研究生: |
廖家慶 |
---|---|
論文名稱: |
奈米結構氧化鎢之電致色變特性研究 Electrochromic property of nanostructured tungsten oxide |
指導教授: |
開執中
陳福榮 |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 中文 |
論文頁數: | 173 |
中文關鍵詞: | 電致色變 、氧化鎢奈米線 、氧化鎢鉬奈米線 、熱處理 、氣相-固相成長 、記憶效應 、奈米複合薄膜 、噴塗技術 、電鍍方法 、ITO奈米顆粒 |
外文關鍵詞: | electrochromism, tungsten oxide nanowires, tungsten-molybdenum oxide nanowires, annealing, vapor-solid growth, memory, nanocomposite WO3 films, spray, electroplating, ITO nanoparticles |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文探討奈米結構電致色變(Electrochromic)材料的基礎性質與其應用性。電致色變現象泛指當材料被施加不同直流電壓或電流時,該材料會可逆地改變對光線的吸收度進而呈現不同的顏色變化。本研究首次提出以真空物理氣相沈積方法製備氧化鎢(鉬)奈米線於透明導電基板上,探討氧化鎢奈米線的成長機制並且分析其成分、結構及電致色變性質。
實驗中以依據需求而設計組裝的高真空加熱爐做為成長氧化鎢奈米線的設備,三氧化鎢粉末做為蒸發源,適當地控制製程參數,如工作壓力、加熱溫度及成長時間等,於透明導電ITO基板上成長出均勻分佈的氧化鎢奈米線。接著利用掃描式電子顯微鏡、穿透式電子顯微鏡、XRD、X光能譜分析儀對氧化鎢奈米線進行分析。氧化鎢奈米線為結晶態,其屬於W18O49之斜方(monoclinic)晶體結構,其成長方向為<010>,成長機制為氣相-固相成長,首先在基板表面沈積一層很薄的奈米多晶氧化鎢薄膜,隨後在其突起處藉由氧化鎢氣體分子沈積成長出氧化鎢奈米線。
以循環伏安法、紫外光-可見光光譜儀對氧化鎢奈米線電極進行分析;在1.0M LiClO4/PC電解液中,氧化鎢奈米線在-1.0V(vs. Ag/AgCl)還原為藍色,1.0V(vs. Ag/AgCl)氧化為透明無色,在700 nm下的穿透度變化(□T)為42.6%。施加正負一伏特階梯電位於氧化鎢奈米線電極,同時量測其穿透度變化,計算氧化鎢奈米線的著/去色反應時間分別為1.5 s和0.5s。對氧化鎢米線電極施加-1.0V電位使其著色,隨後切斷電位量測其著色記憶效應,測試時間達五小時候,氧化鎢奈米線電極仍維持一半以上的著色深度。
接著對氧化鎢奈米線在大氣環境下分別施加不同的溫度200℃、300℃、400℃、500℃、600℃進行熱處理一小時,探討熱處理對氧化鎢奈米的結構與光電化學性質的影響。氧化鎢奈米線加熱至500℃並沒有改變其奈米線外觀,但是600℃熱處理將使奈米線結晶遭受破壞。隨著增加熱處理溫度可以提升氧化鎢奈米線電極的電致色變性質,500℃熱處理試片在700 nm的穿透度變化高達65%以上,著色效率為61.3 cm2/C。但是600℃熱處理試片的所有電致色變性質皆下降,歸因於結構產生巨大的變化。次外,對氧化鎢奈米線以著、去色電壓操作,連續10000次,氧化鎢奈米線的著色反應電量仍然維持80%以上,說明氧化鎢奈米線的結構相當穩定。
除了二元氧化鎢奈米線以外,本論文以共同熱蒸發的方式製備三元氧化鎢鉬奈米線於透明導電ITO基板上。利用TEM和XRD分析氧化鎢鉬奈米線,結果顯示每根奈米線均為單晶結構,且為W0.4Mo0.6O3之正交(orthorhombic)晶體結構,其成長方向為<110>。利用EDX-map來觀察W、Mo及O在奈米線中分佈的情況,鉬元素整體是均勻分佈在氧化鎢奈米線中而沒有特別聚集的現象。以循環伏安法、紫外光-可見光光譜儀對氧化鎢鉬奈米線電極進行分析。實驗結果顯示,添加鉬元素於氧化鎢奈米線中,可使奈米線電極的吸收波峰移往高能量的位置,接近人類眼睛對光線最敏感的波長,使得奈米線電極在著、去色狀態有更好的顏色對比
除了一維奈米結構的氧化鎢電致色變材料以外,本研究亦發展一種新的奈米結構電致色變薄膜,即氧化鎢奈米複合薄膜。利用噴塗的技術在透明導電基板表面修飾一層ITO奈米顆粒薄膜,再以電鍍的方法將氧化鎢薄膜附著於修飾層的表面形成氧化鎢奈米複合材料。此種電致色變複合材料具有良好的著色對比及理想的光電調節時間。
本研究實驗結果提供了製備奈米線結構電致色變材料的製程,探討電致色變奈米線的成長機制,分析氧化鎢(鉬)奈米線電極的結構與電致色變性質,並成功證實了氧化鎢(鉬)奈米線商業化應用的競爭潛力。另外,本研究發展一種新的奈米結構電致色變薄膜,即氧化鎢奈米複合薄膜,此種薄膜亦具有良好的電致色變性質,同時其製程簡單,相當適合於工業上的應用。
In this thesis, the fundamental properties and the applications of the electrochromic nanostructured tungsten oxides are investigated. Electrochromism is a reversible phenomenon that some materials change their optical absorbance and exhibit visible color change in response to a dc voltage or current source. In this study, we firstly propose tungsten oxide nanowires, mixed oxide nanowires, and nanocomposite WO3 films fabricated on transparent conducting substrates by different methods, and study the electrochromic properties of these nanostructured WO3.
In experiments, the synthesis of tungsten oxide nanowires was based on thermal evaporation of tungsten trioxide powders under controlled conditions without the presence of catalyst. The structure, morphology, and composition of the WO3-x nanowires were characterized using SEM, TEM, XRD, Raman spectroscopy and XPS and the electrochromic properties of the nanowires layer under lithium intercalation was studied in detail by UV-VIS-NIR spectroscope and cyclic voltammeter. The tungsten oxide nanowire grows along the direction <010> and nearly perpendicular to the ITO substrate, and is W18O49 monoclinic structure. The growth mechanism is thought to be the VS mechanism (vapour-solid process) which tungsten oxide vapor was continuously generated from the source during the heating process, the vapour- solid phase transition took place as soon as the vapour reached to the ITO substrate. The electrochromic WO3-x nanowires shows cathodic coloration and considerable transmittance difference in the visible spectrum range, with a maximum value of T = 42.6 % at 700 nm. The coloration and bleaching time of the WO3-x nanowire film are 1.5 s and 0.5 s, respectively.
The effect of thermal annealing on the electrochromic properties of the tungsten oxide nanowires deposited on a transparent conducting substrate was investigated. The X-ray diffraction indicated that the structures of the nanowries annealed below 500 ℃ had no significant change. The X-ray photoelectron spectroscopy analysis suggested that the O/W ratio and the amount of W6+ ions in the annealed nanowire films could be increased as increasing annealing temperature. Increased annealing temperature could promote the coloration efficiency and contrast of the nanowire films; however, it could also affect the switching speed of the nanowire films. In addition, the cycle life of the annealed tungsten oxide nanowire is up to 10000 times with no significant decay.
The tungsten-molybdenum oxide nanowires were also synthesized on the ITO coated substrate by co-evaporation of tungsten oxide and molybdenum oxide powders. The TEM and XRD analysis indicate that the mixed oxide nanowires is the W0.4Mo0.6O3 orthorhombic structure with a preferred growth direction <110>。The absorption band of the mixed oxide nanowires shifts to near the maximum of the spectrum of human eye sensitivity. The higher coloration efficiency is obtained, due to increased electron transitions between the two kinds of metal sites with different valences (W6+, W5+, Mo6+, and Mo5+).
In addition to the tungsten oxide nanowires, a new nanostructured electrochromic material, nanocomposite WO3 (NWO) film, was also developed. The NWO films were fabricated by a spray and electroplating techniques in sequence. An ITO nanoparticle layer was employed as a permanent template to generate the particular nanostructure. The NWO films showed an improved contrast with compatible bleach-coloration transition time, owing to the larger reactive surface area.
1.C.M. Lampert, Materialstoday, 28 (2004)
2.J. R. Platt, J. Chem. Phys. 34 (1961) 862
3.S. K. Deb, U. S. Patent 3,521,941 (1970)
4.F. T. Bauer and J. H. Bechtel, U.S. Patent, 4,443,057 (1984)
5.H. J. byker, U.S. Patent, 4,902,108 (1990)
6.J. H. Brechtel and H. J. Byker, U.S. Patent, 4,917,477 (1990)
7.H. Becker and H. Wittkopf, Electrochim, Acta, 44(18), 3259 (1999)
8.A. Azens, et al., Solid State Ionics, 165(1-4), 1 (2003)
9.Michael Grätzel, Nature, 409, 575 (2001)
10.U. Bach, D. Corr, D. Lupo, F. Pichot, and M. Ryan, Adv. Mater., 14, 845 (2002)
11.D. Corr, U. Bach, D. Fay, M. Kinsella, C. McAtamney, F. O’Reilly, S. N. Rao, and N. Stobie, Solid State Ionics, 165, 315 (2003)
12.R. D. Rauh, Electrochim. Acta, 44, 3165(1999)
13.K. Bange and T. Gambke, Adv. Mater., 2, 10 (1990)
14.D. Cummins, G. Boschloo, M. Ryan, D. Corr, S. N. Rao, and D. Fitzmaurice, J. Phys. Chem., 104, 11449 (2000)
15.J. Liu, J. P. Coleman, Mater. Sci. Eng., A286, 144 (2000)
16.K. Nishio, K. Iwata and H. Masuda, Electrochemical and Solid-State Letters, 6, H21 (2003)
17.S. B. Lee et al., Adv. Mater., 17, 171 (2005)
18.Paul M. S. Monk, Roger J. Mortimer, and David R. Rosseisky, Electrochromism:Fundametals and Applications, VCH, 67(1995)
19.S. K. Deb, Appl. Optics, supp., 3, 192 (1969)
20.A.-L. Larsson, B. E. Sernelius and G. A. Niklasson, Solid State Ionics, 165, 35 (2003)
21.G.A Niklasson and C.G. Granqvist, J. Mater. Chem., 17, 127 (2007)
22.B. Reichman and A. J. Bard, J. Electrochem. Soc., 126, 583 (1979)
23.T. Maruyama and S. Arai, J. Electrochem. Soc., 141, 1021 (1994)
24.R. A. Batchelor, M. S. Burdis, and J. R. Siddle, J. Electrochem. Soc., 143, 1050 (1996)
25.P. Judeinstein and J. Livage, J. Mater. Chem., 1, 621 (1991)
26.M. Regragui, M. Addou, A. Outzourhit, Elb. El Idrissi, A. Kachouane, and A. Bougrine, 77, 341 (2003)
27.P. K. Shen and A. C. C. Tseung, J. Mater. Chem., 2, 1141 (1992)
28.S.K. Deb, Philos. Mag., 27, 801 (1973)
29.B.W. Faughnan, R.S. Crandall and P.M. Hey, RCA Review, 36, 177 (1975)
30.O.F. Schirmer, V. Wittwer, G. Baur and G. Braudt, J. Electrochem. Soc., 124, 749 (1977)
31.R.P. Howon, “Selective Optical Coatings on Plastic Sheet for Inexpensive Radiation Insulation of Visible Window.” Loughborough University Reports (1979)
32.S. Lee, R. Deshpade, P.A. Parilla, K.M. Jones, B. To, A.H. Mahan and A.C. Dillon, Adv. Mater., 18, 763 (2006)
33.M. Deepa, A.K. Srivastava, K.N. Sood and S.A. Agnihotry, Nanotechnology, 17, 2625 (2006)
34.G. Che, B.B. Lakshmi, E.R. Fisher and C.R. Martin, Nature, 393, 346 (1998)
35.E. Frackowiak and F. Béguin, Carbon, 40, 1775 (2002)
36.A. Wadhawan, R.E. StallcupⅡand J.M. Perez, Appl. Phys. Lett., 78, 108 (2001)
37.W.A. de Heer, A. Chatelain and D. Ugarte, Science, 270, 22 (1999)
38.C.T. Hsieh, J.M. Chen, R.R. Kou and Y.H. Huang, Appl. Phys. Lett., 84, 1186 (2004)
39.N. Li and C.R. Martin, J. Electrochem. Soc., 148, A164 (2001)
40.C.T. Hsieh, J.M. Chen, H.H. Lin and H.C. Shih, Appl. Phys. Lett., 83, 3393 (2003)
41.R.B Goldner, G. Seward, K. Wong, G. Berera, T. Hass and P. Norton Proc. SPIE 823 (1987)
42.L.H. Dao, A. Guerfi and M.T. Nguye, in: Elecrochromic Materials, Eds. M.K. Carpenter and D.A. Corrigan (The Electrochemical Society, 1990) p. 30
43.A. Pennisi, F. Simone and C.M. Lampert, Solar Energy Materials and Solar Cells, 28, 233 (1992)
44.K. Gesheva, A. Szekeres and T. Ivanova, Solar Energy Materials and Solar Cells, 76, 563 (2003)
45.K. Gesheva, A. Szekeres and T. Ivanova, Thin Solid Film, 515, 4609 (2007)
46.http://www.chem.ntnu.edu.tw/profs/chen/www/index.htm
47.http://diamond.iams.sinica.edu.tw/c/
48.http://www.nmsl.chem.ccu.edu.tw/
49.http://cmliris.harvard.edu/
50.http://www.cchem.berkeley.edu/~pdygrp/main.html
51.F.C. Frank, Disscuss. Faraday Soc., 5, 48 (1949)
52.G. W. Sears, Acta Metallurgica, 1, 457 (1953)
53.R. S. Wagner and W. C. Ellis, Appl. Phys. Lett., Vol. 4 (5), 89 (1964)
54.D.J. Cheng, W.J. Shyy and M.H. Hon, Scripta Metall., 21, 637 (1987)
55.William E. Buhro, Timothy J. Trentler, Kathleen M. Hickman, Science, 270, 1791 (1995)
56.B. Lewis, J. Crystal Growth, 21, 29 (1974)
57.Peidong Yang and Charles M. Lieber, Science, 273, 1836 (1996)
58.S. T. Lee, Y. F. Zhang, N. Wang, J. Mater. Res., 14, 4503 (1999)
59.Y. C. Kong, D. P. Yu, B. Zhang, W. Fang and S. Q. Feng, Appl. Phys. Lett., 78 (4), 407 (2001)
60.H. Z. Zhang, Y. C. Kong, Y. Z. Wang, X. Du, Z. G. Bai, D. P. Yu, Solid State Communications, 109, 677 (1999)
61.X. S. Peng, Y. W. Wang, J. Zhang, X. F. Wang, L. D. Zhang, Appl. Phys. A, 74, 437 (2002)
62.Z. R. Dai, J. L. Gole, J. D. Stout and Z. L. Wang, J. Phys. Chem. B, 106, 1274 (2002)X. S. Peng, Y. W. Wang, J. Zhang, X. F. Wang, L. D. Zhang, Appl. Phys. A, 74, 437 (2002)
63.Yiying Wu and Peidong Yang, Chem. Mater, 12, 605 (2000)
64.Y. F. Zhang, Y. H. Tang, C. Lam, N. Wang, S. T.Lee, Journal of Crystal Growth, 212, 115 (2000)
65.X. C. Wu, Y. R. Tao, Journal of Crystal Growth, 242, 309 (2002)
66.Yewu Wang, Lide Zhang, Xinsheng Peng, Chem. Phys. Lett., 357, 314 (2002)
67.Chia-Chun Chen, Chun-Chia Yeh, Chun-Ho Chen, J. Am. Chem. Soc., 123, 2791 (2001)
68.Jun Zhang, Lide Zhang, Xiangfeng Wang, J. Mater. Chem., 12, 802 (2002)Jun Zhang, Lide Zhang, Xiangfeng Wang, J. Mater. Chem., 12, 802 (2002)
69.Yi Cui and Charles M. Lieber, Science, 291, 851 (2001)
70.G. Gu, B. ZhengW. Q. Han, S. Roth and J. Liu, Nano Letters, 2, 849 (2002)
71.H. Qi, C. Wang and J. Liu, Advanced materials, 15, 414 (2003)
72.J. Liu, Y. Zhao and Z. Zhang, J. Phys.: Condens. Matter, 15, L453 (2003)
73.X. W. Lou and H. C. Zeng, Inorg. Chem., 42, 6169 (2003)
74.Z. Liu, Y. Bando and C. Tang, Chemical Physics Letters, 372, 179 (2003)
75.X. L. Li, J. F. Liu and Y. D. Li, Inorg. Chem., 42, 921 (2003)
76.Y. B. Li, Y. Bando, D. Golberg and K. Kurashima, Chem. Phys. Lett., 367, 214 (2003)
77.Y. B. Li, Y. Bando and D. Golberg, Adv. Mater., 15, 1294 (2003)
78.K. Zhu, H. He, S. Xie, X. Zhang, W. Zhou, S. Jin and Bin Yue, Chem. Phys. Lett., 377, 317 (2003)
79.D.Z. Guo, K. Yu-Zhang, A. Gloter, G.M. Zhang and Z.Q. Xue, J. Mater. Res., 19, 3665 (2004)
80.M. Gillet, R. Delamare and E. Gillet, Eur. Phys. J. D 34, 291 (2005)
81.K. Hong, W. Yiu, H. Wu, J. Gao and M. Xie, Nanotechnology 16, 1608 (2005)
82.B. Park and K. Yong, Surface Review and Letters, 12, 745 (2005)
83.Y. Ma, C. Lin, C. Yeh and R. Huang, J. Vac. Sci. Technol., B 23, 2141 (2005)
84.Z. Xiao, L. Zhang, X. Tian and X. Fang, Nanotechnology, 16, 2647 (2005)
85.T.M. Zhao, Y.H. Li, I. Ahmad, D.G. McCartney, and Y.Q. Zhua and W.B. Hu, APPLIED PHYSICS LETTERS 89, 133116 (2006)
86.C. Chen, S. Wang, R. Ko, Y. Kuo, K. Uang, T.Chen, B. Liou and H. Tsai, Nanotechnology 17, 217 (2006)
87.R. Seelaboyia, J. Huang, J. Park, D.H. Kang and W.B. Choi, Nanotechnology 17, 4840 (2006)
88.C.S. Rout, K. Ganesh, A. Goveindaraj and G.N.R. Rao, Appl. Phys. A 85, 241 (2006)
89.M.W. Chase et al, NIST-JANAF Themochemical Tables, Fourth Edition, J. Phys. Chem. Ref. Data, Monograph 9, 1998, 1-1951.
90.汪建民,“材料分析”,1998年,中國材料科學學會
91.Paul Monk, Fundamental of Electroanalytical Chemistry, John Wiley & Sons Ltd, 2001
92.E. Kaldis, Crystal Growth-Theory and Techiques: Priciples of the Vapor Growth of Single Crystal, Vol. 1, 1974, Pleum Press.
93.John M. Blocher, Jr., J. Vac. Sci. Technol., 11(4), 680 (1974)
94.S. Kulkarni and M Bayard, J. Vac. Sci. Technol., A9, 1193 (1999)
95.J.G. Zhang, D.K. Benson, C.E. Tracy, S.K. Deb, A.W. Czanderna and C. Bechinger, J. Electrochem. Soc., 144, 2022 (1997)
96.A.H. Jayatissa, S.T. Cheng and T. Gupta, Materials Science and Engineering, B 109, 269 (2004)
97.G.L. Frey, A. Rothschild, J. Sloan, R. Rosentsveig, R. Popovitz-Biro and R. Tenne, Journal of Solid State Chemistry, 162, 300 (2001)
98.M.F. Daniel, B. Desbat, J.C. Lassegues, J. Journal of Solid State Chemistry, 67, 235 (1987)
99.C.G. Grandqvist, Handbook of Inorganic Electrochromics Materials, Elsevier, Amsterdam (1995) 131
100. L. Berggren, G.A. Niklasson, Optical absorption andd urability of sputteredamorph ous tungsten oxide films, Solid State Ionics, 165 , 51 (2003)
101. M. Deepa, A.K. Srivastava, S. Singh. And S.A. Agihotry, J. Mater. Res. 19, 2576 (2004)
102. M. Gillet, C. Lemire, E. Gillet and K. Aguir, Surface Science, 532, 519 (2003)
103.E. Ozkan, S.H. Lee, P. Liu, C.E. Tracy, F.Z. Tepehan, J.R. Pitts and S.K. Deb, Solid State Ionics, 149, 139 (2002)
104.L. Meda, R.C. Breitkopf, T.E. Haas and R.U. Kirss, Thin Solid Films, 402, 126 (2002)
105. G.A. Niklasson, L. Berggren and A. Larsson, Solar Energy Materials & Solar Cells, 84, 315 (2004)
106. S. Yamada and M. Kitao, SPIE Institute Series Vol. IS 4, 246
107. S. Yamada, S. Yoshida and M. Kitao, Solid State Ionics, 40, 487 (1990)
108. H. Habazaki, Y. Hayashi and H. Konno, Electrochim. Acta, 47,4181 (2002)
109. T. Pauporte, J. Electrochem. Soc., 149, C539 (2002)
110. K. Yamanaka, J. Appl. Phys., 26, 1884 (1987)