簡易檢索 / 詳目顯示

研究生: 王紳
Wang, Shuen
論文名稱: 探討鎳鐵/鎳鐵氧化物於奈米顆粒薄膜和雙層膜結構對其交換偏壓之影響
Effect of Ni3Fe/NiFexO(1-x) films with nanoparticle and bi-layer structures on their exchange bias
指導教授: 歐陽浩
口試委員: 賴志煌
歐陽浩
林克偉
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 189
中文關鍵詞: 交換偏壓奈米顆粒結構鎳鐵/鎳鐵氧化物
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本研究利用雙離子槍系統製備不同成分比例的Ni3Fe/(Ni, Fe)O奈米顆粒薄膜以及雙層薄膜。奈米顆粒薄膜之結構透過低掠角繞射分析,結果發現Ni3Fe的晶粒隨著氧氣含量增加(從2.78%增加至7.89%)而下降(從8.44±0.30 nm下降至3.40±0.30 nm)。高解析度穿透式電子顯微鏡(HRTEM)影像的分析結果顯示,奈米顆粒薄膜中包含鐵磁相的Ni3Fe以及反鐵磁相的FeO、α-Fe2O3和NiO。結合選區繞射和Multislice模擬來分析結構中鐵磁相與反鐵磁相的莫耳數比例,得到Ni3Fe相的莫耳分率(XNi3Fe)隨氧氣流量先稍微增加而後減少,其中當氧氣含量為7.89%時,結構中的Ni3Fe相微乎其微(XNi3Fe=0.0103±0.009)。X-ray小角度散射分析結果顯示,結構中Ni3Fe相之間的平均距離隨氧氣流量增加,從7.95 nm增加至8.08 nm。磁性質以超導量子干涉儀量測,其交換偏壓和Ni3Fe的晶粒大小成反比關係;但是當氧氣含量超過7.89%時,因為結構中幾乎沒有Ni3Fe相的存在,所以量測不到磁化量的貢獻。雖然交換偏壓和Ni3Fe粒徑成反比,但是卻和Ni3Fe相之間距(即反鐵磁相的厚度)沒有明顯的相關性,綜合上述結果,根據Random Field Model和Domain State Model,我們可以推論奈米顆粒薄膜的交換偏壓是和鐵磁相與反鐵磁相之界面有相關,而非反鐵磁相的厚度。
    在奈米顆粒薄膜和雙層薄膜比較中,結合成分分析以及Scherrer equation 之Ni3Fe晶粒尺寸分析結果來計算奈米顆粒薄膜中鐵磁/反鐵磁相的接觸面積,在相同鐵磁/反鐵磁含量比例的條件下,發現即使奈米顆粒薄膜的接觸面積約為雙層薄膜(量測薄膜面積)的九倍(Ni3Fe/NiO以及Ni3Fe/FeO分別佔68%、32%),前者的交換偏壓值為後者的260倍。細部分析高解析度穿透式電子顯微鏡影像,發現奈米顆粒薄膜中鐵磁相與反鐵磁相的界面中,有47.6%的區域有缺陷(孔洞、鍵結扭曲)存在,這些區域會誘發自旋挫敗,進而阻礙交換耦合的發生,產生低的交換偏壓值。


    摘 要 II Abstract III 致謝 IV 目次 V 圖次 VIII 表次 XVIII 第一章緒論 1 1.1交換偏壓和組成結構的關係 1 1.2 不同交換偏壓結構的應用 2 1.3 研究動機與目的 3 第二章文獻回顧與理論基礎 8 2.1磁性介紹 8 2.1.1 磁性來源 8 2.1.2 磁性物分類 8 2.2材料選用 10 2.3交換偏壓理論 11 2.3.1交換偏壓現象 11 2.3.2 溫度對交換場的影響 14 2.3.3 鐵磁和反鐵磁之膜厚對交換場的影響 14 2.3.4交換偏壓模型發展 16 2.3.5 交換偏壓與矯頑場的關聯性 24 2.4鐵磁嵌入反鐵磁基質的交換偏壓表現 27 2.4.1奈米磁性顆粒的性質 27 2.4.2 單軸異向性奈米顆粒的自旋翻轉 29 2.4.3本質(intrinsic)自旋結構和動態自旋鬆弛 29 2.4.4 特徵長度 32 2.5磁性薄膜和嵌入型結構交換偏壓的差異 33 2.5.1鐵磁顆粒大小 34 2.5.2反鐵磁氛圍 34 2.5.3 溫度改變 34 2.5.4 磁滯曲線的不對稱性 35 2.5.5界面耦合的現象 35 2.5.6缺陷效應 35 2.6 嵌入型結構之文獻討論 36 2.6.1 交換異向性克服超順磁極限 36 2.6.2 Metamagnetic transformation 37 2.6.3製備方式對交換偏壓之影響 38 2.6.4場冷與界面耦合對嵌入型結構之交換偏壓的影響 41 2.7鐵磁奈米顆粒混合結構模型 42 2.7.1模擬計算基礎 42 2.7.2場冷狀態 43 2.7.3冷場磁滯曲線 45 2.7.4 量化heb:交換偏壓的來源 46 2.7.5 翻轉機制 47 第三章實驗方法 90 3.1薄膜製備 90 3.2場發射穿透式電子顯微鏡(Field Emission Transmission ElectronMicroscope) 91 3.2.1微結構分析 91 3.2.2 SAD成分分析 92 3.3 Cross-section TEM試片製備 94 3.3.1試片黏貼 94 3.3.2 第一面研磨 95 3.3.3第二面研磨 96 3.3.4 後續處理 97 3.4 基礎繞射原理 98 3.4.1 X光低掠角入射(Grazing Incident Diffraction) 98 3.5 超導量子干涉儀(Superconducting quantum interference device) 99 3.6 X-光小角度散射(Small Angle X-ray Scattering) 100 第四章結果與討論 132 4.1 X光低略角繞射結果 132 4.2HRTEM分析微結構 133 4.3 SAD分析結果 133 4.4 X-ray小角度散射結果 133 4.5 SQUID量測結果 135 4.6奈米顆粒薄膜與雙層膜結構之比較 137 第五章結論 165 附錄 167 A.氧化鐵相的結構比較 167 B. SAD模擬建構 180 文獻 184

    1. W. H. Meiklejohn, C.P.B., phys. Rev. , 1957. 105(904).
    2. Meiklejohn, W.H., Exchange Anisotropy—A Review. Journal of Applied Physics, 1962. 33(3): p. 1328.
    3. Meiklejohn, W.H. and C.P. Bean, New Magnetic Anisotropy. Physical Review, 1956. 102(5): p. 1413-1414.
    4. T.C Schulthess, W.H.B., Phys. Rev. Lett., 1988. 81(4516).
    5. Koon, N.C., Phys. Rev. Lett., 1997. 78(4865).
    6. Malozemoff, A.P., Phys. Rev. B, 1987. 35(3679).
    7. D. Mauri, H.C.S., J. Appl. Phys, 1987. 62(3047).
    8. Neel, L., Ann. Phys., 1967. 2(61).
    9. R.D. Hempstead, S.K., D.A. Thompson, IEEE TRANSACTIONS ON MAGNETICS, 1978. 14: p. 521.
    10. J. Fujikata, K.I., K. Hyashi, H. Yamamoto, and K. Yamada, IEEE TRANSACTIONS ON MAGNETICS, 1995. 31: p. 3939.
    11. T. Lin, C.T., R.E. Fontana Jr., J.K. Howard, IEEE TRANSACTIONS ON MAGNETICS, 1995. 31: p. 2584.
    12. B. Dieny, V.S.S., S.S.P. Parkin, B.A. Gurney, D.R. and D.M. Wilhoit, physical Review B, 1991. 43: p. 1297.
    13. J. Sort, J.N.s., S. Surin˜ach, J. S. Mun˜oz, M. D. Baro, Phys. Rev. B, 2002. 65.
    14. Vassil Skumryev , S.S., Yong Zhang, and D.G.J.N.s. George Hadjipanayis*, Nature, 2003. 423(850).
    15. J. Nogués, J. Sorta, V. Langlaisb, V. Skumryeva, S. Suriñachb, J.S. Muñozb, M.D. Barób, Physics Reports, 2005. 422: p. 65 – 117.
    16. J.Y.Yi, G.A.H., M.L. Rudee, Mater. Res. Symp. Proc., 2001. 674: p. T3.4.1.
    17. A. Mougin, T.M., R. Lopusnik, M. Jung, D. Engel,, H.S. A. Ehresmann, J. Fassbender, B., and Hillebrands, IEEE TRANSACTIONS ON MAGNETICS, 2000. 36: p. 2647.
    18. A. Mougin, T.M., M. Jung, D. Engel, A. Ehresmann, and J.F. H. Schmoranzer, B. Hillebrands, physical Review B, 2001. 63.
    19. T. Mewes, R.L., J. Fassbender, B. Hillebrands, M. and D.E. Jung, A. Ehresmann, H. Schmoranzer, Applied Physics Letters, 2000. 76: p. 1057.
    20. Chih-Huang Lai, C.P.W., Chester Qian, <1999 JAP NiFeO-NiFe Bilayers.pdf>. Journal of Applied Physics, 1999. 85(8).
    21. Ouyang, H., et al., Exchange Bias Dependence on Interface Spin Alignment in a Ni80Fe20/(Ni,Fe)O Thin Film. Physical Review Letters, 2007. 98(9).
    22. Sara Laureti, S.Y.S., et. al, Phys. Rev. Lett., 2012. 108(077205).
    23. Wood, R., Future hard disk drive systems. Journal of Magnetism and Magnetic Materials, 2009. 321(6): p. 555-561.
    24. Sort, J., et al., Using exchange bias to extend the temperature range of square loop behavior in [Pt∕Co] multilayers with perpendicular anisotropy. Applied Physics Letters, 2005. 87(24): p. 242504.
    25. Moser, D.W.a.A., IEEE Trans. Magn,, 1999. 35(4): p. 423.
    26. Chikazumi, S., Physics of Ferromagnetism. 1999.
    27. Stadelmann, P. http://cimesg1.epfl.ch/CIOL/ems.html.
    28. Òscar Iglesias, A.L., Xavier Batlle, J. Nanosc. Nanotech., 2008. 8: p. 2761-2780.
    29. Levin, E.M., Phase Diagram for Ceramists. Amer. Cer. Soc. , 1994.
    30. Weast, R.C., Handbook of Chemistry and Physics. CRC press, 1986.
    31. L. A. Morris, W.W.S., Acta. Mater, 1967. 15.
    32. C. Leighton, M.R.F., A. Hoffmann, J. Dura, C.F. Majkrzak, M.S. Lund, I.K. Schuller, Phys. Rev. B, 2002. 65.
    33. P. Miltenyi, M.G., J.Keller,B. Beschoten, Phys. Rev. Lett., 2000. 84(4224).
    34. Stiles, M.D., Phys. Rev. B, 2001. 63(064405).
    35. E.C. Stoner, E.P.W., Trans. R. Soc., 1948. A 240(599).
    36. Luborsky, F.E., J. Appl. Phys, 1961. 32(171S).
    37. Néel, L., J. Phys. Radium, 1959. 20(215).
    38. Jr., W.F.B., J. Appl. Phys, 1968. 39.
    39. Aharoni, A., Phys. Rev. A, 1964. 135(447).
    40. D.P.E. Dickson, N.M.K.R., C. Hunt, H.D. Williams, M. El- and K.O.G. Hilo, J. Magn. Magn. Mater, 1993. 125(345).
    41. P. Gambardella, S.R., M. Veronese, S.S. Dhesi, C. Grazioli, and e.a. A. Dallmeyer, Science, 2003. 300(1130).
    42. M. Respaud, J.M.B., H. Rakoto, A.R. Fert, L. Thomas, B. and e.a. Barbara, Phys. Rev. B, 1998. 57(2925).
    43. F. Bødker, S.M.a.S.L., Phys. Rev. Lett., 1994. 72(282).
    44. L. Zhang, G.C.P., J.Y. Ying, J. Appl. Phys, 1997. 81(6892).
    45. B.H. Sohn, R.E.C., G.C. Papaefthymiou, J. Magn. Magn. Mater, 1997. 182(216).
    46. T.-J. Park, G.C.P., A.J. Viescas, A.R. Moodenbaugh, S.S. Wong, Nano Lett., 2007. 7(766).
    47. J. Eisenmenger, Z.P.L., W.A.A. Macedo, I.K. Schuller, Physical Review Letters, 2005. 94.
    48. A. Hoffmann, M.G., J.E. Pearson, J. Nogués,W.W.A. Macedo, I.K. Schuller, Phys. Rev. B, 2003. 67.
    49. Z.P. Li, O.P., J. Eisenmenger, I.K. Schuller,, Applied Physics Letters, 2005. 86.
    50. Y.J.Yang, C.H.L., J. Appl. Phys, 2001. 89.
    51. P.E.G. Assis, V.L.L., K. Capelle, Phys. Rev. B, 2005. 71.
    52. J. Nogues, I.K.S., J. Magn. Magn. Mater, 1999. 192.
    53. H. Ohldag, e.a., Physical Review Letters, 2003. 91.
    54. J. Nogués, I.K.S., J. Magn. Magn. Mater, 1999. 192.
    55. Skomski, R., Condens. Mater, 2003. 15.
    56. Lifshift, I.M., Sov. Phys., 1962. 42.
    57. S.Gangopadhyay , G.C.H., C.M.Sorensen, and K.J. Klabunde, Nanostr. Mater., 1992. 1(449).
    58. P.J.V .D.Zaag, Y.I., J.A.Borchers, L.F .Feiner , R.M.W olf, J.M.Gaines, R.W .Erwin, and M.A.V erheijen, Phys. Rev. Lett., 2000. 84(6102).
    59. Malozemoff, A.P., J. Appl. Phys, 1988. 63(3874).
    60. Malozemoff, A.P., Phys. Rev. B, 1988. 37(7673).
    61. V.I.Nikitenk o, V.S.G.o., A.J.Shapiro, R.D.Shull, K.Liu, S.M.Zhou, and C.L.Chien,, Phys. Rev. Lett., 2000. 84(765).
    62. F.Radu, M.E.o., R.Siebrecht, T.Schmitte, K.W esterholt, and H.Zabel, Phys. Rev. B, 2003. 67(124409).
    63. P.Blomqvist, K.M.K., and H.Ohldag,, Phys. Rev. Lett., 2005. 94(107203).
    64. E.Bonet, W.W.e., B.Barbara, A.Benoît, D.Mailly , and A.Thia ville, Phys. Rev. Lett., 1999. 83(4188).
    65. wendi, J.B.T.a.M.G.B., Phys. Rev. B, 2006. 74(184434).
    66. C.P apusoi, J.H., M.Fecioru-Morariu, and G.Guntherodt,, J. Appl. Phys, 2006. 99(123902).
    67. J.Nogues, V.S.v., J.Sort, S.Sto yanov, and D.Gi vord, Phys. Rev. Lett., 2006. 97(157203).
    68. M.Gruyters, Phys. Rev. Lett., 2005. 95(077204).
    69. Gruyters, M., Europhys. Lett., 2007. 77(57006).
    70. J.Y.Yi, G.A.H., M.L. Rudee, Mater. Res. Symp. Proc. 674: p. T3.4.1.
    71. S. Sahoo, C.B., W. Kleemann, Phys. Rev. B, 2003. 68.
    72. T. Furubayashi, H.M., Phys. Stat. Sol., 2004. (c) 1.
    73. C. Portemont, R.M., A. Brenac, L. 2005: Notin.
    74. J. Sort, J.N., X. Amils, S. Suriñach, J.S. Muñoz, M.D. Baró, Applied Physics Letters, 1999.
    75. J. Sort, J.N., S. Suriñach, J.S. Muñoz, G. Chouteau, M.D. Baró, J. Magn. Magn. Mater, 2002. 1287.
    76. T.A. AnhZj, C.S.J., S. MZrup, J. Appl. Phys, 2004. 95.
    77. J.B.Yi, J.D., B.H. Liu, Z.I. Dong, T. White,Y. Liu, J. Magn. Magn. Mater, 2005. 285.
    78. D.V. Dimitrov, G.C.H., V. Papaefthymiou, IEEE TRANSACTIONS ON MAGNETICS, 1997. 33.
    79. J. Y. Yi, C.L.P., M. L. Rudee, A. E. Berkowitz, and T. L. Cheeks, J. Appl. Phys, 1996. 79(8).
    80. R. Cheng, C.N.B., P.A. Dowben, S. Stadler,Y.U. Idzerda, Applied Physics Letters, 2001. 78.
    81. G. Bottoni , D.C., A. Cecchetti, Journal of Magnetism and Magnetic Materials, 1996. 155: p. 297.
    82. J.B.Yi, J.D., B.H. Liu, Z.I. Dong, T. White,Y. Liu, J. Magn. Magn. Mater., 2005. 285(224).
    83. Y. Shi, J.D., Z.X. Shen,W.X. Sun, L.Wang, Solid State Commun., 2000. 115.
    84. P. Brahma, S.B., D. Das, P.K. Mukhopadhyay, S. Chatterjee, A.K. Nigam, D. Chakravorty, J. Magn. Magn. Mater, 2002. 246.
    85. J. Sort, V.L., B. Dieny, S. Suriñach, J.S. Muñoz, M.D. Baró, C. Laurent, J. Nogués, Nanotechnol., 2004. 15: p. S211.
    86. J. Sort, J.N., S. Suriñach, J.S. Muñoz, M.D. Baró, E. Chappel, Applied Physics Letters, 2001. 79: p. 1142.
    87. U.Nowak, phys. Rev. Lett., 2000. 84(4224).
    88. G.Scholten, K.D.U., and U.No wak, phys. Rev. B, 2005. 71(064413).
    89. R.Morel, C.P., A.Brenac, and L.Notin,, phys. Rev. Lett., 2006. 97(127203).
    90. Y.Ijiri, Applied Physics Letters, 2005. 86(243102).
    91. 杜怡君, 磁性基礎特性及磁性材料應用.
    92. A. E. Berkowitz, K.T., J. Magn. Magn. Mater, 1999. 200: p. 552-570.
    93. D. Mauri, E.K., D. Scholl, J.K. Howard, J. Appl. Phys, 1987. 62.
    94. R. Jungblut, R.C., M.T. Johnson, J. aan de Stegge, A. Reinders, J. Appl. Phys, 1994. 75.
    95. Kentaro Takano, R.H.K., A.E. Berkowitz, Phys. Rev. Lett., 1997. 79(1130).
    96. Kentaro Takano, R.H.K., A.E. Berkowitz, et al, 1998. 83(6888).
    97. Papaefthymiou, G.C., Nano Today, 2009. 4: p. 438-447.
    98. Gleiter, H., Acta. Mater, 2000. 48(1).
    99. http://lamp.tu-graz.ac.at/~hadley/ss1/problems/heisenberg/Q.php.
    100. J. Sort, J.N., X. Amils, S. Suriñach, J.S. Muñoz, M.D. Baró, Mater. Sci. Forum, 2000. 812.
    101. Yong Hu, A.D., J. Appl. Phys, 2007. 102.
    102. j. Majzlan, American Mineralogist, 2003. 88: p. 855-859.
    103. T. C. Schulthess, W.H.B., Phys. Rev. Lett., 1998. 81(4516).
    104. Florin Radu, H.Z., condens. Mater. Mtrl-Sci: p. 0705.2055vl.
    105. U. Nowak, K.D.U., Phys. Rev. B, 2002. 66(014430).
    106. U. Nowak, A.M., K.D. Usadel, J. Appl. Phys, 2001. 389(7268).
    107. Robinson, I.K., Prog. Ohys., 1992. 55(599).
    108. 邱秀榮, 清華大學化工系博士班論文.
    109. Debye, B., J. Appl. Phys, 1949. 20(518).
    110. Hao Ouyang, J. Poly. Science, 2002. 40: p. 1444-1453.
    111. NIST, http://www.ncnr.nist.gov/resources/sldcalc.html.
    112. 汪建民, 材料分析. 中國材料科學學會.
    113. Omote, K., Adv. X-ray Anal., 2000. 43.
    114. Cullity, B.D., Elements of X-Ray Diffraction 3rd ed, 2001.
    115. 物理雙月刊24卷5期. 2002.
    116. Alexander, Z., Introduction tp X-ray and neutron scattering.
    117. http://www.ep.nctu.edu.tw/epsquid/.
    118. C. S. Tsao, T.L.L., J. Appl. Cryst., 1999. 32: p. 426-435.
    119. Naturforsh, Z., 2006. 61b: p. 665-671.
    120. Chemical Physics Letters, 2006. 428: p. 343-347.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE