研究生: |
陳志綸 Chih-Lun Chen |
---|---|
論文名稱: |
將 3D QSAR 技術應用在β-secretase 抑制劑的分子模擬研究(A molecular modeling study on some β-secretase inhibitors by several 3D QSAR techniques) A molecular modeling study on some β-secretase inhibitors by several 3D QSAR techniques |
指導教授: |
林志侯
Thy-Hou Lin |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 分子醫學研究所 Institute of Molecular Medicine |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 英文 |
論文頁數: | 75 |
中文關鍵詞: | 阿茲海默症 、3D構效關係理論 、比較分子場分析 、比較分子相似因子分析 |
外文關鍵詞: | QSAR, CoMFA, CoMSIA, Catalyst, β-secretase, BACE |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
β-secretase (BACE) is an important protease in the pathogenesis of Alzheimer’s disease. A set of 38 novel inhibitors of BACE were subjected to three-dimensional
quantitative structure-activity relationship (3D QSAR) studies using the comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) approaches. The structures of these inhibitors were generated theoretically, and the conformations used in the 3D QSAR studies were defined by docking them into the known structure of beta-secretase 1 receptor through the GOLD programs. Some of the parameters used in these docking programs were selected by docking an X-ray ligand into the receptor and comparing the Root-Means-Square Difference (RMSD) computed between the coordinates of the X-ray and docked structure. 38 BACE inhibitors were performed using two methods: First, traditional 3D QSAR and Catalyst were performed. Second, using the Catalyst pharmacophore features to modify the multiple linear expression of CoMSIA were expect to acquire more accurate multiple regression.
β-secretase(簡稱BACE)在阿茲海默症病程的進展當中扮演非常重要的蛋白酶。此研究結合了3D構效關係理論和統計方法,其中包含了比較分子場分析和比較分子相似因子分析,針對38個BACE的抑制劑作分析,試圖找出合理且具有可信度之藥效活性基團的分布。此研究結合了3D構效關係理論和統計方法,其中包含了比較分子場分析和比較分子相似因子分析,針對38個BACE的抑制劑作分析,試圖找出合理且具有可信度之藥效活性基團的分布。這一系列抑制劑的結構會嚴謹地由GOLD這套軟體根據基因演算法計算出配體與受體交互作用後最有可能的構形,而3D構效關係方法再利用這些構形進行運算的工作。將具有X-ray結構的抑制劑嵌合至受體(BACE)中,嵌合所得之構形再與原本X-ray結構的構形作方均根差異的比對,而在計算過程中所設定的參數將保留作為其它抑制劑與受體嵌合時的參考。將具有X-ray結構的抑制劑嵌合至受體(BACE)中,嵌合所得之構形再與原本X-ray結構的構形作方均根差異的比對,而在計算過程中所設定的參數將保留作為其它抑制劑與受體嵌合時的參考。38個BACE的抑制劑主要會經由兩種方式來分析:首先,使用傳統的3D構效關係分析方法和Catalyst找出適當的藥效基團分布;再將Catalyst所得到之藥效基團特性結合CoMSIA的複回歸分析,期望找出能夠更準確地預測藥物活性的複回歸方程式。
1. Ghosh, A.K., L. Hong, and J. Tang, Beta-secretase as a therapeutic target for inhibitor drugs. Curr Med Chem, 2002. 9(11): p. 1135-44.
2. (a) Hardy, J. and D.J. Selkoe, The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science, 2002. 297: p. 353-356.
(b) De Strooper, B.D. and G. Köning, A firm base for drug development.
Nature, 1999. 402: p. 471-472.
3. (a) Vassar, R., et al., Beta-secretase cleavage of Alzheimer's amyloid precursor protein by the transmembrane aspartic protease BACE. Science, 1999. 286: p. 735-741.
(b) Sinha, S., et al., Purification and cloning of amyloid precursor protein beta-secretase from human brain. Nature, 1999. 402: p. 537-540.
(c) Yan, R., et al., Membrane-anchored aspartyl protease with Alzheimer's disease beta-secretase activity. Nature, 1999. 402: p. 533-537.
(d) Hussain, I., et al., Identification of a novel aspartic protease (Asp 2) as beta-secretase. Mol. Cell. Neurosci., 1999. 14: p. 419-427.
(e) Lin, X., et al., Human aspartic protease memapsin 2 cleaves the β-secretase site of β-amyloid precursor protein. Proc. Natl. Acad. Sci., 2000. 97: p. 1456-1460.
4. Cai, H., et al., BACE1 is the major beta-secretase for generation of Abeta
peptides by neurons. Nature Neurosci., 2001. 4: p. 233-234.
5. Luo, Y., et al., Mice deficient in BACE1, the Alzheimer's beta-secretase,
have normal phenotype and abolished beta-amyloid generation.
Nat Neurosci, 2001. 4(3): p. 231-2.
6. Brookhaven Protein Data Bank. [cited 2008 July, 15]; Available from: http://www.rcsb.org/pdb/home/home.do.
7. Plaques and Tangles: The Hallmarks of AD., A.D.E.A.R. Center, Editor, National Institute on Aging. [cited 2008 July, 15]; Available from: http://www.nia.nih.gov/Alzheimers/Publications/UnravelingTheMystery/Part1/Hallmarks.htm.
8. Cho, S.J., et al., Structure-based alignment and comparative molecular field analysis of acetylcholinesterase inhibitors. J. Med. Chem., 1996. 39(26): p. 5064-71.
9. Tame, J.R., Scoring functions: a view from the bench. J. Comput. Aided Mol. Des., 1999. 13(2): p. 99-108.
10. Donini, O.A. and P.A. Kollman, Calculation and prediction of binding free energies for the matrix metalloproteinases. J. Med. Chem., 2000. 43(22): p. 4180-8.
11. Gold user guide and tutorial. Cambridge Crystallographic Data Center, : C., UK. [cited 2008 July, 15]; Available from: http://www.ccdc.cam.ac.uk/support/documentation/#gold.
12. SYBYL. Version 8.0; Tripos Associates, I., St. Louis.
13. Gaussian 03; [cited 2008 July, 15]; Available from: http://www.gaussian.com/.
14. Jakalian, A., D.B. Jack, and C.I. Bayly, Fast, Efficient Generation of High-Quality Atomic Charges. AM1-BCC Model: I. Method. J. Comput. Chem., 2000. 21: p. 132-146.
15. Jakalian, A., D.B. Jack, and C.I. Bayly, Fast, efficient generation of high-quality atomic charges. AM1-BCC model: II. Method. J. Comput. Chem., 2002. 23: p. 1623-1641.
16. Wang, J., P. C., and P.A. Kollman., How well does a restrained electrostatic potential (resp) model perform in calculating conformational energies of organic and biological molecules. J. Comp. Chem., 2000. 21: p. 1049-1074.
17. Klebe, G., U. Abraham, and T. Mietzner, Molecular similarity indices in a comparative analysis (CoMSIA) of drug molecules to correlate and predict their biological activity. J. Med. Chem. , 1994. 37(24): p. 4130-4146.
18. Viswanadhan, V. N., et al., Atomic physicochemical parameters for three dimensional structure directed quantitative structure-activity relationships. 4 Additional parameters for hydrophobic and dispersive interactions and their application for an automated superposition of certain naturally occurring antibiotics. J. Chem. Inf. Comput. Sci., 1989. 29: p. 163-172.
19. Klebe, G., T. Mietzner, and F. Weber, Methodological developments and strategies for a fast superposition of drug-size molecules. . J. Comput.- Aided Mol., 1999. 13: p. 35-49.
20. Klebe, G., The use of composite crystal-field environments in molecular recognition and the de novo design of protein ligands. J Mol Biol, 1994. 237(2): p. 212-235.
21. Wold, S.R., A., H. Wold, and W.J. Dunn III, The collinearity problem in linear regression, the partial least squares approach to generalized inverses. SIAM J. Sci. Stat. Comput., 1984. 5: p. 735-743.
22. Bharatham, N., K. Bharatham, and K.W. Lee, Pharmacophore identification and virtual screening for methionyl-tRNA synthetase inhibitors. J. Mol. Graph. Model., 2006. 25: p. 813-823.
23. Du, L.P., et al., Characterization of binding site of closed-state KCNQ1 potassium channel by homology modeling, molecular docking, and pharmacophore dentification. Biochem. Biophys. Res. Commun., 2005. 332: p. 677-687.
24. Catalyst, Version 4.9ed.; Accelrys Inc.: San Diego, CA.
25. DS ViewerLite, Accelrys, Inc.
26. Hohenberg, P. and W. Kohn, Phys. Rev., 1964. 136,B864
27. Hohenberg, P. and W. Kohn, Phys. Rev., 1965. 140, A1133
28. Salahub, D.R. and M.C. Zerner, The Challenge of d and f Electrons. 1989.
29. Parr, R.G. and W. Yang, Density-functional theory of atoms and molecules. 1989.
30. Leonard, J.T. and K. Roy, On Selection of Training and Test Sets for the Development of Predictive QSAR models. QSAR Comb. Sci., 2006. 3: p. 235-251.
31. Catalyst tutorials, MSI OnLibrary. [cited 2008 July, 15]; Available from: http://www.scripps.edu/rc/softwaredocs/msi/catalyst45/tutorials/Catalyst4.5TOC.fm.html.
32. Debnath, A., Generation of Predictive Pharmacophore Models for CCR5 Antagonists:Study with Piperidine- and Piperazine-Based Compounds as a New Class of HIV-1 Entry Inhibitors. J. Med. Chem., 2003. 46(21): p. 4501-4515.
33. Freskos, J.N., et al., Design of potent inhibitors of human beta-secretase. Part 2. Bioorg Med Chem Lett, 2007. 17: p. 78-81.
34. Cramer, R.D., 3rd, D.E. Patterson, and J.D. Bunce, Recent advances in comparative molecular field analysis (CoMFA). Prog Clin Biol Res, 1989. 291: p. 161-165.
35. Tripos Bookshelf 7.3. 2006: Tripos, Inc.
36. Prathipati, P., G. Pandey, and A.K. Saxena, CoMFA and docking studies on glycogen phosphorylase a inhibitors as antidiabetic agents. J Chem Inf Model, 2005. 45(1): p. 136-145.
37. Debnath, A.K., Three-dimensional quantitative structure-activity relationship study on cyclic urea derivatives as HIV-1 protease inhibitors: application of comparative molecular field analysis. J Med Chem, 1999. 42(2): p. 249-259.