簡易檢索 / 詳目顯示

研究生: 謝志聰
Hsieh Jyh Tsung
論文名稱: 蝕刻技術於氮化鎵半導體元件製作上之研究及其應用
Etching Techniques for the Realization of Semiconductor Devices Based on III-V Nitrides
指導教授: 黃惠良
Hwang Huey Liang
畢爾功
Manfred Pilkuhn
口試委員:
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2000
畢業學年度: 88
語文別: 中文
論文頁數: 202
中文關鍵詞: 氮化鎵光輔助低溫乾式蝕刻光電化學蝕刻(活性)離子束蝕刻蝕刻損害缺陷離子隧道穿透黃色瑩光
外文關鍵詞: GaN, photo-assisted cryogenic etching, photoelectrochemical etching, (reactive) ion beam etching, etch-damage, dislocation, ion channeling, yellow luminescence
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 過去十年裡,氮化鎵半導體的研究快速發展;尤其在藍光二極體雷射和高速電子元件上的應用上,其優異的特性吸引了絕大多數科學家的注意。相對地,由於本身的化學鈍性使得蝕刻氮化鎵變得極為困難,這也造成了半導體元件製程上的一些困境。為有效解決此一難題,我們發展了三種不同的蝕刻技術並測試其應用於半導體元件製程的可能性。希望達成的目標為建立一低損害及能產生垂直側面的蝕刻工具。
    三種方法之中,光輔助低溫乾蝕刻產生了非常平滑和陡直的形狀,經光譜驗證其乃為一低損害的蝕刻技術,蝕刻表面的平整度可低於1.7奈米。光輔助電化學蝕刻法除了相當經濟的設備花費及可觀的蝕刻速率外,利用其特殊的反應機制我們已成功地披露隱含在氮化鎵材料內為數頗多的差排缺陷。經由進一步的光譜分析,我們確認了一對應的螢光譜線其室溫峰值位置為3.51 eV. 這些缺陷乃材料內部鍵結較弱的結構,因此使用二步蝕刻法可以輕易地移除這類缺陷亦或造成六角形狀的蝕刻小窪地。藉助其便利的操作和改變離子入射角度,離子束蝕刻法可以產生低損害的表面和不同陡度的蝕刻形狀。這對製作高速電子元件(HEMTs)有所幫助。另一方面,不同入射角度離子在AlGaN/GaN二維電子氣和GaN/InGaN/GaN 量子井結構的實驗中清楚地證實離子隧道穿透現象的發生。

    此研究中,不同的蝕刻損害來源也被系統地歸類;為有效修補這些缺陷損害的產生,電子迴旋共振氮氣電漿保護法也被使用來移除離子束蝕刻造成的損害並回復其蕭特基二極體的電性。結果顯示RF功率的使用可使二極體的反向崩潰電壓由20 V提高至90 V左右。高溫快速去火(RTA)、KOH後處理和低溫光輔助蝕刻法也可使用來當做蝕刻損害移除的方法。

    有鑑於各類缺陷對雷射發光效率的影響,我們也利用不同的蝕刻方法配合光譜研究來確認其缺陷發光來源。經過努力,我們確認了黃光缺陷源為一複合點缺陷(complex defects)埋在針狀延伸邊缺陷(threading edge dislocation)內所造成;DAP (donor-acceptor pairs) 缺陷源為一和氧相關的點缺陷所形成的淺donor態;另一與針狀延伸缺陷有關的缺陷源也證實是一激子態(exciton),因而被命為dislocation-bound exciton. 瞭解了這些缺陷源後可以讓我們更精確地控制這些源頭不使其伴隨材料長晶時衍生,進而提高整個元件的性能。


    III-nitrides semiconductors attract numerous attention in the last decade, especially for the optical devices such as blue laser diodes as well as the high frequency, high power and high temperature electronic devices such as high electron mobility transistors (HEMTs). Owing to the inert chemical characteristics of III-nitride, difficulty incurs in etching nitrides for the device applications. Especially the formation of laser cavity facets must resort to the well-developed etching techniques; on the other hand, low-damage etching techniques are indispensable for the fabrication of recessed-gate HEMTs. In this study, we compare three etching techniques and examine the feasibility of producing the vertical sidewall and low-damage etch surface for real device applications.
    . Among these etching techniques, photo-assisted cryogenic etching produces very smooth (~1.7 nm as determined from the atomic force microscopy (AFM)) and nearly damage-free etch surface (as-evidenced from the elimination of yellow luminescence (YL)). Photoelectrochemical (PEC) etching provides an economic means to attain smooth sidewall with a satisfactory etch rate. Due to these specific characteristics in PEC etching of GaN, we identified the dislocation-related structures that remain on surface after the etching. All the dislocation-related structures possessed weak bonding characteristics and can thus be removed after a short-duration hot KOH immersion.

    By varying the ion incidence angles, we identified that ion channeling occurs during the Ar+ ion beam etching in both structures of AlGaN/GaN heterostructures for the HEMTs devices and GaN/InGaN/GaN quantum well (QW) structures for the blue laser diodes. After rapid thermal annealing (RTA) at 800 oC for 30 sec, most etch-damage created by ion channeling could be removed.

    For a GaN etched at 250 V accelerating voltage, an increase in VB was observed with the subsequent N2 plasma treatment on the etched surface, due to an excess nitrogen supply on the nitrogen-deficient GaN surface. However, an etched GaN showed a decrease in reverse leakage current after the N2 plasma treatment with rf power added, indicating that an additional type of damage was introduced under the energetic ion bombarding conditions.

    Utilizing these specific etching techniques, and in conjunction with photoluminescence and cathodoluminescence spectroscopy, we have identified some defect-related optical transitions frequently encountered in a PL spectrum on the unintentionally doped GaN epilayer.

    PART I REVIEWS AND INTRODUCTION CHAPTER ONE INTRODUCTION 1.1 Wet Etching 1.2 Dry Etching CHAPTER TWO PHYSICAL, OPTICAL AND MATERIAL CHARACTERS OF NITRIDES 2.1 General Properties of Nitrides 2.1.1 Crystal Structure of Nitrides 2.1.2 Gallium Nitride 2.1.2.1 Chemical Properties of GaN 2.1.2.2 Thermal and Mechanical Properties of GaN 2.1.3 Ternary Alloy 2.1.3.1 AlGaN Alloy 2.1.3.2 InGaN Alloy 2.1.4 Substrates for Nitride Epitaxy 2.2 Defects in Solids 2.3 Optical Transitions in GaN 2.3.1 Intrinsic and Extrinsic Luminescence 2.3.2 Optical Signature of Defects in GaN PART II EXPERIMENTAL SETUP AND SPECIFIC RESULTS CHAPTER THREE EXPERIMENTAL SYSTEM AND SAMPLE PREPARATION 3.1 Photo-Electrochemical Etching (PECE) 3.2 Photo-Assisted Cryogenic Etching (PACE) 3.3 Reactive Ion Beam Etching (RIBE) 3.4 Electron Cyclotron Resonance (ECR) Excited N2 Plasma 3.5 Sample Preparation CHAPTER FOUR CHARACTERIZATION METHODS 4.1 Scanning Electron Microscopy (SEM) 4.2 Atomic Force Microscopy (AFM) 4.3 Current-Voltage (I-V) Measurement of Schottky Diodes 4.4 Transmission Line Method (TLM) 4.5 Hall Measurement 4.6 Photoluminescence Spectroscopy (PL) 4.7 Cathodoluminescence Spectroscopy (CL) 4.8 Auger