研究生: |
邱韋壬 Ciou, Wei-Ren |
---|---|
論文名稱: |
先進60GHz前端相位陣列發射模組之散熱效能評估與設計 Thermal Performance and Design of Advanced 60GHz Frontend Phased Array Transmitter Module |
指導教授: |
陳文華
Chen, Wen-Hwa 鄭仙志 Cheng, Hsien-Chie |
口試委員: |
林見昌
劉德麒 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 87 |
中文關鍵詞: | 穩態熱傳分析 、熱傳有限單元分析 、計算流體力學分析 、田口氏設計實驗 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
科技日新月異,傳統的無線傳輸技術如藍芽、紅外線無線傳輸技術、Wi-Fi及Wi-Max…等,已無法滿足消費者的需求,60GHz無線傳輸模組因應而生。60GHz無線傳輸模組最大的優點為短距離高傳輸率,可從傳統的每秒MB傳輸量提升到GB等級,因此被視為可能成為下一世代無線傳輸技術之主流。唯此模組具有功率高及體積微小等特性,因功率密度大幅提高而會產生較高晶片接面溫度,致影響其電性效能及模組可靠度。
本論文首先以數值模擬與實驗,針對一先進60GHz前端相位陣列發射模組,探討其於自然對流下之穩態散熱效能。數值模擬係採用ANSYSTM有限單元分析套裝軟體與SolidWorks Flow SimulationTM計算流體力學分析套裝軟體,二者分析結果除相互比對佐證外,並藉由JEDEC(Joint Electron Devices Engineering Council)自然對流規範下之紅外線熱像儀及熱電偶量測予以驗證。以此驗證後之熱傳數值分析模型,本論文進一步探討不同熱源分佈、構裝型式、組裝方式及發射模組單元數等對散熱效能的影響。
本論文亦利用散熱板及熱沉等散熱元件進行散熱增益設計,且對元件幾何尺寸及材料性質進行參數化分析,並利用田口氏實驗設計法找出提升散熱效能設計因子之最佳組合。
The development of modern technology goes fast. Traditional wireless technology, including Bluetooth, Infrared Data Association (IrDA), Wi-Fi and Wi-Max, cannot meet the needs of consumers. Therefore, 60 GHz wireless transmission module is invented to fulfill the consumers’ demand. The advantages of 60 GHz wireless transmission module are its short transmission distance and high transmission data rate, and the transmission data rate can be increased from megabits per second to gigabits per second. The 60 GHz wireless transmission module is regarded as likely to become the mainstream of the next generation of wireless transmission technology. However, the module has the characteristics of small volume and high power, and potentially leads to high power density and high chip junction temperature. High chip junction temperature would affect the electrical performance and reliability of the module.
This work firstly investigates the steady-state thermal performance of an advanced 60GHz frontend phased array transmitter module under natural convection through numerical simulation and experiment. Numerical simulation is performed by the finite element analysis package ANSYSTM and the computational fluid dynamics analysis program SolidWorks Flow SimulationTM. The results are demonstrated with each other, and also with the IR thermography measurement data under the natural convection based on JEDEC specifications and thermal couple measurement. By the validated heat transfer numerical model, this work further evaluates the influences of various distributions of heat sources, different type of package, different type of assembly and different number of antenna elements on the thermal performance.
This work also uses the thermal dissipation components such as heat spreader and heat sink to enhance the thermal performance. The crucial parameters including geometry and material properties are identified through parametric study, and further applied to the subsequent experimental design using a Taguchi method to propose the optimal parametric setting for maximal thermal performance.
[1] Atila M. (1995) : Application of The Taguchi Method on The Robust Design of Molded 225 Plastic Ball Grid Array Packages, IEEE Transactions on Components, Packaging and Manufacturing Technology-Part B, vol. 18, no. 4, pp.734-743.
[2] Atila M. (2000) : Application of The Taguchi Method to Chip Scale Package (CSP) Design, IEEE Transactions on Advanced Packaging, vol. 23, no. 2, pp. 266-276.
[3] Bar-Cohen A., Kraus A. D. and Davidson S. F. (1983) : Thermal Frontiers in the Design and Packaging of Microelectronic Equipment, Mechanical Engineering, no. 6, pp. 53-59.
[4] Cheng H. C., Chen W. H. and Cheng H. F. (2008) : Theoretical and Experimental Characterization of Heat Dissipation in a Board-Level Microelectronic Component, Applied Thermal Engineering, vol. 28, no. 5-6, pp. 575-588.
[5] Chen W. H., Cheng H. C. and Chung I. C. (2002) : A Response Surface for Effective Thermal Characterization of Multichip-Module Package, 2002 IMAPS Taiwan Technical Symposium, May 2.
[6] Chen W. H., Cheng H. C. and Shen H. A. (2003) : An Effective Methodology for Thermal Characterization of Electronic Packaging, IEEE Transactions on Components and Packaging Technologies, vol. 26, no. 1, pp. 222-232.
[7] Chen W. H., Cheng H. C. and Lin C. H. (2004a) : On the Thermal Performance Characteristics of Three Dimensional Multichip Modules, ASME Transactions, Journal of Electronic Packaging, vol. 126, pp. 374-383.
[8] Chen W. H., Cheng H. C. and Chung I. L. (2004b) : Integration of Simulation and Response Surface Method for Thermal Design of Multichip Modules, IEEE Transactions on Components and Packaging Technologies, vol. 27, no. 2, pp. 359-372.
[9] COMSOL Multiphysics™ (1998) Software and Manuals, [Online]. Available: http://www.comsol.com.
[10] Ding J. and Linton D. (2006) : 3D Modeling and Simulation of The Electro-Magnetic and Thermal Properties of Microwave and Millimeter Wave Electronics Packages, Proceedings of the COMSOL Users Conference.
[11] EIA/JEDEC Standard (1995) : Integrated Circuits Thermal Test Method Environment Conditions-Natural Convection (Still Air), EIA/JESD51-2.
[12] Ellison G. N. (1989) : Thermal Computations for Electronic Equipment, R. E. Krieger Publishing Company, Malabar, Florida.
[13] Floyd B., Reynolds S., Pfeifer U., Beukema T., Grzyb J. and Haymes C. (2006) : A Silicon 60GHz Receiver and Transmitter Chipset for Broadband Communications, IEEE Journal of Solid-State Circuits, vol. 41, no.12, pp. 2820-2831.
[14] Gunnarsson S. E., Karnfelt C., Zirath H., Kozhuharov R., Kuylenstierna D., Fager C. and Alping A. (2006) : Single-Chip 60 GHz Transmitter and Receiver MMICs in a GaAs mHEMT Technology, International Microwave Symposium Digest, pp. 801-804.
[15] Holman P. (1994) : Experimental Method for Engineers, McGraw-Hill, Inc., 6th Edition.
[16] Huang P., Huang J. H. and Lin J. (2010) : An Instruction to High Thermal Conductive Materials, Microsystems Packaging Assembly and Circuits Technology Conference (IMPACT), pp.1-4.
[17] Haiying L., Jacob K. and Wong C. P. (2002) : Improvement of Thermal Conductivity of Underfill Materials for Electronic Packaging, Electronic Components and Technology Conference, pp.1548-1552.
[18] Kim K., Choi K., Kim S., Seol G., Seo K. and Kwon Y. (2006) : A 77 GHz Transceiver for Automotive Radar System Using a 120nm In0.4AlAs/In0.35GaAs Metamorphic HEMTs, IEEE Compound Semiconductor Integrated Circuit Symposium, pp. 201-204.
[19] Lage J. L., Weinert A. K., Price D. C. and Weber R. M. (1996) : Numerical Study of A Low Permeability Microporous Heat Sink for Cooling Phased Array Radar Systems, International Journal Heat Mass Transfer, vol. 39, no. 17, pp. 3633-3647.
[20] Lohan J., Tiilikka, P., Rodgers, P., Fager, C. M. and Rantala, J. (2000) : Experimental Validation of Numerical Heat Transfer Predictions for Single- and Multi-Component Printed Circuit Boards in Natural Convection Environment, Fifteen IEEE SEMI-THERM Symposium, pp. 54-64.
[21] Military Standarization Handbook, MIL-HDBK-217C (1979) : Reliability Prediction of Electronic Equipment, USF, DOD, April.
[22] Matsumoto K., Ibaraki S., Sakuma K. and Yamada F. (2009) : Thermal Resistance Measurements of Interconnections for A Three-dimensional (3D) Chip Stack, 3D System Integration, 3DIC IEEE International Conference on, pp. 1-5.
[23] Matsumoto K. and Taira Y. (2009) : Thermal Resistance Measurements of Interconnections, for the Investigation of the Thermal Resistance of a Three-dimensional (3D) Chip Stack, ISCE, IEEE 13th International Symposium on, pp. 321-328.
[24] Nishikawa K., Piernas B., Nakagawa T., Araki K. and Cho K. (2003) : Vband Fully Integrated TX/RX Single-Chip 3-D MMICs Using Commercial GaAs pHEMT Technology for High Speed Wireless Application, 2003 IEEE GaAs Digest, pp. 97-100.
[25] Price D. C. (2003) : A Review of Selected Thermal Management Solutions for Military Electronic Systems, IEEE Transactions on Components And Packaging Technologies, vol. 26, no. 1, pp. 26-39.
[26] Ridsdale G., Joiner B., Bigler J. and Torres V. M. (1996) : Thermal Simulation to Analyze Design Features of Plastic Quad Flat Packages, Journal of Microcircuits and Electronic Packaging, vol. 19, no. 2, pp. 103-109.
[27] SolidWorks Flow Simulation™ (1993) Software and Manuals, [Online]. http://www.solidworks.com.
[28] Short B. E., Jr. and Kershner D. E. (1999) : Thermal Design Challenges on Phased Array Telecommunications Antennas, Proceeding ASME IMECE Panel HT-6C Heat Transfer Issues Telecommun. Syst.
[29] Taguchi G. (1991) : Taguchi Methods-Signal-to-Noise Ratio for Quality Evaluation, Quality Engineering Series, ASI Press, USA, 1991, Vol. 3.
[30] Taguchi G. (1992) : Taguchi Methods-Research and Development, Quality Engineering Series, ASI Press, USA, 1992, Vol. 1.
[31] Wang C. H., Chang H. Y., Wu P. S., Lin K. Y., Huang T. W., Wang H. and Chen C. H. (2007) : A 60 GHz Low-Power Six-Port Transceiver for Gigabit Software-Defined Transceiver Application, IEEE International Solid-State Circuits Conference (ISSCC), pp. 192-193.
[32] Yasuhara R., Tokita S., Kawanaka J., Kawashima T., Kan H., Yagi H., Nozawa H., Yanagitani T., Fujimoto Y., Yoshida H. and Nakatsuka M. (2008) : Development of Cryogenic TGG Ceramic Based Faraday Rotator for Inertial Fusion Driver, Journal of Physics: Conference Series, Vol. 112, pp. 1-4.
[33] Zahn B. A. (1999) : Optimizing Cost and Thermal Performance: Rapid Prototyping of a High Pin Count Cavity-Up Enhanced Plastic Ball Grid Array (EPBGA) Package, Proceedings of the 15th Annual IEEE Semiconductor Thermal Measurement and Management Symposium, pp.133-141.
[34] Zhan C. J., Chuang C. C., Juang J. Y., Lu S. T. and Chang T. C. (2010) : Assembly and Reliability Characterization of 3D Chip Stacking with 30μm Pitch Lead-free Solder Micro Bump Interconnection, Electronic Components and Technology Conference (ECTC), pp. 1043-1050.
[35] 江宗翰, (2011) : 三維晶片堆疊構裝熱傳分析與設計. 碩士論文-逢甲大學航太與系統工程學系.
[36] 李輝煌, (2000) : 田口方法-品質設計的原理與實務, 高立圖書有限公司.