研究生: |
李祐翔 Yu-Hsiang Lee |
---|---|
論文名稱: |
磁場作用對界面反應之影響 Magnetic effects upon interfacial reactions |
指導教授: |
陳信文
Sinn-Wen Chen |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 中文 |
論文頁數: | 82 |
中文關鍵詞: | 磁場 、界面反應 、銲料 、電流效應 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
電子產品中存在著非常多各種不同之接點。隨著電子產品輕、薄、短、小與高功能之發展,接點之尺寸越來越小,接點密度則是越來越高,因此接點的可靠度備受重視。在異質材料的接點上,因為化學勢之差異,會產生原子之移動,進而在界面產生反應。而電子產品在使用時,電子構裝接點會有電流通過。電流會產生焦耳熱效應(Joule heating effect),提高了構裝接點之溫度,也加速了接點上之界面反應。在金屬接點界面反應所產生之介金屬化合物(intermetallic compound),通常其電性或機械性質不佳,容易因此破壞接點,也直接影響了電子產品之品質。因此電子產品接點之界面反應探討,是相當重要之議題。本研究是以Sn為銲料,以UBM常見的材料Co做為基材,使用模鑄法來製作反應偶,在不同反應溫度160℃、180℃、200℃下,探討Sn/Co的固/固界面反應。從實驗結果得到Sn/Co界面生成的介金屬相厚度,隨著反應時間或反應溫度增加而增加,且反應時間與介金屬相厚度呈線性關係,這意味著反應之初為反應控制。
除了焦耳熱效應外,電流通過金屬材料亦會引起電遷移(electromigration effect)效應。電遷移會引起原子通量,進而對界面反應產生影響。本研究探討以低電流密度(500A/cm2)的電流強度,對Sn/Co固/固界面反應的影響。研究方法是將Sn/Co反應偶纏繞上電線,並將反應偶上的電線和電源供應器連接,提供依截面積大小所計算出的電流強度。從實驗結果得知,因低電流密度無法引起足夠的原子通量,而不會影響介金屬相的厚度成長。。
因電流效應可引起原子通量,且電場和磁場是共存的,所以磁場有可能也會造成原子通量的改變。然而文獻中關於磁場對界面反應影響之研究,寥寥可數。本研究以永久磁鐵產生的磁場,探討磁場效應對於Sn/Co固/固界面反應的影響。研究方法是以In-situ的方式來進行的,所以用加熱板取代高溫爐來控制反應溫度,且永久磁鐵也挑選高性能和高工作溫度的釤鈷磁鐵。實驗結果顯示,本研究的磁場強度不足以引起原子通量,因而無法影響介金屬相的厚度成長,此外,磁場也無法影響界面生成相的種類與界面型態。
Abstract
There are large amounts of many kinds of solder joints in electronic products. As electronic products feature light、thin、short、small and multi-functional, the sizes of the joints become smaller and smaller, then the density of the joints become higher and higher. Therefore, the reliabilities of the joints have been paid much more attention. Due to a chemical potential difference, atoms moving result in interfacial reaction at a distinct material of the joint. When using electronic products, there would be some electric current passing through electronic packaging joints. Electric current would bring Joule heating effect; it elevates the temperature of solder joints and accelerates the interfacial reaction rate at the joints. With interfacial reactions, intermetallic compounds (IMC) formed at metallic joints usually have less electrical or mechanical properties, so they would damage the joints easily and affect the qualities of the electronic products directly. Consequently, it is an importance issue to research interfacial reactions of the joints in electronic product. Sn is as solder and Co, a common material in UBM, is as substrate in our research. To research Sn/Co ( solid state/ solid state ) interfacial reactions under different reaction temperature:160℃、180℃、200℃. From the results, we found the thickness of intermetallic compound formed at Sn/Co interface increases, when reaction time or reaction temperature increases. The relation between reaction time and IMC thickness is linear at reaction beginnin:it means a reaction-control.
Except joule heating effect, it might also induce electromigration effect when electric current passes through metallic materials. Electromigration could induce atom flux, thus influence interfacial reactions. To research Sn/Co interfacial reactions affected by electric current effects, electric current density using in our research is 500A/cm2. Experimental method is entwining Sn/Co reaction couple with electric lines, then linking with power supply and providing need electric current based on cross-section area of reaction couple. From the results, electric current density 500A/cm2 could not induce enough atom flux, so it would not influence the growth of IMC thickness.
Since electric current effects could induce atom flux, furthermore, electric field and magnetic field are coexisted, so magnetic effect might also induce atom flux. However, there are fewer literatures about the magnetic effect upon interfacial reactions. To research Sn/Co interfacial reactions affected by magnetic field, the magnetic field source in our research is produced by permanent magnet. Experimental method is carried out in In-situ way, so replace high-temperature oven with hot plate to control reaction temperatures. Permanent magnet in our research is preferred to Samarium-Cobalt magnet, because it is characterized as high-working temperature and high-performance. As the results show, the magnitude of magnetic field in our research is not enough to induce atom flux, thus it would not influence the growth of IMC thickness. Moreover, the kinds of IMC phase formed at the interfaces and the interface morphology are not influenced by magnetic field.
1. 陳信文、陳志銘、林永森和陳立軒,“電子構裝技術與材料”, 高
立圖書有限公司, (2005)
2. C. L. Tsao and S. W. Chen, Journal of Materials Science, Vol.30, p.5215, (1995)
3. U. Gosele and K. N. Tu, Journal of Applied Physics, Vol. 53, p.3252, (1982)
4. V. I. Dybkov, Journal of Materials Science, Vol.21, p.3078, (1986)
5. J. R. Black, IEEE Transactions on Electronic Devices, Vol.ED46, p.338, (1969)
6. J. Lienig, ISPD’06, p.39( proceedings of SLIP’05, p.81), (2006)
7. 王朝弘, 國立清華大學化學工程學系博士論文, (2008)
8. H. Conrad, Materials Science and Engineering A, Vol.287, p.205,
(2000)
9. J. R. Carruthers, in: W. R. Wilcox, R. A. Lefever (Eds.), Preparation
and Properties of Solid State Materials, Vol.3, p.1, (1997)
10. H. Ohtsuka, Current Opinion in Solid State & Materials Science,
Vol.8, p.279, (2004)
11. Y. D. Zhang, C. Esling, M. L. Gong, G. Vincent, X. Zhao and L. Zuo,
Scripta Materialia, Vol.54, p.1897, (2006)
12. D. A. Molodov, S. Bhaumik, X. Molodova and G. Gottstein, Scripta
Materialia, Vol.54, p.2161, (2006)
13. S. Bhaumik, X. Molodova, D.A. Molodov and G. Gottstein, Scripta
Materialia, Vol.55, p.995, (2006)
14. Y. Han, C. Ban, Q. Ba, S. Guo, S. Wang and J. Cui, Materials Letters,
Vol.60, p.1884, (2006)
15. Z. F. Li, J. Dong, X. Q. Zeng, C. Lu, W. J. Ding and Z. M. Ren, Journal of Alloys and Compounds, Vol.440, p.132, (2007)
16. X. Liu, J. Cui, Y. Guo, X. Wu and J. Zhang, Materials Letters, Vol.58, p.1520, (2004)
17. C. Q. Cheng, J. Zhao, Y. Xu, F. M. Xu and M. L. Huang, Proceedings of HDP’07
18. J. Zhao, P. Yang, F. Zhu and C. Q. Cheng, Scripta Materialia, Vol.54,
p.1077, (2006)
19. R. Labie, E. Beyne and P. Ratchev, Electronic Components and Technology Conference, p.1230, (2003)
20. P. Ratchev, R. Labie and E. Beyne, Electronic Components and Technology Conference, p.339, (2004)
21. R. Labie, P. Ratchev and E. Beyne, Electronic Components and Technology Conference, p.449, (2005)
22. R. Labie, E. Beyne, R. Mertens, P. Ratchev and J. H. Humbeeck, Electronic Components and Technology Conference, p.584, (2003)
23. L. Magagnin, V. Sirtori, S. Seregni, A. Origo and P.L. Cavallotti, Electrochimica Acta, Vol.50, p.4621, (2005)
24. 陳志銘, 國立清華大學化學工程學系博士論文, (2002)
25. A. Lang and W. Jeitschko, Z. Metallkd., Vol.87, p.759, (1996)
26. W. J. Zhu, H. S. Liu, J. Wang and Z. P. Jin, Journal of Alloys and
Compounds, (2007), in press
27. W. J. Zhu, J. Wang, H. S. Liu, Z. P. Jin and W. P. Gong, Materials
Science and Engineering A, Vol.456, p.109, (2007)
28. S. W. Chen, C. M. Chen, JOM, Vol.55, p.62, (2003).
29. R. A. Serway and J. W. Jewett,Jr., Principles of Physics: A Calculus-Based Text, Third edition, THOMSON
30. S. N. Tewari, R. Shah and H. Song, Metallurgical and Materials Transactions A, Vol.25A, p.1535, (1994)