Electron Spectroscopy (AES) 4.9 X-ray Photoelectron Spectroscopy (XPS) PART III ETCH RESULTS CHAPTER FIVE PHENOMENA REVEALED BY VARIOUS ETCHING TECHNIQUES 5.1 Etch Profiles and Etch Rates 5.1.1 Photo-Assisted Cryogenic Etching 5.1.2 Photo-Electrochemical Etching 5.1.3 Ar+ Ion Beam Etching 5.1.4 Reactive Ion Beam Etching with O2/Ar Plasma 5.2 Wet Etching : Crystallographic Phenomena 5.3 PEC Etching of InxGa1-xN PART III.1 ETCH-DAMAGE AND DAMAGE REMOVAL CHAPTER SIX ETCHING-INDUCED SURFACE DAMAGES AND DAMAGE REMOVAL 6.1 Low-Damage Photo-Assisted Cryogenic Etching 6.2 Damage Produced During Photoelectrochemical Etching GaN 6.3 Plasma-Induced Damage 6.4 Damage Produced by Ar+ Ion Beam Etching GaN 6.5 Damage Induced by Reactive Ion Beam Etching GaN in O2/Ar Plasma 6.6 Ion Channeling in III-Nitrides during Ion Beam Etching 6.7 Damage Removal CHAPTER SEVEN THE EFFECT OF ECR EXCITED NITROGEN PLASMA EXPOSURE ON ION BEAM ETCHED GaN 7.1 Experimental Design - Taguchi Orthogonal Table 7.2 Restoration of Electrical Properties after N2 Plasma Passivation PART III.2 DEFECTS AND DISLOCATIONS CHAPTER EIGHT DISLOCATION REVEALED BY ETCHING 8.1 Dislocations in GaN 8.2 Evaluation of Dislocations by Wet Chemical Etching and Ion Beam Etching 8.2.1 Dislocations Revealed by Wet Chemical Etching 8.2.1 Nanopipes Revealed by Wet Chemical Etching 8.2.3 Pinholes/Nanopipes Revealed by Ion Beam Etching 8.3 Defect Selective Etching of GaN CHAPTER NINE THE ORIGIN OF DEFECT-RELATED RECOMBINATION CENTERS 9.1 Yellow Luminescence (YL) and Related Deep Levels in Unintentionally Doped GaN Films 9.2 Donor-Acceptor Pairs (DAP) and Related Deep Levels in Unintentionally Doped GaN Films 9.3 Interaction of Oxygen with Threading Dislocations in GaN 9.4 Influence of Crystal Defects on Optical Transitions in GaN CHAPTER TEN CONCLUSIONS APPENDIX A ETCHING EFFECTS IN RECESSED GATE AlGaN/GaN HEMTs APPENDIX B SHORT GATE AlGaN/GaN HEMTs

    [1] S. Nakamura, T. Mukai, and M. Senoh, Appl. Phys. Lett. 64, 1687 (1994).
    [2] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, and S. Sugimoto, Appl. Phys. Lett. 68, 2105 (1996).
    [3] A. T. Ping, I. Adesida, K. Boutros, and J. Redwing, unpublished.
    [4] S. Sheppard, K. Doverspike, W. Pribble, S. Allen, J. Palmour, L. Kehias, T. Jenkins, Paper V.B. part 5, Device Research Conference (Charlolltesville, VA, 1998).
    [5] L. McCarthy, P. Kozodoy, M. Rodwell, S. DenBaars, and U. Mishra, Compound Semiconductor 4 (8), 16 (1998).
    [6] C. B. Vartuli, S. J. Pearton, J. W. Lee, C. R. Abernathy, J. D. MacKenzie, J. C. Zolper, R. J. Shul, and F. Ren, J. Electrochem. Soc. 143, 3681 (1996).
    [7] C. Youtsey, I. Adesida, and G. Bulman, Electron. Lett. 33, 245 (1997); Appl. Phys. Lett. 71, 2151 (1997); J. Electron. Mater. 27, 282 (1998).
    [8] M. S. Minsky, M. White, and E. L. Hu, Appl. Phys. Lett. 68, 1531 (1996).
    [9] B. J. Kim, J. W. Lee, H. S. Park, Y. Park, and T. I. Kim, J. Electron. Mater. 27, L32 (1998).
    [10] D. A. Stocker, E. F. Schubert, and J. M. Redwing, Appl. Phys. Lett. 73, 2345 (1998).
    [11] A. Shintani and S. Minagawa, J. Electrochem. Soc. 123, 707 (1976).
    [12] T. Kozawa, T. Kachi, Y. Taga, and M. Koike, J. Electrochem. Soc. 143, L17 (1996).
    [13] J.-L. Lee, J. K. Kim, J. W. Lee, Y. J. Park, and T. Kim, Solid-State Electron. 43, 435 (1999).
    [14] I. Adesida, A.T. Ping, C. Youtsey, T. Dow, M. Asif Khan, D.T. Olson, and J.N. Kuznia, Appl. Phys. Lett. 65, 889 (1994).
    [15] S.J. Pearton, C.R. Abernathy, F. Ren, and J.R. Lothian, J. Appl. Phys 76, 1210 (1994).
    [16] A.T. Ping, I. Adesida, and M. Asif Khan, Appl. Phys. Lett. 67, 1250 (1995).
    [17] A.T. Ping, C. Youtsey, I. Adesida, and J.N. Kuznia, J. Electron. Mat. 24, 229 (1995).
    [18] A.T. Ping, M. Asif Khan, and I. Adesida, Semicond. Sci. Technol. 12, 133 (1997).
    [19] J.-W. Lee, H.-S. Park, Y.-J. Park, M.-C. Yoo, T.-I Kim, H.-S. Kim, and G.-Y. Yeom, MRS Symp. Proc. 468, 373 (1997).
    [20] D. Basak, M.T. Montojo, E. Munoz, and E. Calleja, Semicond. Sci. Tech. 12, 1654 (1997).
    [21] H. Lee, D.B. Oberman, and J.S. Harris Jr, Appl. Phys. Lett. 67, 1754 (1995).
    [22] I. Adesida, A. Mahajan, E. Andideh, and J.N. Kuznia, Appl. Phys. Lett. 63, 2777 (1993).
    [23] A.T. Ping, I. Adesida, M. Asif Khan, and J.N. Kuznia, Electron. Lett. 30, 1895 (1994).
    [24] M.E. Lin, Z.F. Fan, Z. Ma, L.H. Allen, and H. Morkov, Appl. Phys. Lett. 64, 887 (1994).
    [25] S.J. Pearton, C.R. Abernathy, F. Ren, J.R. Lothian, P.W. Wisk, and A. Katz, J. Vac. Sci. Technol. A 11, 1772 (1993).
    [26] S.J. Pearton, C.R. Abernathy, and C.B. Vartuli, Electron. Lett. 30, 1985 (1994).
    [27] L. Zhang, J. Ramer, J. Brown, K. Zheng, L.F. Lester, and S.D. Hersee, Appl. Phys. Lett. 68, 367 (1996).
    [28] R.J. Shul, S.P. Kilcoyne, M.H. Crawford, J.E. Parmeter, C.B. Vartuli, C.R. Abernathy, and S.J. Pearton , Appl. Phys. Lett. 66, 1761 (1995).
    [29] C.B. Vartuli, S.J. Pearton, J.W. Lee, J.D. MacKenzie, C.R. Abernathy, and R.J. Shul, J. Vac. Sci. Technol. B 15, 98 (1997).
    [30] C.B. Vartuli, S.J. Pearton, J.W. Lee, J. Hong, J.D. MacKenzie, C.R. Abernathy, and R.J. Shul, Appl. Phys. Lett. 69, 1426 (1996).
    [31] H. Cho, C.B. Vartuli, S.M. Donovan, J.D. Mackenzie, C.R. Abernathy, S.J. Pearton, R.J. Shul, and C. Constantine, J. Electron. Mat. 27, 166 (1998).
    [32] R.J. Shul, C.G. Willison, M.M Bridges, J. Han, J.W. Lee, S.J. Pearton, C.R. Abernathy, J.D. Mackenzie, S.M. Donovan, L. Zhang, and L.F. Lester, J. Vac. Sci. Technol. A 16, 1621 (1998).
    [33] C.B. Vartuli, J.W. Lee, J.D. MacKenzie, S.M. Donovan, C.R. Abernathy, S.J. Pearton, R.J. Shul, C. Constantine, C. Barratt, A.Y. Poyakov, M. Shin, M. Skowronski, Mat. Res. Soc. Symp. Proc. 468, 393 (1997).
    [34] R.J. Shul, G.B. McClellan, S.A. Casalnuovo, D.J. Rieger, S.J. Pearton, C. Constantine, C. Barratt, R.F. Karlicek Jr., C. Tran, and M. Schurman, Appl. Phys. Lett. 69, 1119 (1996).
    [35] Y.H. Lee, H.S. Kim, G.Y. Yeom, J.W. Lee, M.C. Yoo, and T.I. Kim, J. Vac. Sci. Technol. A 16, 1478 (1998).
    [36] S.A. Smith, C.A Wolden, M.D. Bremser, A.D. Hanser, R.F. Davis, and W.V. Lampert, Appl. Phys. Lett. 25, 3631 (1997).
    [37] R.T. Leonard and S.M. Bedair, Appl. Phys. Lett. 68, 794 (1996).
    [38] H.P. Gillis, D.A.Choutov, K.P. Martin, M.D. Bremser, and R.F. Davis, J. Electron. Mat. 26, 301 (1997).
    [39] S. J. Pearton, J. W. Lee, J. D. MacKenzie, C. R. Abernathy, and R. J. Shul, Appl. Phys. Lett. 67, 2329 (1995).
    [40] F. Ren, J. R. Lothian, S. J. Pearton, C. R. Abernathy, C. B. Vartuli, J. D. MacKenzie, R. G. Wilson, and R. F. Karlicek, J. Electron. Mater. 26, 1287 (1997).
    [41] T. Ping, A. C. Schmitz, I. Adesida, M. A. Khan, O. Chen, and Y. W. Yang, J. Electron. Mater. 26, 266 (1997).
    [42] R. J. Shul, J. C. Zolper, M. Hagerott Crawford, S. J. Pearton, J. W. Lee, R. F. Karlicek, Jr., C. Tran, M. Schurmann, C. Constantine, and C. Bar-ratt, Proc. Electrochem. Soc. 96-15, 232 (1996).
    [1] S.D. Lester, F.A. Ponce, M.G. Craford, D.A. Steigerwald, Appl. Phys. Lett. 66, 1249 (1995).
    [2] X.H. Wu, L.M. Brown, D. Kapolnek, S. Keller, B. Keller, S.P. DenBaars, J.S. Speck, J. Appl. Phys. 80 (1996) 3228.
    [3] X.H. Wu, D. Kapolnek, E.J. Tarsa, B. Heying, S. Keller, B.P. Keller, U.K. Mishra, S.P. DenBaars, J.S. Speck, Appl. Phys. Lett. 68 (1996) 1371.
    [4] X.H. Wu, P. Fini, E.J. Tarsa, B. Heying, S. Keller, U.K. Mishra, S.P. DenBaars, J.S. Speck, J. Crystal Growth 189}190 (1998) 232.
    [5] S.J. Rosner, E.C. Carr, M.J. Ludowise, G. Girolami, H.I. Erikson, Appl. Phys. Lett. 70 (1997) 420.
    [6] B. Heying, E.J. Tarsa, C.R. Elsass, P. Fini, S.P. DenBaars, J.S. Speck, J. Appl. Phys. 85 (1999) 6470.
    [7] T. Sugahara, H. Sato, M. Hao, Y. Naoi, S. Kurai, S. Tottori, K. Yamashita, K. Nishino, L.T. Romano, S. Sakai, Jpn. J. Appl. Phys. (Part 2) 37 (1998) L398.
    [8] M.S. Minsky, A.M. White, E.L. Hu, Appl. Phys. Lett. 68 (1996) 1531.
    [9] C. Youtsey, L.T. Romano, I. Adesida, Appl. Phys. Lett. 73 (1998) 797.
    [10] C. Youtsey, L.T. Romano, R.J. Molnar, I. Adesida, Appl. Phys. Lett. 74 (1999) 3537.
    [11] E.G. Brazel, M.A. Chin, V. Narayanamurti, Appl. Phys. Lett. 74 (1999) 2367
    [12] P. Kozodoy, J.P. Ibbetson, H. Marchand, P.T. Fini, S. Keller, J.S. Speck, S.P. DenBaars, U.K. Mishra, Appl. Phys. Lett. 73 (1998) 975.
    [13] G. Parish, S. Keller, P. Kozodoy, J.P. Ibbetson, H. Marchand, P.T. Fini, S.B. Fleischer, S.P. DenBaars, U.K. Mishra, Appl. Phys. Lett. 75 (1999) 247.
    [14] S.J. Rosner, G. Girolami, H. Marchand, P.T. Fini, J.P. Ibbetson, L. Zhao, S. Keller, U.K. Mishra, S.P. DenBaars, J.S. Speck, Appl. Phys. Lett. 74 (1999) 2035.
    [15] J. Elsner, R. Jones, P.K. Sitch, V.D. Porezag, M. Elstner, T. Frauenheim, M.I. Heggie, S. Oberg, P.R. Briddon, Phys. Rev. Lett. 79 (1997) 3672.
    [16] J. Elsner, R. Jones, M.I. Heggie, P.K. Sitch, M. Haugk, T. Frauenheim, S. Oberg, P.R. Briddon, Phys. Rev. B 58 (1998) 12571.
    [17] A.F. Wright, U. Grossner, Appl. Phys. Lett. 73 (1998) 2751.
    [18] K. Leung, A.F. Wright, E.B. Stechel, Appl. Phys. Lett. 74 (1999) 2495.
    [19] N.S. Weimann, L.F. Eastman, D. Doppalapudi, H.M. Ng, T.D. Moustakas, J. Appl. Phys. 83 (1998) 3656.
    [20] H.M. Ng, D. Doppalapudi, T.D. Moustakas, N.G. Weimann, L.F. Eastman, Appl. Phys. Lett. 73 (1998) 821.
    [21] D.C. Look, J.R. Sizelove, Phys. Rev. Lett. 82 (1999) 1237. (1998) 12571.
    [22] P.J. Hansen, Y.E. Strausser, A.N. Erickson, E.J. Tarsa, P. Kozodoy, E.G. Brazel, J.P. Ibbetson, U. Mishra, V. Narayanamurti, S.P. DenBaars, J.S. Speck, Appl. Phys. Lett. 72 (1998) 2247.
    [23] S. Nakamura, MRS Bull. 23 (1998) 37.
    [24] S. Koynov, M. Topf, S. Fischer, P. Radojkovic, E. Hartmann, Z. Lilienthaler-Weber, J. Appl. Phys. 82 (1997) 1890.
    [25] Z. Lilienthaler-Weber, Y. Chen, S. Ruvimov, and Washbum, Phys. Rev. Lett. 79 (1997) 2835.
    [1] X.H. Wu, L.M. Brown, D. Kapolnek, S. Keller, B. Keller, S.P. DenBaars, and S.J. Speck, J. Appl. Phys. 80, 3228 (1996).
    [2] X.J. Ning, F.R. Chien, and P. Pirouz, J. Mater. Res. 11, 580 (1996).
    [3] F.A. Ponce, D. Cherns, W.T. Young, and J.W. Steeds, Appl. Phys. Lett. 69, 770 (1996).
    [4] W. Qian, G.S. Rohrer, M. Skowronski, K. Doverspike, L.B. Rowland, and D.K. Gaskill, Appl. Phys. Lett. 67, 2284 (1995).
    [5] W. Qian, M. Skowronski, K. Doverspike, L.B. Rowland, and D.K. Gaskill, J. Cryst. Growth 151, 396 (1995).
    [6] P. VenneÂgueÁs, B. Beaumont, M. Vaille, and P. Gibart, Appl. Phys. Lett. 70, 2434 (1997).
    [7] Z. Liliental-Weber, Y. Chen, S. Ruvimor, and J. Washburn, Phys. Rev. Lett. 79, 2835 (1997).
    [8] F.C. Frank, Acta. Cryst. 4, 497 (1951).
    [9] Z. Liliental-Weber, Y. Chen, S. Revimov, and J. Washburn, Mater. Sci. Forum 258, 1659 (1997).
    [10] T. Ogino and M. Aoki, Jpn. J. Appl. Phys. 19, 2395 (1980).
    [11] E.R. Glaser, Phys. Rev. B 51, 13326 (1995).
    [12] M. Godlewski et al., Mater. Sci. Forum 258/263, 1149 (1997).
    [13] S.J. Rosner, E.C. Carr, M.J. Ludowise, G. Girlami, and H.I. Erikson, Appl. Phys. Lett. 70, 420 (1997).
    [14] S. Christiansen, M. Albrecht, W. Dorsch, H.P. Strunk, C. Zanotti-Fregonara, G. Salviati, A. Pelzmann, M. Mayer, M. Kamp, and K.J. Ebeling, MRS Internet J. of Nitride Res., 1, 1996.
    [15] F.A. Ponce, D.B. Bour, W. GoÈ tz, and P.J. Wright, Appl. Phys. Lett. 68, 57 (1996).
    [16] T. Ogino and M. Aoki, Jpn. J. Appl. Phys. 19, 2395 (1980).
    [17] S. A. Safvi, N. R. Perkins, M. N. Horton, R. Matyi, and T. F. Kuech, J. Cryst. Growth 182, 233 ~1997!; X. Li and J. J. Cole-man, Appl. Phys. Lett. 70, 438 (1997).
    [18] See, e.g., E. Calleja, F. J. Sa´nchez, D. Basak, M. A. Sa´nchez-Garcý´a, E. Mun´ oz, I. Izpura, F. Calle, J. M. G. Tijero, J. L. Sa´nches-Rojas, B. Beaumont, P. Lorenzini, and P. Gibrat, Phys. Rev. B 55, 4689 (1997), and references therein.
    [19] E. R. Glaser, T. A. Kennedy, K. Doverspike, L. B. Rowland, D. K. Kaskill, J. A. Freitas, M. Asif Kahn, D. T. Olson, J. N. Kuznia, and D. K. Wickenden, Phys. Rev. B 51, 13 326 (1995).
    [20] D. Kovalev, B. Averboukh,D. Volm, and B. J. Meyer, Phys. Rev. B 54, 2518. (1996).
    [21] Takashi Matsumoto and Masaharu Aoki, Japan. J. Appl. Phys. 13 1804 (1974).
    [22] E. R. Glaser, T. A. Kennedy, K. Doverspike, L. B. Rowland, D. K. Gaskill., D. T. Olson, J. N. Kuznia, and D. K. Wickenden, Phys. Rev. B 51,13326 (1995).
    [23] V.A. Savastenko and A. U. Shelog, phys. stat. sol. (a) 48, K135 (1978).
    [24] K. Saarinen, T. Laine, S. Kuisma, J. Nissila?, P. Hautoja?rvi, L. Dobrzynski, J.M. Baranowski, K. Pakula, R. Stepniewski, M. Wojdak, A. Wysmolek, T. Suski, M. Leszcynski, I. Grzegoryy, and S. Porowski, Phys. Rev. Lett. 79, 3030 (1997).
    [25] J. Neugebauer and C. Van de Walle, Appl. Phys. Lett. 69, 503 (1996).
    [26] C. Wetzel, T. Suski, J.W. Ager, E.R. Weber, E.E. Haller, S. Fischer, B.K. Meyer, R.J. Molnar, and P. Perlin, Phys. Rev. Lett. 78, 3923 (1997).
    [27] C. Wetzel et al., in: ICPS 23, World Scientific, Singapore 1996 (p. 2929).
    [28] P. Perlin et al., Mater. Res. Soc. Proc. 449, 519 (1997).
    [29] C.G. Van de Walle and J. Neugebauer, Mater. Sci. Forum 258/263, 19 (1997).
    [30] T. Mattila and R.M. Nieminen, Phys. Rev. B 55, 9571 (1997).
    [31] R.A. Youngman and J.H. Harris, J. Amer. Ceram. Soc. 73, 3238 (1990).
    [32] A.D. Westwood et al., J. Mater. Res. 10, 1270 (1995).
    [33] J. Neugebauer and C.G. Van de Walle, Festkorperprobleme 35, 25 (1996).
    [34] M. Leroux, B. Beaumont, N. Grandjean, P. Lorenzini, S. Haffouz, P. Vennegues, J. Massies and P. Gibart, Mater. Sci. Eng., B 50, 97 (1997).
    [35] G. Li, S. J. Chua, S. J. Xu, W. Wang, P. Li, B. Beaumont and P. Gibart, Appl. Phys. Lett. 74, 2821 (1999).
    [36] J. Neugebauer and C. G. Van de Walle, Appl. Phys. Lett. 69, 503 (1996).
    [37] B.-C. Chung, M. Gershenzon, J. Appl. Phys. 72 (1992) 651.
    [38] N. Grandjean, J. Massies, M. Leroux, Appl. Phys. Lett. 69 (1996) 2071.
    [39] Y.G. Shreter, Y.T. Rebane, Proc. Int. Conf. “Extended Defects in Semiconductors-96”, Giens, France, 7-12 September, 1996.
    [40] S. Fischer, C. Wetzel, W. Walukiewicz, E.E. Haller, in: R.D. Dupuis, S. Nakamura, F.A. Ponce, J.A. Edmond (Eds.), Gallium Nitride and Related Materials. First International Symposium, Mater. Res. Soc. Symp. Proc., vol. 395, 1996, p. 571, and references therein.
    [41] S. Christiansen, M. Albrecht, W. Dorsch, H. P. Strunk, MRS Internet Journal of Nitride Semiconductor Research. Vol 1, Artcle 19 (1996)
    [42] Takashi Matsumoto and Masaharu Aoki, Japan. J. appl. Phys.13 1804 (1974).
    [43] J. Elsner, R. Jones, P. K. Sitch, V. D. Porezag, M. Elstner, Th. Frauenheim, M. I. Heggie, S. Oberg, and P. R. Briddon, Phys. Rev. Lett. 79, 3672 (1997).
    [44] A. F. Wright and J. Furthmuller, Appl. Phys. Lett. 72, 3467 (1998).
    [45] A. F. Wright and U. Grossner, Appl. Phys. Lett. 73, 2751 (1998).
    [46] J. Elsner, R. Jones, M. I. Heggie P. K. Sitch, M. Haugk, Th. Frauenheim, S. Oberg, and P. R. Briddon, Phys. Rev. B 58, 12571 (1998).
    [47] P. J. Hansen, Y. E. Strausser, A. N. Erickson, E. J. Tarsa, P. Kozodoy, E. G. Brazel, J. P. Ibbetson, U. Mishra, V. Narayanamurti, S. P. DenBaars, and J. S. Speck, Appl. Phys. Lett. 72, 2247 (1998).
    [48] C. Youtsey, I. Adesida, L. T. Romano and G. Bulman, Appl. Phys. Lett. 72 560 (1998)
    [49] S. Christiansen, M. Albrecht, W. Dorsch, H. P. Strunk, MRS Internet Journal of Nitride Semiconductor Research. Vol 1, Artcle 19 (1996)
    [50] Salviati G, Albrecht M, Zanotti-Fregonara C, PHYS STATUS SOLIDI A 171: (1) 325-339 (1999).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE