簡易檢索 / 詳目顯示

研究生: 陳欣皓
Chen, Hsin-Hao
論文名稱: 單分子合成過程中的螢光檢測最佳化
Optimized Fluorescence-Based Detection in Single Molecule Synthesis Process
指導教授: 呂忠津
Lu, Chung-Chin
口試委員: 林茂昭
楊谷章
蘇育德
馬席彬
陳博現
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 英文
論文頁數: 43
中文關鍵詞: 基因定序螢光標定單分子合成過程螢光標籤選擇
外文關鍵詞: genome sequencing, fluorescence labeling, single molecule synthesis process, fluorescence dye selection
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 單分子定序在基因組學、轉錄組學、臨床診斷、藥物開發以及癌症篩檢等多個科學與醫學領域中具有重要意義。在現有方法中,螢光定序由於其高精確性與效率而被廣泛應用於DNA定序。傳統的螢光標記技術通常依賴電荷耦合元件(CCD)相機,在定序過程中捕捉多像素圖像。

    本研究提出了一種基於單一像素分析的螢光標記檢測方法。此方法具有多項優勢,包括在低訊號雜訊比條件下提高定序準確性並降低計算資源。此外,相較於傳統技術所利用的多像素(二維)定序,我們能充分利用硬體資源,進而實現更高的通量。本研究集中於利用負二項式分布與我們修正負二項分布的方程式對單分子合成過程進行建模,並結合最大概似估計和Viterbi演算法,實現了更可靠的訊號檢測。

    本篇研究基於螢光與生化反應而建立的模型,為模擬實驗過程提供了一個穩健的框架,也增進了第三代定序裡,對螢光發射與訊號接收之間關係的理解與準確度。


    Single molecule sequencing plays a significant role in advancing various scientific and medical fields, including genomics, transcriptomics, clinical diagnostics, drug discovery, and cancer screening. Among the available approaches, fluorescence-based sequencing is widely utilized in DNA sequencing due to its precision and efficiency. Traditional fluorescence labeling techniques often rely on charge-coupled device (CCD) cameras to capture images of multiple pixels during sequencing.

    In this study, we introduce a fluorescence labeling detection method based on single-pixel analysis. This approach offers distinct advantages, including improved accuracy and reduced resource requirements, particularly under low signal-to-noise ratio conditions. Moreover, it enables higher throughput compared to conventional techniques. The research focuses on modeling the single molecule synthesis process using negative binomial and modified negative binomial distributions. By integrating maximum likelihood estimation and the Viterbi algorithm, the method achieves enhanced signal detection reliability.

    This fluorescence-based model provides a robust framework for simulating experimental processes, contributing to a better understanding of the relationship between fluorescence emission and signal reception.

    1 Introduction 5 2 The Single Molecule Synthesis Process 7 2.1 Introduction to the Single Molecule Synthesis Process . . . . . . . . . 7 2.2 The Single Molecule Synthesis Process . . . . . . . . . . . . . . . . 8 2.3 The Negative Binomial Distribution and Its Adapted Form . . . . . . 10 2.4 State Transition Diagram Corresponding to Probability Distributions . 11 2.5 Fitting of Probability Distributions . . . . . . . . . . . . . . . . . . . 13 2.5.1 Method of Moments . . . . . . . . . . . . . . . . . . . . . . 14 2.5.2 Model Fitting Results . . . . . . . . . . . . . . . . . . . . . . 17 2.5.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3 The Emission Process and the Received Process 22 3.1 The Emission Process . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.1.1 The Ambient Light Intensity Signal . . . . . . . . . . . . . . 23 3.1.2 The Fluorescence Light Intensity Signal . . . . . . . . . . . . 23 3.1.3 The Emission During an Interpulse Duration . . . . . . . . . 24 3.1.4 The Emission During an Incorporation Period . . . . . . . . . 24 3.2 The Received Process . . . . . . . . . . . . . . . . . . . . . . . . . . 24 4 Methods and Algorithms 26 4.1 Estimation of the Pixel Parameters . . . . . . . . . . . . . . . . . . . 27 4.2 The ith Decoding Phase . . . . . . . . . . . . . . . . . . . . . . . . . 27 4.2.1 The ith Estimation Phase . . . . . . . . . . . . . . . . . . . . 30 4.3 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 4.5 Error Performance Under Perfect Information . . . . . . . . . . . . . 36 5 Conclusion and Discussion 39 6 Bibliography 41

