簡易檢索 / 詳目顯示

研究生: 吳曉婷
Wu Hsiao-Ting
論文名稱: 利用自適應控制優化由低溫砷化銦鎵天線產生兆赫輻射之研究
Adaptive Control Enhanced Terahertz Radiation with LT-InGaAs Photoconductive Antennas
指導教授: 潘犀靈
Pan,Ci-Ling
口試委員: 李晁逵
Lee,Chao-Kuei
施宙聰
Shy,Jow-Tsong
黃衍介
Huang,Yen-Chieh
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 79
中文關鍵詞: 兆赫波自適應控制凍結相位演算法低溫砷化銦鎵光導天線天線
外文關鍵詞: THz, Adaptive control, Freezing phase algorithm, In-GaAs antenna
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 利用凍結相位演算法結合脈衝形變技術與自適應控制,我們研究激發光(λ=1550nm)脈衝特性對由低溫砷化銦鎵光導天線天線兆赫波輻射的影響。系統之自適應控制是採用凍結相位演算法,本文提出一種能兼顧壓縮品質和縮減計算步數的簡化方式,實驗證明其有效。
    兆赫波自適應控制的實驗證明零色散的最短脈衝無法產生最佳的兆赫波尖峰數值,用最佳塑形的光脈衝激發,可將兆赫波的尖峰數值提升至少1.2倍。另外,我們發現在啁啾常數為20000,-30000,-75000 fs2 時,兆赫脈衝訊號有明顯的增強,同時也觀察到峰值頻率的平移現象以及頻寬的增減。


    In this thesis, we display an all-fiber laser (λ=1550nm) system with pulse shaping for enhaning THz generation by a LT-InGaAs photoconductive antennas (PCA).
    The laser system was designed to reduce the nonlinear effect in fiber component and match the bandwidth of the pulse shaper (C-band waveshaper 4000S) by picosecond chirped pulses. We also introduce a new method to reduce step number of freezing phase algorithm for adaptive control while maintaining the efficiency of pulse shaping.
    THz time-domain spectrometer uses adaptively controlled THz signal as the feedback signal. We found that the transform-limited pulse (TLP) is not the best incident pulse for THz generation by the PCA. The enhancement in the signal is 1.2 times of THz generation by TLP. In chirp control experiment, we studied the response of THz radiation with different pre-chirped pulses for excitation. We found significant enhancement near 20000, -30000 and -75000 fs2 chirp constant. Peak frequency shift, broadening and narrowing of bandwidth were also observed.

    摘要 i Abstract ii 致謝 iii Table of Contents iv List of Figures vi List of Tables xiii Chapter 1 Introduction 1 1.1 Terahertz Technology 1 1.2 Pulse Shaping Technique 2 1.3 Adaptive Control for Pulse Shaping 4 1.4 Motivation and Organization 5 Chapter 2 Experimental Principle and Analysis Method 9 2.1 Terahertz Generation and Time-domain Spectroscopy 10 2.1.1 Terahertz generation 10 2.1.2 Time-domain Spectroscopy (TDS) 16 2.2 Pulse Shaping Technique 20 2.2.1 4-f system 20 2.2.2 Design of Pulse Shaping System 22 2.2.3 Design of Waveshaper 4000S 23 2.3 Algorithm for Adaptive Control 26 2.3.1 Freezing Phase Algorithm 26 2.3.2 Simplified methods for FPA 31 2.4 Interferometric Type Autocorrelation 35 2.5 Erbium-doped Fiber and Applications 38 2.5.1 Erbium-doped Fiber laser 40 2.5.2 Erbium-doped Fiber Amplifier 42 Chapter 3 Experimental Setup and Analysis 43 3.1 Laser System 43 3.1.1 Redesign for 1550nm Laser System 43 3.1.2 Home-made Er:fiber Amplifier 44 3.2 Adaptive Control for 1550nm pulse 46 3.2.1 Experimental Setup 46 3.2.2 Simulation for Interferomatric Autocorrelator 47 3.3 Adaptive Control for THz generation 50 3.3.1 Time Domain Spectroscopy System 50 3.3.2 Experimental Setup for THz Adaptive Control 53 3.4 Pre-chirped Control for THz Generation 55 Chapter 4 Experimental Result and Discussion 57 4.1 Performance of Er:fiber Amplifier 57 4.2 Adaptive Control of Er:fiber laser 60 4.3 Adaptive Control of THz generation 62 4.4 Chirp control of THz generation 68 Chapter 5 Conclusion and Future Work 75 5.1 Conclusion 75 5.2 Future Work 76 Reference 77

    1. Auston, D.H., K.P. Cheung, and P.R. Smith, Picosecond photoconducting Hertzian dipoles. Applied Physics Letters, 1984. 45(3): p. 284-286.
    2. Cisco, Cisco Visual Networking Index: Forecast and Methodology, 2014–2019. 2015.
    3. Akyildiz, I.F., J.M. Jornet, and C. Han, Terahertz band: Next frontier for wireless communications. Physical Communication, 2014. 12(0): p. 16-32.
    4. Maiman, T.H., Stimulated Optical Radiation in Ruby. Nature, 1960. 187(4736): p. 493-494.
    5. Duguay, M.A. and J.W. Hansen, AN ULTRAFAST LIGHT GATE. Applied Physics Letters, 1969. 15(6): p. 192-194.
    6. Fork, R.L., et al., Compression of optical pulses to six femtoseconds by using cubic phase compensation. Optics Letters, 1987. 12(7): p. 483-485.
    7. Heritage, J.P., A.M. Weiner, and R.N. Thurston, Picosecond pulse shaping by spectral phase and amplitude manipulation. Optics Letters, 1985. 10(12): p. 609-611.
    8. Saleh, B.E.A. and M.C. Teich, Fundamentals of photonics. 2007.
    9. Whitaker, H.P., J. Yamron, and A. Kezer, Design of model-reference adaptive control systems for aircraft. 1958: Massachusetts Institute of Technology, Instrumentation Laboratory.
    10. Dubowsky, S. and D.T. DesForges, The Application of Model-Referenced Adaptive Control to Robotic Manipulators. Journal of Dynamic Systems, Measurement, and Control, 1979. 101(3): p. 193-200.
    11. Weiner, A.M., Femtosecond optical pulse shaping and processing. Progress in Quantum Electronics, 1995. 19(3): p. 161-237.
    12. Zhang, Z. and T. Buma, Adaptive terahertz imaging using a virtual transceiver and coherence weighting. Optics Express, 2009. 17(20): p. 17812-17817 KW - Phased-array imaging systems KW - Adaptive imaging KW - Terahertz imaging UR - http://www.opticsexpress.org/abstract.cfm?URI=oe-17-20-17812.
    13. Kunde, J., et al., Adaptive feedback control of ultrafast semiconductor nonlinearities. Applied physics letters, 2000. 77(7): p. 924.
    14. Weiner, A.M. and D.E. Leaird, Generation of terahertz-rate trains of femtosecond pulses by phase-only filtering. Optics Letters, 1990. 15(1): p. 51-53.
    15. Yongqian, L., P. Sang-Gyu, and A.M. Weiner, Terahertz waveform synthesis via optical pulse shaping. Selected Topics in Quantum Electronics, IEEE Journal of, 1996. 2(3): p. 709-719.
    16. Vidal, S., et al., Femtosecond optical pulse shaping for tunable terahertz pulse generation. Journal of the Optical Society of America B, 2010. 27(5): p. 1044-1050.
    17. Harper, M.R., et al. Control of terahertz pulse generation by optical pulse shaping. in 2007 Joint 32nd International Conference on Infrared and Millimeter Waves and the 15th International Conference on Terahertz Electronics. 2007.
    18. Stepanov, A.G., et al., Mobile source of high-energy single-cycle terahertz pulses. Applied Physics B, 2010. 101(1): p. 11-14.
    19. Wang, W.M., et al., Strong terahertz pulse generation by chirped laser pulses in tenuous gases. Optics Express, 2008. 16(21): p. 16999-17006.
    20. Izumida, S., et al., Spectrum control of THz radiation from InAs in a magnetic field by duration and frequency chirp of the excitation pulses. Applied Physics Letters, 1999. 75(4): p. 451-453.
    21. Lee, C.-K., et al., Pre-Chirped Pulse Excitation Enhanced Terahertz Radiation. IEEE Transactions on Terahertz Science and Technology, 2016. 6(2): p. 253-261.
    22. Nahory, R.E., et al., Band gap versus composition and demonstration of Vegard’s law for In1−xGaxAsyP1−y lattice matched to InP. Applied Physics Letters, 1978. 33(7): p. 659-661.
    23. Lee, Y.-S., Generation and Detection of Broadband Terahertz Pulses, in Principles of Terahertz Science and Technology. 2009, Springer US. p. 1-66.
    24. Weiner, A.M., Ultrafast optical pulse shaping: A tutorial review. Optics Communications, 2011. 284(15): p. 3669-3692.
    25. Weiner, A.M., et al., Shaping of femtosecond pulses using phase-only filters designed by simulated annealing. Journal of the Optical Society of America A, 1993. 10(5): p. 1112-1120.
    26. Pulikkaseril, C., et al., Spectral modeling of channel band shapes in wavelength selective switches. Optics express, 2011. 19(9): p. 8458-8470.
    27. Roelens, M.F., et al., Dispersion Trimming in a Reconfigurable Wavelength Selective Switch. Journal of Lightwave Technology, 2008. 26(1): p. 73-78.
    28. Baxter, G., et al. Highly programmable wavelength selective switch based on liquid crystal on silicon switching elements. in Optical Fiber Communication Conference, 2006 and the 2006 National Fiber Optic Engineers Conference. OFC 2006. 2006.
    29. Chen, M.C., et al., Freezing phase scheme for fast adaptive control and its application to characterization of femtosecond coherent optical pulses reflected from semiconductor saturable absorber mirrors. JOSA B, 2005. 22(5): p. 1134-1142.
    30. Trebino, R. Measuring Ultrashort Laser Pulses.
    31. Diels, J.-C., W. Rudolph, and S.A. Miller, Ultrashort Laser Pulse Phenomena. Optical Engineering, 1997. 36(8): p. 2362-2362.
    32. Dudley, J.M., et al., Commercial Semiconductor Devices for Two Photon Absorption Autocorrelation of Ultrashort Light Pulses. Applied Optics, 1998. 37(34): p. 8142-8144.
    33. Duguay, M. and J.-W. Hansen, An ultrafast light gate. Applied physics letters, 1969. 15(6): p. 192-194.
    34. (CMS/ITRI), C.f.M.S.I.T.R.I., OFC-ER1xx,2xx,3xx mode-locked fiber laser User's Manual. p. 14.
    35. Peng, J.-L., et al., Highly stable, frequency-controlled mode-locked erbium fiber laser comb. Applied Physics B, 2007. 86(1): p. 49-53.
    36. Mears, R.J., et al. Low-noise erbium-doped fibre amplifier operating at 1.54μm. Electronics Letters, 1987. 23, 1026-1028.
    37. Corporation, S.P., Erbium Dopd Fiber for C-band. 2015.
    38. Roehle, H., et al., Next generation 15 µm terahertz antennas: mesa-structuring of InGaAs/InAlAs photoconductive layers. Optics express, 2010. 18(3): p. 2296.
    39. Lin, Y.L., A Study of Terahertz Time Domain Spectroscopy: Using Femtosecond Pulse Shaping Technology. 2013.
    40. Naftaly, M., Terahertz Metrology. 2015: p. 6.
    41. Ahrenkiel, R.K., et al., Recombination lifetime of In0.53Ga0.47As as a function of doping density. Applied Physics Letters, 1998. 72(26): p. 3470-3472.
    42. Institute, I.P.-T., New Semiconductor Materials. Characteristics and Properties. 2007.
    43. Kelson, I. and A.A. Hardy, Strongly pumped fiber lasers. IEEE journal of Quantum Electronics, 1998. 34(9): p. 1570-1577.
    44. Lin, Q., et al., Intrinsic chirp of single-cycle pulses. Physical Review A, 2010. 81(4): p. 043821.
    45. Shalaby, M., et al., Temporal and spectral shaping of broadband terahertz pulses in a photoexcited semiconductor. Applied Physics Letters, 2015. 106(5): p. 051110.
    46. Grischkowsky, D., et al., Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors. JOSA B, 1990. 7(10): p. 2006-2015.
    47. Němec, H., et al., Independent determination of the complex refractive index and wave impedance by time-domain terahertz spectroscopy. Optics communications, 2006. 260(1): p. 175-183.
    48. Yang, T., et al. Simulation on the evolution of spectrum-managed optical pulse propagation in active fibers with programmable gain spectral profile. 2012.
    49. Lee, C.-K., et al., Chirped-pulse manipulated carrier dynamics in low-temperature molecular-beam-epitaxy grown GaAs. Applied Physics Letters, 2014. 104(17): p. 172105.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE