研究生: |
張文騰 W.T. Chang |
---|---|
論文名稱: |
利用分子束磊晶成長砷化銦-砷化鎵量子點之研究 The Growth of the InAs/GaAs Quantum Dots in Molecular Beam Epitaxy |
指導教授: |
吳孟奇
M.C. Wu |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 光電工程研究所 Institute of Photonics Technologies |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 英文 |
論文頁數: | 52 |
中文關鍵詞: | 量子點 、退火 、覆蓋層 、低密度 |
外文關鍵詞: | post growth, annealing, quantum dot, QD, coverage, low density |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本論文中,我們利用分子束磊晶技術在(100)指向的砷化鎵晶片成長了砷化銦量子點結構。探討了不同厚度覆蓋層對量子點表面特性與光激發特性的影響。我們發現隨著覆蓋層厚度增加,量子點的大小亦隨著增大 ; 反之量子點的密度與光激發強度則隨覆蓋層厚度增加而降低。 我們推測上述現象與相鄰量子點的重疊以及高張力產生的缺陷有關。 然以傳統Stranski-Krastanow方式成長量子點的過程中,砷化銦覆蓋層的厚度存在一個臨界值 (1.7 ML)。 覆蓋層厚度需大於該臨界值方得有量子點產生。我們嘗試了成長後退火的方式,成功的在覆蓋層厚度低於臨界厚度的狀況下 (1.5 ML) 製造出了量子點。我們更嘗試了不同的成長後退火條件,發現了退火時間所造成的影響不及退火溫度顯著。 在一定的退火時間內,量子點的大小與退火時間成正相關,量子點密度與退火時間成負相關。然而退火超過一定的時間之後,量子點密度與大小對應於退火時間的增加改變並不顯著。而在相同的退火時間內,退火溫度越高,量子點密度越低。尤以上兩個特性我們可推測砷化銦覆蓋層中銦原子的migration length在相同的退火溫度下為定值,不隨時間增加而改變。 又當退火溫度過高時,容易於砷化銦與砷化鎵的介面形成一些表面缺陷產生預期外的激發光峰值。經由實驗我們得知對低密度量子點而言,適當的退火溫度約為500℃左右,退火時間以60秒為佳。
The surface morphology and optical characteristic of InAs QDs with varied coverage were investigated. With the thickest coverage 2.6 ML in our experiment, two-group size distribution of QDs was observed. The coalescence of InAs QDs are responsible for the formation of these large-size InAs QDs. These large QDs existence results in the PL blue shift with increasing pumping power density. And the red shift of ground state transition with increasing coverage can be attributed to the increasing height of QDs.
We have successfully deposited the high quality InAs/GaAs QD samples by the post-growth annealing. The AFM images show the annealing time of 60 seconds at 485 ℃ is proper to grow the QD samples with lower density. Nonetheless, longer annealing time may cause the In adatoms desorption and reduce the integrated PL intensity. Annealing temperature seems to be a more important parameter than annealing time when we attempt to control the QD density and get better quality. Higher temperature about 500 ℃ is helpful to reduce the QD density without producing an unexpected peak in PL spectrum. However, power-dependent and temperature-dependent micro-PL results indicate that the unexpected peak appear in the sample annealed at 515 ℃ should originate from the shallow defects or surface states in the interface between InAs QDs and GaAs barrier layer.
[1] Frank Tinjod and Henri Mariette, phys. stat. sol. (b) 241, No. 3, 550–557 (2004)
[2] I.N. Stranski and L. Krastanow, Sitz. Ber. Akad. Wiss. Math.-naturwiss. K1. Abt. IIb 146 (1938) 797.
[3] W. Seifert , Niclas Carlsson, Jonas Johansson, Mats-Erik Pistol, Lars Samuelson, J. Crystal Growth 170 (1997) 39-46
[4] V.A. Shchukin, N.N. Ledentsov, P.S. Kop'ev and D. Bimberg, Phys. Rev. Lett. 75 (1995) 2968.
[5] Yih-Yin Lin and Jasprit Singh. J. Appl. Phys. 92, 6205 (2002)
[6] J. M. Moison, F. Houzay, F. Barthe, L. Leprince, E. Andr□, and O. Vatel, Appl. Phys. Lett. 64, 196 (1994).
[7] K. Oshiro, K. Akai, and M. Matsuura, Phys. Rev. B 59, 10850 (1999).
[8] Vincenzo Vinciguerra, Giorgia Franz□, Francesco Priolo, Fabio Iacona, and Corrado Spinella, J. Appl. Phys. 87, 8165 (2000).
[9] M. H. Baier, E. Pelucchi, E. Kapon, S. Varoutsis, M. Gallart, I. Robert-Philip, and I. Abram, Appl. Phys. Lett. 84, 648 (2004).
[10] Valery Zwiller, Hans Blom, Per Jonsson, and Nikolay Panev Appl. Phys. Lett. 78, 2476 (2001).
[11] Axel Kuhn, Markus Hennrich, and Gerhard Rempe, Phys. Rev. Lett. 89, 067901 (2002).
[12] E. Moreau et al., Appl. Phys. Lett. 79, 2865 (2001).
[13] Jeong-Rae Ro, Sung-Bock Kim, and Kyoungwan Park, J. Vac. Sci. Technol. B 18, 1507 (2000).
[14] H.H. Zhan, R. Notzel, G. J. Hamhuis, T. J. Eijkemans, and J. H. Wolter, J. Appl.Phys. 93, pp. 5953 (2003).
[15] G. S. Solomon, J. A. Trezza, and J. S. Harris, Appl. Phys. Lett. 66, 991 (1995).
[16] R. Leon, Yong Kim, and C. Jagadish, Appl.Phys. Lett. 69, 1888 (1996).
[17] Jun-Tatebayashi, Yasuhiko Arakawa, Nobuaki Hatori, and Hiroji Ebe, Appl. Phys. Lett. 85, 1024 (2004).
[18] J. Tatebayashi , Masao Nishioka, Takao Someya, and Yasuhiko Arakawa, Appl.Phys. Lett. 77, 3382 (2000).
[19]Werner Seifert, Niclas Carlsson, Jonas Johansson, Mats-Erik Pistol, Lars Samuelson, J. Crystal Growth 170, 39 (1997).
[20] S. J. Xu, X. C. Wang, and S. J. Chua, Appl. Phys. Lett. 72, 3335 (1998).
[21] Y. P. Varshni, Physica 34, 149 (1967).
[22] U. H. Lee, D. Lee, H. G. Lee, S. K. Noh, J. Y. Leem, and H. J. Lee, Appl.Phys. Lett. 74, 1597 (1999).
[23] A. Polimeni, A. Patane, M. Henini, L. Eaves, and P. C. Main, Phys. Rev. B 59, 5064 (1999).
[24] D. Bimberg, M. Grundmann, N.N. Ledentsov, Quantum Dot Heterostructures, Wiley, Chichester, New York, 1999.
[25] M. Grundmann, Physica E (Amsterdam) 5 (2000) 167.
[26] Y. Masumoto, T. Takagahara (Eds.), Semiconductor Quantum Dots, Springer, Berlin, Heidelberg, 2002.
[27] M. Kondow, K. Uomi, A. NiWa, T. Kitatani, S., Watahiki, Y. Yazawa, Jpn. J. Appl. Phys. 35, 1273 (1996).
[28] M. Reinhardt, M. Fischer, M. Kamp, J. Hofmann, and A. Forchel, IEEE Photon. Technol. Lett. 12, 239 (2000).
[29] A. W. Jackson, R. L. Naone, M. J. Dalberth, J. M. Smith, K. J. Malone, D. W. Kisker, J. F. Klem, K. D. Choquette, D. K. Serkland, and K. M. Geib, Electron. Lett. 37, 355 (2001).
[30] Shih-Yen Lin, Yau-Ren Tsai and Si-Chen Lee, Appl. Phys. Lett. 78, 2784 (2001).
[31] Shih-Yen Lin, Yau-Ren Tsai and Si-Chen Lee, Jpn. J. of Appl. Phys. 40, L1290-L1292 (2001).
[32] Shiang-Feng Tang, Shih-Yen Lin and Si-Chen Lee, Appl. Phys. Lett. 78, 2428 (2001).
[33] Bingyang Zhang, Glenn S. Solomon, Matthew Pelton, Jocelyn Plant, Charles Santori, Jelena Vu□kovi□, and Yoshihisa Yamamoto. J. Appl. Phys. 97, 073507 (2005)
[34] J. D. Thomson, H. D. Summers, P. M. Smowton, E. Herrmann, and P. Blood, and M. Hopkinson, J. Appl. Phys. 90, 4859 (2001)