    1. D. Deamer, M. Akeson, and D. Branton, “Three decades of nanopore sequencing,”
    Nature biotechnology, vol. 34, no. 5, pp. 518–524, 2016.
    2. J. Shendure, S. Balasubramanian, G. M. Church, W. Gilbert, J. Rogers, J. A.
    Schloss, and R. H. Waterston, “Dna sequencing at 40: past, present and future,”
    Nature, vol. 550, no. 7676, p. 345, 2017.
    3. M. W. Schmitt, S. R. Kennedy, J. J. Salk, E. J. Fox, J. B. Hiatt, and L. A. Loeb,
    “Detection of ultra-rare mutations by next-generation sequencing,” Proceedings
    of the National Academy of Sciences, vol. 109, no. 36, pp. 14 508–14 513, 2012.
    4. J. R. Epstein, I. Biran, and D. R. Walt, “Fluorescence-based nucleic acid detection
    and microarrays,” Analytica Chimica Acta, vol. 469, no. 1, pp. 3–36, 2002.
    5. G. T. Hermanson, Bioconjugate Techniques. Academic Press, 2013.
    6. K. M. Dean and A. E. Palmer, “Advances in fluorescence labeling strategies for
    dynamic cellular imaging,” Nature chemical biology, vol. 10, no. 7, pp. 512–523,
    2014.
    7. T. S. Seo, X. Bai, D. H. Kim et al., “Four-color dna sequencing by synthesis
    on a chip using photocleavable fluorescent nucleotides,” Proc. Natl. Acad. Sci.
    U.S.A., vol. 102, pp. 5926–5931, 2005.
    8. A. M. Valm, R. Oldenbourg, and G. G. Borisy, “Multiplexed spectral imaging of
    120 different fluorescent labels,” PLoS One, vol. 11, no. 7, p. e0158495, 2016.
    9. M. O. Pollard, D. Gurdasani, A. J. Mentzer, T. Porter, and M. S. Sandhu, “Long
    reads: their purpose and place,” Human molecular genetics, vol. 27, no. R2, pp.
    R234–R241, 2018.
    10. K. Horne, “An optimal extraction algorithm for ccd spectroscopy.” Publications
    of the Astronomical Society of the Pacific, vol. 98, no. 604, p. 609, 1986.
    11. S. Ardui, A. Ameur, J. R. Vermeesch, and M. S. Hestand, “Single molecule
    real-time (smrt) sequencing comes of age: applications and utilities for medical
    diagnostics,” Nucleic acids research, vol. 46, no. 5, pp. 2159–2168, 2018.
    12. J. B. Hiatt, R. P. Patwardhan, E. H. Turner, C. Lee, and J. Shendure, “Parallel,
    tag-directed assembly of locally derived short sequence reads,” Nature methods,
    vol. 7, no. 2, p. 119, 2010.
    13. H. H. Chen and C. C. Lu, “Optimized multiple fluorescence based detection
    in single molecule synthesis process under high noise level environment,”
    in International Conference on Computational Advances in Bio and Medical
    Sciences. Springer, 2019, pp. 65–76.
    14. H.-H. Chen and C.-C. Lu, “Optimized fluorescence-based detection in single
    molecule synthesis process,” Journal of Computational Biology, vol. 28, no. 2,
    pp. 195–208, 2021.
    15. ICCBB ’24: Proceedings of the 2024 8th International Conference on
    Computational Biology and Bioinformatics. New York, NY, USA: Association
    for Computing Machinery, 2024.
    16. C. E. Aitken, R. A. Marshall, and J. D. Puglisi, “An oxygen scavenging system
    for improvement of dye stability in single-molecule fluorescence experiments,”
    Biophysical journal, vol. 94, no. 5, pp. 1826–1835, 2008.
    17. K. Kececi, “A comparable study of single stranded dna sensing using tracketched
    nanopore sensors,” ChemistrySelect, vol. 8, no. 37, p. e202302856, 2023.
    18. D. J. Niedzwiecki, J. Grazul, and L. Movileanu, “Single-molecule observation of
    protein adsorption onto an inorganic surface,” Journal of the American Chemical
    Society, vol. 132, no. 31, pp. 10 816–10 822, 2010.
    19. D. Spetzler, R. Ishmukhametov, T. Hornung, L. J. Day, J. Martin, and W. D.
    Frasch, “Single molecule measurements of f1-atpase reveal an interdependence
    between the power stroke and the dwell duration,” Biochemistry, vol. 48, no. 33,
    pp. 7979–7985, 2009.
    20. J.-P. Knemeyer, N. Marm´e, and M. Sauer, “Probes for detection of specific dna
    sequences at the single-molecule level,” Analytical chemistry, vol. 72, no. 16,
    pp. 3717–3724, 2000.
    21. J. Eid, A. Fehr, J. Gray, K. Luong, J. Lyle, G. Otto, P. Peluso, D. Rank, P. Baybayan,
    B. Bettman et al., “Real-time dna sequencing from single polymerase
    molecules,” Science, vol. 323, no. 5910, pp. 133–138, 2009.
    22. M. Jain, H. E. Olsen, B. Paten, and M. Akeson, “The oxford nanopore minion:
    delivery of nanopore sequencing to the genomics community,” Genome biology,
    vol. 17, pp. 1–11, 2016.
    23. R. Andrews, H. Steuer, A. H. El-Sagheer, A. Mazumder, H. el Sayyed, A. Shivalingam,
    T. Brown, and A. N. Kapanidis, “Transient dna binding to gapped dna
    substrates links dna sequence to the single-molecule kinetics of protein-dna interactions,”
    bioRxiv, pp. 2022–02, 2022.
    24. R. D. Smiley and G. G. Hammes, “Single molecule studies of enzyme mechanisms,”
    Chemical reviews, vol. 106, no. 8, pp. 3080–3094, 2006.
    25. H. Y. Hsieh, Y. H. Peng, S. F. Lin et al., “Triple-junction optoelectronic sensor
    with nanophotonic layer integration for single-molecule level decoding,” ACS
    Nano, vol. 13, pp. 4486–4495, 2019.
    26. A. Viterbi, “Error bounds for convolutional codes and an asymptotically optimum
    decoding algorithm,” IEEE transactions on Information Theory, vol. 13,
    no. 2, pp. 260–269, 1967.

    QR CODE