簡易檢索 / 詳目顯示

研究生: 謝靜雯
Jing Wen Hsieh
論文名稱: 高功率與寬頻磁旋行波放大器之優化
Optimization of the High-Power and Broad-Bandwidth Gyrotron Traveling Wave Amplifier
指導教授: 朱國瑞
Kwo Ray Chu
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 76
中文關鍵詞: 飽和寬頻飽和功率飽和增益飽和效率絕對不穩定
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要:
    本文為瞭解磁旋行波放大器的寬頻與高功率特性之後,並知道在磁旋行波放大器中會有絕對不穩定的產生。因為絕對不穩定會原地長起來,而影響放大器上游的入射波的波源,所以本文計算的方法為先去算可能存在的絕對不穩定對操作電壓與外加磁場的起振電流,指出在不同操作電壓與外加磁場下的穩定操作區(即為絕對不穩定之起振電流不起振的電壓與磁場操作範圍)。之後在穩定操作區去計算磁旋行波放大器的飽和功率、飽和增益、飽和3dB頻寬與飽和效率,計算磁旋行波放大器的飽和功率與飽和3dB頻寬可以藉著改變磁場與電壓提升到多高。計算結果顯示,操作電壓在90kV附近可以達到飽和高功率的放大器,但是此時的飽和3dB頻寬卻很窄。另外亦算出在操作電壓低一點的範圍,雖然飽和3dB頻寬會比較寬,但是飽和功率卻很低。最後計算磁旋行波放大器再加上調變磁場,同樣調變磁場的範圍也必須是可以抑制絕對不穩定的。最後計算出的結果顯示,當操作電壓在100kV磁場在1.012Bzg01時,可以得到一個高功率的磁旋行波放大器,飽和功率為168.2kW,飽和效率33.6%、飽和增益57.7dB、飽和3dB頻寬2.2GHz(2.4%)。另外當操作電壓在50kV磁場在0.996Bzg01時,可以得到一個寬頻的磁旋行波放大器,飽和功率為70.0kW,飽和效率28.0%、飽和增益69.9dB、飽和3dB頻寬7.2GHz(7.9%)。所以如果需求的為一個寬頻的放大器,但是對功率的要求不一定要很高,可以把操作電壓降低,然後再去適當選擇一的外加磁場即可得到3dB頻寬很寬的磁旋行波放大器。


    目錄 第一章 緒論 1.1 磁旋管的簡介……………………………………………………1 1.2 ECM原理…………………………………………………………1 1.3 本文動機…………………………………………………………3 1.4 論文概觀…………………………………………………………4 第二章 放大器之非線性理論計算公式 2.1 場方程式…………………………………………………………5 2.2 電子動力學………………………………………………………8 2.3 初始電子分佈……………………………………………………10 2.4 邊界條件…………………………………………………………12 2.5 轉為慢速座標……………………………………………………13 2.6 理論計算流程……………………………………………………17 第三章 震盪器之線性理論計算公式 3.1 場方程式…………………………………………………………18 3.2 電動方程式………………………………………………………19 3.3 電路方程式………………………………………………………20 3.4 物理量表示………………………………………………………21 3.5 計算流程…………………………………………………………22 第四章 磁旋形波放大器之特性 4.1 絕對不穩定………………………………………………………25 4.2 基本結構參數……………………………………………………28 第五章 理論模擬計算結果 5.1 絕對不穩定之起震電流與操作電壓的關係……………………29 5.2 磁旋行波放大器對不同操作電壓的結果………………………33 5.3 絕對不穩定之起震電流與外加磁場的關係……………………40 5.4 磁旋行波放大器對不同外加磁場的結果………………………49 第六章 結論…………………………………………………………66 第七章 參考資料……………………………………………………67 第八章 附錄…………………………………………………………70

    [1] K. R. Chu, Fellow, IEEE, “Overview of Research on the gyrotron traveling-wave amplifier”IEEE Transactions on plasma, Vol. 30, NO. 3, June 2002.
    [2] K. R. Chu, “The electron cyclotron master” Review of Modern Physics, Vol. 76, April 2004.
    [3] K. R. Chu, “Analysis of A Basic Electron Cyclotron Maser Model” Journal of the Chinese Institute of Engineers,, Vol. 4, No. 2, pp. 85-90 (1981)
    [4] Khanh T. Nguyen, P. Calame, Dean E. Pershing, Bruce G. Danly, Morag Garven, Baruch Levush, Senior Member, IEEE, and THOMAS M. Antonsen, Jr., Member, IEEE “Design of a Ka-Band Gyro-TWT for radar applications” IEEE Transactions on electron devices, Vol. 48, NO. 1, January 2001.
    [5] K.R. Chu, H.Y. Chen, C.L. Hung, T.H. Chang, L.R. Barnett, S.H. Chen, T.T. Yang, and D.J. Dialetis, “Theory and Experiment of Ultra High Gain Gyrotron Traveling Wave Amplifier”, IEEE Trans. On Plasma Science, Vol. 27, NO. 2, pp.391-403, 1999.
    [6] W. C. Tsai, T. H. Chang, N. C. Chen, and K. R. Chu “ Absolute instabilities in a high-order-mode gyrotron traveling-wave amplifier” Physical review E 70, 056402 2004.
    [7] C. S. Kou and Fouries Tseng “ Linear theory of gyrotron traveling wave tube with nonuniform and lossy interaciotn structures” Physics of plasmas, Vol. 5, No 6 June 1998.
    [8] Vlasov equation
    [9] K. R. Chu, SENIOR MEMBER, IEEE , AND ANTHONY T. LIN “ Gain and bandwidth of the Gyro-TWT and carm amplifiers” IEEE Trans. On Plasma Science, Vol. 16, No. 2, April 1988
    [10] R. J. Briggs, “Electron-Stream Interaction with Plasmas” Chapter 2
    [11] R. E. Collin, Foundation for Microwave Engineering, 2nd ed. ( McGraw-Hill, New York, 1992), p.197
    [12] John David Jackson, Classical Electrodynamics, third edition, p315
    [13] 朱國瑞微波物理講義(二)
    [14] S. H. Chen, T. H. Chang, K. F. Pao, C. T. Fan, and K. R. Chu “ Linear and Time-Dependent Behavior of the gyrotron Backward-Wave Oscillator” Physical Review Letters, Vol. 89, No. 26, December 23 2002.
    [15] Y. Y. Lau,* K. R. Chu, L. Barnett,** and V. L. Granatstein ” Gyrotron Traveling Wave Amplifier: ⅡEffects of Velocity Spread And Wall Resistivity” International Journal of Infrared and Millimeter Waves, Vol.2, No.3,1981
    [16] J. L. Seftor, V. L. Granatstein, K. R. Chu, P. Sprangle, and M. E. Read,“The electron cyclotron cyclotron maser as a high power traveling-wave amplifier of millimeter waves,” IEEE J. Quantum Electron., vol. QE-15,pp. 848–853, 1979.
    [17] L. R. Barnett, K. R. Chu, J. M. Baird,V. L. Granatstein, and A. T. Drobot,“Gain, saturation, and bandwidth measurements of the NRL gyrotron traveling wave amplifier,” in IEDM Tech. Dig., 1979, pp. 164–167.
    [18] L. R. Barnett, J. M. Baird, Y. Y. Lau, K. R. Chu, and V. L. Granatstein,“A high gain single stage gyrotron traveling wave amplifier,” in IEDM Tech. Dig., 1980, pp. 314–317.
    [19] L. R. Barnett, Y. Y. Lau, K. R. Chu, and V. L. Granatstein, “An experimental wideband gyrotron traveling-wave amplifier,” IEEE Trans. Electron Devices, vol. ED-28, pp. 872–875, 1981.
    [20] L. R. Barnett, L. H. Chang, H. Y. Chen, K. R. Chu, Y. K. Lau, and
    C. C. Tu, “Absolute instability competition and suppression in a millimeter-wave gyrotron traveling-wave tube,” Phys. Rev. Lett., vol. 63,
    pp. 1062–1065, 1989.
    [21] K. R. Chu, L. R. Barnett, W. K. Lau, L. H. Chang, and H. Y. Chen,
    “A wide-band millimeter-wave gyrotron traveling-wave amplifier experiment,”IEEE Trans. Electron Devices, vol. 37, pp. 1557–1560, June
    1990.
    [22] K. R. Chu, L. R. Barnett, W. K. Lau, L. H. Chang, and C. S. Kou, “Recent development in millimeter wave gyro-TWT research at NTHU,” in IEDM Tech. Dig., 1990, pp. 699–702.
    [23] K. R. Chu, L. R. Barnett, H. Y. Chen, S. H. Chen, Ch. Wang, Y. S. Yeh,Y. C. Tsai, T. T. Yang, and T. Y. Dawn, “Stabilizing of absolute instabilities in gyrotron traveling-wave amplifier,” Phys. Rev. Lett., vol. 74, pp.1103–1106, 1995.
    [24] K. R. Chu, H. Y. Chen, C. L. Hung, T. H. Chang, L. R. Barnett, S. H.Chen, and T. T. Yang, “Ultra high gain gyrotron traveling wave amplifier,”Phys. Rev. Lett., vol. 81, pp. 4760–4763, 1998.
    [25] K. R. Chu, H. Y. Chen, C. L. Hung, T. H. Chang, L. R. Barnett, S. H.Chen, T. T. Yang, and D. Dialetis, “Theory and experiment of ultrahigh gain gyrotron traveling-wave amplifier,” IEEE Trans. Plasma. Sci., vol.27, pp. 391–404, Apr. 1999.
    [26] G. S. Park, S. Y. Park, R. H. Kyser, A. K. Ganguly, and C. M.
    Armstrong, “Gain broadening in an inhomogeneous gyrotron traveling
    wave amplifier,” in Technical Digest of International Electron Device
    Meeting. New York: IEEE, 1991, pp. 779–781.
    [27] G. S. Park, S.Y. Park, R. H.Kyser, C.M. Armstrong, A. K. Ganguly, and R. K. Parker, “Broadband operation of a Ka-band tapered gyro-traveling wave amplifier,” IEEE Trans. Plasma Sci., vol. 22, pp. 536–543, Oct.1994.
    [28] G. S. Park, J. J. Choi, S. Y. Park, C. M. Armstrong, A. K. Ganguly, R. H. Kyser, and R. K. Parker, “Gain broadening of two-stage tapered gyrotron travelingwave amplifier,” Phys. Rev. Lett., vol. 74, pp. 2399–2402, 1995.
    [29] S. H. Gold, D. A. Kirkpatrick, A. W. Fliflet, R. B. McCowan, A. K.
    Kinkead, D. L. Hardesty, and M. Sucy, “High-voltage millimeter-wave
    gyro-traveling-wave amplifier,” J. Appl. Phys., vol. 69, pp. 6696–6698,
    1991.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE