. Knupfer, T. Pichler, J. Fink, L. Wirtz, A. Rubio, Phys. Rev. B 69, 245403 (2004)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE