簡易檢索 / 詳目顯示

研究生: 謝侑錦
Hsieh, Yu-Chin
論文名稱: 藉由多列細部擺置最大化電力線段的插置
Power Staple Insertion Optimization by Enhanced Multi-Row Detailed Placement
指導教授: 麥偉基
Mak, Wai-Kei
口試委員: 王廷基
Wang, Ting-Chi
陳宏明
Chen, Hung-Ming
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Computer Science
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 37
中文關鍵詞: 最佳化超大型積體電路動態規劃電力線段擺置優化汲極構造相鄰
外文關鍵詞: optimization, VLSI, dynamic programming, power staple, placement refinement, drain-to-drain abutment
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在先進製程中,插置電力線段是一項新的方法可以用來減緩電壓下降的情形,
    藉由輕微地移動元件的位置,可以有效地提升電力線段可插置的比例,
    首先,為了節省記憶體用量,我們不使用
    多維度陣列而是建立出了單向無環圖快速地呈現動態規劃去用多列擺置調整優化電力線段插置,
    因此記憶體用量變成原來的約萬分之一。
    接著我們針對一維圖案的設計法則情形下提出建構逐步校正的動態規劃去最大化電力線段可以插置的數量。
    另一方面,因為特徵尺寸持續地縮減,在現在的電路設計上汲極構造相鄰的限制成為了新興的挑戰,
    為了同時地增加電力線段插置比例跟滿足汲極構造相鄰,必須想出一個能同時考慮這兩個目標的方法,
    我們用元件平移、翻轉、及冗餘原極插置去修改了基於單向無環圖的動態規劃用比較小的元件位移來解決所有的汲極構造相鄰違反同時最大化可插置地電力線段數量。


    Power staple insertion is a new methodology for IR drop mitigation in advanced technology nodes.
    Detailed placement refinement which perturbs an initial placement slightly is an effective strategy to increase the success rate of power staple insertion.
    First, we show how to construct a directed acyclic graph (DAG) on the fly efficiently to implement the dynamic program for staple insertion optimization for multi-row placement refinement in order to conserve memory usage instead of using a multi-dimensional array which incurs huge space overhead.
    The memory usage can thus be reduced by a few orders of magnitude in practice.
    Then, we present a correct-by-construction approach based on dynamic programming to maximize the total number of legal power staples inserted subject to the design rule for 1D patterning.
    On the other hand, since the feature size continues to diminish, the drain-to-drain abutment (DDA) constraints are emerging challenges on modern circuit designs.
    To increase staple insertion rate and satisfy the DDA constraints at the same time, it is necessary to formulate a methodology to consider both objectives together.
    We modify the DAG-based dynamic programming to adopt cell shifting, cell flipping and dummy source node insertion to resolve all DDA violations while the total amount of valid power staples is maximized with less cell displacement.

    誌謝 ii 摘要 iii Abstract iv Contents v List of Figures vii List of Tables ix 1 Introduction 1 1.1 Introduction for power staple insertion ....................................... 1 1.2 Improvement for power staple insertion rate ................................. 2 1.3 The design rule for anti parallel line-ends .................................... 2 1.4 Introduction for the DDA constraints ........................................ 3 1.5 Motivation and Contribution ................................................. 5 1.6 Organization .................................................................. 7 2 Preliminaries 8 2.1 Previous works ................................................................ 8 2.2 Basic double-row optimization................................................ 9 2.3 The interaction between additional source node insertion and staple insertion .................................................................................. 10 3 Proposed Approach 12 3.1 DAG-based Multi-Row DP ................................................... 12 3.2 Manufacturing-Aware Triple-Row Optimization.............................. 16 v CONTENTS 3.3 DDA-Aware Double-Row Optimization ...................................... 19 3.3.1 Our algorithm ......................................................... 20 3.3.2 Extension with Cell Flipping .......................................... 26 3.4 Dealing with a design with pre-placed macros ............................... 27 4 Experimental Results 29 4.1 DRO, TRO and MATRO ..................................................... 29 4.2 DDA-aware DRO.............................................................. 31 5 Conclusion 35 References 36

    [1] P. Besser, “BEOL interconnect innovations for improving performance,” in NCCAVS Joint
    Users Group Technical Symposium, 2017.
    [2] H. Chen, C.-K. Cheng, A.B. Kahng, Q. Wang and M. Wang, “Optimal planning for meshbased power distribution,” in Asia and South Pacific Design Automation Conference 2004,
    pp. 444-449.
    [3] S. S.-Y. Liu, C.-J. Lee, C.-C. Huang, H.-M. Chen, C.-T. Lin, and C.-H. Lee, “Effective power
    network prototyping via statistical-based clustering and sequential linear programming,” in
    Design, Automation Test in Europe Conference Exhibition, 2013,pp. 1701-1706.
    [4] W.-H. Chang, C.-H. Lin, S.-P. Mu, L.-D. Chen, C.-H. Tsai, Y.-C. Chiu, and M. C.-T. Chao,
    “Generating routing-driven power distribution networks with machine-learning technique,”
    IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 36,
    no. 8, pp. 1237–1250, 2017.
    [5] C.-Y. Yu, Y.-T. Hou, C.-M. Fu, W.-H. Chen, and W.-Y. Lo, “Apparatus and method
    for mitigating dynamic IR voltage drop and electromigration affects,” 2017, US Patent,
    US9768119B2.
    [6] L. Liebmann, V. Gerousis, P. Gutwin, X. Zhu and J. Petykiewicz, “Exploiting Regularity:
    breakthroughs in sub-7nm place-and-route,” in Proc. of SPIE, Design-Process-Technology
    Co-optimization for Manufacturability XI, pp. 101480F1–F10, 2017.
    [7] S. i. Heo, A. B. Kahng, M. Kim, L. Wang, and C. Yang, “Detailed placement for IR drop
    mitigation by power staple insertion in sub-10nm VLSI,” in Proc. of the conference on
    Design, Automation and Test in Europe, 2019, pp. 824–829.
    [8] G. Luk-Pat, A. Miloslavsky, B. Painter, L. Lin, P. D. Bisschip and K. Lucas, “Design
    Compliance for Spacer Is Dielectric (SID) Patterning,” in Proc. of SPIE, Optimal Microlithography XXV, 2012 pp. 83260D1–D13.
    [9] K. Ahmed and K. Schuegarf, “Transistor wars,” in IEEE Spectrum, pp. 50-66, Nov. 2011.
    [10] Y. Du and M. Wong, “Optimization of standard cell based detailed placement for 16nm
    FinFET process,” in Proc. of Design, Automation, and Test in Europe Conference, 2014,
    pp. 1-6.
    35
    REFERENCES
    [11] M. Choi, V. Moroz, S. Lee, and O. Penzin, “14 nm FinFET Stress Engineering with Epitaxial SiGe Source/Drain,” in Proc. of International Silicon-Germanium Technology and
    Device Meeting, 2012, pp. 1-2.
    [12] K. Han, A. B. Kahng and H. Lee, “Scalable detailed placement legalization for complex sub14nm constraints,” in Proc. of IEEE/ACM International Conference on Computer Aided
    Design, 2015, pp. 867-873.
    [13] Y.-W. Tseng and Y.-W. Chang, “Mixed-Cell-Height Placement Considering Drain-to-Drain
    Abutment,” in Proc. of IEEE/ACM International Conference on Computer Aided Design,
    2018, pp. 1-6.
    [14] Y. Lin, B. Yu, Y. Zou, Z. Li, C. J. Alpert, and D. Z.Pan, “Stitch Aware Detailed Placement
    for Multiple E-Beam Lithography,” in Proc. of Asia and South Pacific Design Automation
    Conference, 2016, pp. 186-191.
    [15] Y.-X. Ding, C. Chu, and W.-K. Mak, “Pin accessibility-driven detailed placement refinement,” in Proc. of International Symposium on Physical Design, 2017, pp. 133-140.
    [16] W.-K.Mak, W.-S. Kuo, S.-H. Zhang, S.-I. Lei and C. Chu, “Minimum Implant Area-Aware
    Placement and Threshold Voltage Refinement,” in IEEE Transactions on Computer-Aided
    Design of Integrated Circuits and Systems, 2017, pp. 1103-1112.
    [17] C. Han, A. B. Kahng, L. Wang, and B. Xu, “Enhanced Optimal Multi-Row Detailed Placement for Neighbor Diffusion Effect Mitigation in Sub-10 nm VLSI,” in IEEE Transactions
    on Computer-Aided Design of Integrated Circuits and Systems, 2018, pp. 1703–1716.
    [18] Arm Developer, https://developer.arm.com/.
    [19] OpenCores, Open Source IP-Cores, http://www.opencores.org.
    [20] NanGate FreePDK15 Open Cell Library https://si2.org/open-cell-library.
    [21] “ISPD 2015 Blockage-Aware Detailed Routing-Driven Placement Contest, ”https://
    www.ispd.cc/contests/15/web/benchmark.html.

    QR CODE