簡易檢索 / 詳目顯示

研究生: 張訓祥
Hsun-Shiang Chang
論文名稱: 可攜式DSP/CPLD於氣壓控制系統之應用
Toward the Design of an Embedded DSP/CPLD for Pneumatic Control System
指導教授: 陳建祥
Jian-Shiang Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 72
中文關鍵詞: 數位訊號處理小波理論反覆學習控制嵌入式系統下肢輔具氣壓伺服控制
外文關鍵詞: dsp, cpld, Iterative Learning Control, wavelet, Embedded system, Pneumatic Control
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文是針對穿戴式下肢輔具的需要而設計的一個可攜式DSP/CPLD系統。本文整合工業控制器(LinCon8K)、數位訊號處理器 (Digital Signal Processor, DSP)、複雜型可規劃邏輯閘 (Complex Programmable Logic Device, CPLD)及Linux 作業系統以實現此一氣壓控制系統。
    本文提出結合小波轉換之反覆學習控制律應用於髖關節氣壓伺服控制系統,以解決傳統控制器難以處理的非線性以及不確定性的問題,使氣壓缸追循任意軌跡之曲線。反覆式學習控制(Iterative Learning Control, ILC),是一經由反覆的控制系統過程中記錄系統所輸入、輸出的資訊,以作為下次控制力修正的參考,且反覆學習控制能達到在有限的學習次數中,將系統的跟隨誤差收斂到一有限的範圍內。但在學習過程中可能會受到外界干擾,導致學習效能不佳,因此期望利用小波轉換來處理不可學習之動態,以確保學習曲線之收斂性。


    Based on the need of a wearable lower limb orthosis, this thesis is aimed to design a portable DSP/CPLD system that allows user to move freely with the orthosis. Here, we integrate an industrial controller (LinCon8K)、DSP(Digital Signal Processor)、CPLD(Complex Programmable Logic Device) and Linux operating system to realize this pneumatic control system.
    This thesis presents a control law that combines wavelet and ILC on the control of a pneumatic servo system. It can provide a solution to the nonlinear and uncertain problems that the traditional controller can not achieve. An Iterative Learning Control (ILC) scheme would use the information in repetitive operation and progressively improving the tracking performance. The tracking error can be converged to a small iterative learning controller would only have repeatable uncertainties. Here, wavelet transform was applied to handle the un-learnable dynamics to ensure the convergence of this iterative learning process. Thus the pneumatic cylinder can track an arbitrary trajectory profile.

    中文摘要 Abstract 目錄 圖目錄 表目錄 第一章 緒論 1.1背景及研究動機 1.2文獻回顧 1.3本文架構 第二章 問題描述 2.1 小波轉換理論 2.2 反覆式學習控制理論 2.3 結合小波轉換之反覆學習控制律 2.4 氣壓伺服系統之動態 2.4.1 氣壓缸數學模式 2.4.2 控制容積之數學模式 2.4.3 比例閥之數學模式 2.4.4 流經孔口的空氣質量流率 2.5可攜式DSP/CPLD系統 2.6 結語 第三章 實驗系統架構 3.1實驗系統架構 3.2實驗設備介紹 3.2.1工業控制器LinCon8K 3.2.2數位訊號處理器(DSP) 3.2.3複雜型可規劃邏輯閘 (CPLD) 3.2.4 類比/數位與數位/類比轉換器 (ADC, DAC) 3.2.5 雙動單桿氣壓缸 3.2.6 五口三位伺服流量閥 3.2.7髋關節支架機構與致動系統 3.3 開發環境介紹 3.3.1 LinCon-8000 SDK 3.3.2 Visual DSP++ 4.0 3.3.3 Max+plus 2 第四章 實驗結果與討論 4.1 數位訊號處理開發板之實現 4.1.1 EV Board 電路圖設計 4.1.2 EV Board偵錯流程 4.1.3 EV Board之實現與各元件功能 4.2 模擬結果 4.2.1 反覆學習控制與基於小波之反覆學習控制 4.2.2 結論 4.3 實驗結果 4.3.1基於小波之反覆學習控制 4.4 實驗結果討論 第五章 本文貢獻與未來研究發展之建議 5.1 本文貢獻 5.2 未來研究發展之建議 參考文獻 附錄一 數位訊號處理開發板電路圖 附錄二 ALTERA EPF10K10TC144-4腳位圖

    [1] P. Moore and J. S. Pu, ”Pneumatic servo actuator technology,” Actuator Technology: Current Practice and New Developments. IEE Colloquium, pp. 1-6, 1996.
    [2] P. Righettini and H. Giberti, ” A nonlinear controller for trajectory tracking of pneumatic cylinders,” Advanced Motion Control 7th International Workshop, pp. 396–401, 2002.
    [3] A. K. Paul, J. E. Mishra and M. G. Radke, ” Reduced order sliding mode control for pneumatic actuator,” Control Systems Technology, IEEE Transactions, vol. 2, pp. 271–276, 1994.
    [4] T. Noritsugu, and M. Takaiwa, ”Robust positioning control of pneumatic servo system with pressure control loop,” IEEE Conf. Robotics and Automation Proceeding, vol. 3, pp. 2613–2618, 1995.
    [5] M. C. Shih, and C. S. Lu, ”Pneumatic servomotor drives a ball-screw with fuzzy-sliding mode position control,” Systems Engineering in the Service of Humans, Conference Proceedings. International Conference, vol. 3, pp. 50-54, 1993.
    [6] D. C. Gross and Rattan, K.S. ”A feedforward MNN controller for pneumatic cylinder trajectory tracking control,” Neural Networks, International Conference, vol. 2, pp. 794–799, 1997
    [7] S. Aziz, and G. M. Bone, ”Automatic tuning of an accurate position controller for pneumatic actuators,” Intelligent Robots and Systems, Proceedings. IEEE/RSJ International Conference, vol. 3, pp. 1782– 1788, 1998.
    [8] G. S. Choi, H. K. Lee and G. H. Choi, ”A study on tracking position control of pneumatic actuators using neural network,” Industrial Electronics Society, IECON'98. Proceedings of the 24th Annual Conference of the IEEE, vol. 3, pp. 1749–1753,1998.
    [9] 曾坤祥, 基於小波之反覆學習控制器設計及應用, 國立清華大學動力機械工程學系博士論文, 2005.
    [10] 許君瑋, 反覆學習控制律於撓性傳送機構之應用, 國立清華 大學動力機械工程學系碩士論文, 2005
    [11] 曾達欽, 以小波轉換為基礎之反覆學習控制律設計, 清華大學動力機械工程學系碩士論文, 2004.
    [12] 陳志宇, 光碟機無刷主軸馬達之變轉速控制器設計, 國立清 華大學動力機械工程學系碩士論文, 2006.
    [13] 劉昭恕, 反覆學習之控制器設計, 國立清華大學動力機械工程學系博士論文, 1998.
    [14] Z. Bien and K. M. Huh, “High-order iterative learning control algorithm,” Proc. Inst. Elec. Eng. Control Theory and Applications, vol. 136, no. 3, pt. D, pp. 105-112, 1989.
    [15] S. Arimoto, S. Kawamura and F. Miyazaki, ” Bettering operation of robots by learning,” J. of Robotic Systems, vol. 1, pp. 123-140, 1984.
    [16] T. J. Jang, C. H. Cho and H. S. Ahn, “Iterative learning control in feedback system,” Automatica, vol. 31, no. 2, pp. 243-248, 1995.
    [17] S. Arimoto, T. Naniwa, and H. Suzuki, “Robustness of P-type learning control with a forgetting factor for robotic motions,” Proc. 29th IEEE Conf. Decision and Control, vol. 5, pp. 2640-2645, 1990.
    [18] L. Cai and W. Huang, ”Fourier base learning control and application to position table,” Robotics and Autonomous System, vol. 32, pp. 89-100, 2000.
    [19] J. X. Xu, R. Yan and Z. H. Guan, “Direct learning control design for a class of linear time-varying switched systems,” IEEE Transactions on Circuits and Systems, vol. 50, no. 8, pp. 1116 -1120, 2003.
    [20] 張孝陽, 三軸伺服氣壓運動控制之研究, 國立成功大學機械工程研究所碩士論文, 2004.
    [21] ICPDAS LinCon-8000 SDK Software Guide, Version 3.0, ICPDAS Inc., 1997.
    [22] ADSP-21161 SHARC DSP Hardware Reference, 3rd edition. Norwood, MA: Analog Devices, Inc., 2002.
    [23] ADSP-21161N EZ-KIT LITE Evaluation System Manual, 2nd edition. Norwood, MA: Analog Devices, Inc., 2003.
    [24] 黃建興, DSP/CPLD 數位電路發展系統的設計與製作, 中原大學電機工程學系碩士論文, 2002.
    [25] I. Daubechies, “Wavelet: a tool for time-frequency analysis,” Multidimensional Signal Processing Workshop, Sixth, IEEE Int. Conf., pp. 98, 1989.
    [26] T. B. Littler and D. J. Morrow, “Wavelet for the analysis and compression of power system disturbances,’’ IEEE Trans. Power Delivery, vol. 14, no 2, pp. 358-364, 1999.
    [27] E. Richer and Y. Hurmuzlu, “A high performance pneumatic force actuator system: part I - nonlinear mathematical model,” ASME Journal of Dynamic systems, Measurement and Control, vol. 122, no. 3, pp. 416-425, 2000.
    [28] M. Karpenko and N. Sepehri, “Design and experimental evaluation of a nonlinear position controller for a pneumatic actuator with friction,” Proceeding of the 2004 American Control Conference Boston, Massachusetts, pp. 5078-5083, July 2004.
    [29] 鄭信源, VHDL數位電路設計基礎篇, 儒林, 2003.
    [30] 黃文吉, VHDL基本程式寫作及應用, 儒林, 2002.
    [31] 張義和, Altium Designer完全電路設計電路圖篇, □峰, 2006.
    [32] Engineer To Engineer Note EE-138 Recommended Handling of Unused Pins, MA: Analog Devices, Inc.
    [33] Engineer To Engineer Note EE-305 Designing and Debugging Systems with SHARC Processors, MA: Analog Devices, Inc.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE