簡易檢索 / 詳目顯示

研究生: 蔡岳璁
Yueh-Tsung Tsai
論文名稱: 計算量子力學於CO在直接甲醇燃料電池觸媒之毒化研究
Computational Quantum Mechanics on CO Adsorption at the DMFC Catalyst Surface
指導教授: 洪哲文
Che-Wun Hong
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 82
中文關鍵詞: 密度泛函理論燃料電池一氧化碳白金鉑釕合金觸媒
外文關鍵詞: DFT, fuel cell, CO, Pt, PtRu, Catalyst
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文對直接甲醇燃料電池的Pt以及PtRu觸媒的吸附能與幾何結構以GGA(Generalized Gradient Approximation)法的PBE(Perdew Burke Ernzerhof)程式進行計算,得到純Pt表面的頂位吸附能依序為:Pt(100)>Pt(110)>Pt(111);此外建立兩種PtRu比例均等的表面進行相同模擬,證實PtRu抗毒化的原因除了雙功能活性機制之外,Ru進入Pt的晶格後使得CO在合金表面的吸附狀態發生改變,減弱了吸附鍵的強度,使得CO易於被氧化。


    目錄 第一章 緒論 1.1 前言 1.2 直接甲醇然電池簡介 1.2.1 發電原理 1.2.2 電極與觸媒 1.2.3 瓶頸與挑戰 1.3 文獻回顧 第二章 密度泛函理論 2.1 Thomas-Fermi模型 2.2 Hatree-Fock方法 2.3 Hohenberg-Kohn理論 2.3.1 H-K第一定理的證明 2.3.2 H-K第二定理的證明 2.4 Kohn-Sham方法 2.5 自洽場計算 2.6 近似方法 第三章 運算技巧與表面化學 3.1 贗勢 3.2 週期系統與平面波 3.3 物理吸附與化學吸附 3.4 表面電偶層 3.5 功函數 第四章 成果分析與結論 4.1 系統選擇與參數設定 4.2 純Pt切面的吸附能計算 4.3 PtRu切面的吸附能計算 4.4 結論 附錄A 純Pt幾何結構與能量平衡圖 A.1 Pt(100) A.2 Pt(110) A.3 Pt(111) 附錄B PtRu幾何結構與能量平衡圖 B.1 PtRu(100) Type1 B.2 PtRu(110)Type1 B.3 PtRu(111)Type1 B.4 PtRu(100)Type2 B.5 PtRu(110)Type2 B.6 PtRu(111)Type2 參考文獻

    參考文獻
    [1] 黃秋萍、薛康琳、吳富其、高志勇, 2003, “直接甲醇燃
    料電池的核心膜電極組”, 工業技術研究院材料所。

    [2] Leger, J. M., and Lamy, C., 1990, “The direct
    oxidation of methanol at platinum based catalytic
    electrodes:what is new since ten years ago?”,
    Berichte der Bunsengesellschaft fur Physikalische
    Chemie, Vol. 94, No. 9, pp. 1021-1025.

    [3] 盧敏彥、黃俊傑、張美元、廖怡萱, 2003, “微型燃料電
    池用觸媒及載體”, 工業技術研究院化工所。

    [4] Ohwaki, T., and Yamashita, K., 2001, “A DFT study
    of electric field effects on proton transfer reactions
    at H+(H2O)2/Pt(111) and Ag(111)”, Journal of
    Electroanalytical Chemistry, Vol. 504, No. 1,
    pp. 71-77.

    [5] Alcalá, R., Mavrikakis, M., and Dumesic, J. A., 2003,
    “DFT studies for cleavage of C–C and C–O bonds in
    surface species derived from ethanol on Pt(111)”,
    Journal of Catalysis, Vol. 218, No. 1, pp. 178-190.

    [6] Kandoi, S., Gokhale, A. A., Grabow, L. C., Dumesic,
    J. A., and Mavrikakis, M., 2004, “Why Au and Cu are
    more selective than Pt for preferential oxidation of
    CO at low temperature”, Catalysis Letters, Vol. 93,
    No.1–2, pp. 93-100.

    [7] Gokhale, A. A., Kandoi, S., Greeley, J. P.,
    Mavrikakis, M., and Dumesic J. A., 2004,
    “Molecular-level descriptions of surface chemistry
    in kinetic models using density functional theory”,
    Chemical Engineering Science, Vol. 59, No. 22-23,
    pp. 4679-4691.

    [8] Tsuda, M., Dino, W. A., and Kasai, H., 2005,
    “Behavior of hydrogen atom at Nafion–Pt interface”,
    Solid State Communications, Vol. 134, No. 9,
    pp. 601-605.

    [9] March, N. H., and Lundqvist, S., 1983, Theory of the
    Inhomo- geneous Electron Gas, Plenum Press, pp. 3-8,
    Chap 1.

    [10] 江進福, 2005, “Density Functional Theory-Background
    introduc- tion”, 交通大學物理所授課講義。

    [11] 江進福, 2001, “波函數與密度泛函”, 物理雙月刊23卷第
    5期, pp.549-553.

    [12] Thijssen, J. M., 1999, Computational Physics,
    Cambridge, p. 46, Chap. 4.

    [13] 齊三慧, 2001, 電子密度泛函理論研究雜環奎喏林及其前驅
    物之基態結構、能量與激發態垂直位置, 清華大學化學系碩
    士論文, p. 17, Chap. 2.

    [14] Slater, J. C., 1951, “A Simplification of the
    Hartree-Fock Methed”, Physical Review, Vol. 81,
    No. 3, pp. 385-390.

    [15] 李明憲, 2005, CASTEP / Materials Studio計算化學進階訓
    練課程, http://boson2.phys.tku.edu.tw/web_NCHC_v3/

    [16] Tuckerman, M., Laasonen, K., and Sprik, M., 1995,
    “Ab initio molecular dynamics simulation of the
    salvation and transport of hydronium and hydroxyl
    ions in water”, Journal of Chemical Physics, Vol.
    103, No. 1, pp. 150-161.

    [17] Manby, F., 2005, “Advanced Electronic Structure
    Theory”
    http://www.chm.bris.ac.uk/pt/manby/teaching.html

    [18] Car, R., and Parrinello, M., 1985, “Unified Approach
    for Molecular Dynamics and Density-Functional
    Theory”, Physical Review Letters, Vol. 55, No. 22-25,
    pp. 2471-2474.

    [19] Vanderbilt, D., 1990, “Soft self-consistent
    pseudopotentials in a generalized eigenvalue
    formalism”, Physical Review B, Vol. 41, No. 11-15,
    pp. 7892-7895.

    [20] Kittel, C., 1996, Introduction to Solid State Physics
    7th ed., John Wiley & Sons, pp. 179-185, Chap. 7.

    [21] Monkhorst, M. J., and Pack, J. D., 1976, “Special
    point for Brillouin-zone integrations”, Physical
    Review B, Vol. 13, No. 12-15, pp. 5188-5192.

    [22] Pack, J. D., and Monkhorst, M. J., 1977, “Special
    point for Brillouin-zone integrations—a reply”,
    Physical Review B, Vol. 16, No. 4-15, pp. 1748-1749.

    [23] Kittel, C., 1996, Introduction to Solid State Physics
    7th ed., John Wiley & Sons, pp. 35-38, Chap. 2.

    [24] McCash, E. M., 2001, Surface Chemistry, Oxford
    University Press, pp. 53-59, Chap. 3.

    [25] McCash, E. M., 2001, Surface Chemistry, Oxford
    University Press, pp. 16-18, Chap. 2.

    [26] 周文祺, 2003, 碳氟化物在Ag(111)表面與其在Si(100)表面
    吸附反應, 淡江大學化學系碩士論文, pp. 21-37, Chap. 2.

    [27] Yeo, Y. Y., Vattuone, L., and King, D. A., 1996,
    “Energetics and kinetics of CO and NO adsorption on
    Pt{100}:Restructuring and lateral interactions ”,
    Journal of Chemical Physics, Vol. 104, pp. 3810-3821.

    [28] Ogletree, D. F., van Hove, M. A., and Somorijai, G.
    A., 1986, “LEED intensity analysis of the structures
    of clean Pt(111) and of CO adsorbed on Pt(111) in the
    c(4×2) arrangement”, Surface Science, Vol. 173,
    pp. 351-365.

    [29] Yeo, Y. Y., Vattuone, L., and King, D. A., 1997,
    “Calorimetric heats for CO and oxygen adsorption and
    for the catalytic CO oxidation reaction on Pt{111} ”,
    Journal of Chemical Physics, Vol. 106, pp. 392-410.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE