研究生: |
方冠中 Fang, Kuan-Chung |
---|---|
論文名稱: |
高靈敏酵素固定化聚苯胺過氧化氫感測器 An Ultra-sensitive Hydrogen Peroxide Sensor Based on Enzyme Immobilization and Poly(Aniline) |
指導教授: | 王玉麟 |
口試委員: |
王禎翰
鄭暉騰 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 奈米工程與微系統研究所 Institute of NanoEngineering and MicroSystems |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 英文 |
論文頁數: | 25 |
中文關鍵詞: | 辣根過氧化物酶 、導電聚合物 、聚苯胺 、過氧化氫 、一次性感測器 |
外文關鍵詞: | Horseradish peroxidase, conducting polymer, polyaniline, hydrogen peroxide, disposable sensors |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究將辣根過氧化物酶 (HRP, horseradish peroxidase) 固定於導電聚合物薄膜,聚苯胺 (PANI, polyaniline),以製造高靈敏過氧化氫感測器。感測器的反應機構,是透過溶液中的過氧化氫氧化HRP,氧化的HRP進而氧化PANI獲取電子,然後造成PANI薄膜的導電度下降。還原後的HRP可以繼續和過氧化氫作用,重複上述的氧化還原反應直到溶液中的過氧化氫全部作用完畢。而感測器的訊號,便是來自所有反應完成之後PANI薄膜的導電度變化。本感測器的偵測極限達 0.7 nM ,偵測濃度範圍為 0.7 nM 至 1 μM。由於高濃度過氧化氫會抑制HRP,當過氧化氫濃度超過 1 μM之後,感測器的訊號逐漸飽和,而待測溶液開始殘留未消耗的過氧化氫。另外,當感測器沒有固定HRP,對於待測溶液中的過氧化氫沒有反應,證明酵素反應在偵測中過程中的必要性。
本感測器擁有價格低廉、容易製作的優點,適合發展可攜式的一次性感測晶片;未來,利用其高靈敏度的特性,結合其他酵素更能發展其他種類的感測器。
In this study, we fabricate an ultra-sensitive hydrogen peroxide sensor by using horseradish peroxidase (HRP)-immobilized conducting polymer, polyaniline (PANI). With the proposed detection mechanism, hydrogen peroxide first oxidizes HRP, which then oxidizes polyaniline, thus resulting in decreased conductivity of the polyaniline thin film. The reduced HRP can be further oxidized by hydrogen peroxide and the cycle of the oxidation/reduction would continue until all hydrogen peroxide are reacted, leading to the high sensitivity of the sensor due to the signal contributed from all hydrogen peroxide molecule. The detection limit of this sensor is only 0.7 nM. The detectable concentration of H2O2 is from 0.7 nM to 1 μM. Beyond 1 μM, the sensor gradually saturates and some H2O2 remains, indicating the inhibition of HRP activity at high concentration of H2O2. There is no response to hydrogen peroxide once the PANI is standalone without HRP immobilized, showing the enzymatic reaction is required in the process of hydrogen peroxide detection. The simple process for the sensor fabrication allows the sensor to be cost-effective and disposable. This electronic hydrogen peroxide sensor is promising in applications for low concentration hydrogen peroxide detections, such as the reactive oxygen species (ROS) in oxidative stress studies.
1. Guascito, M.R., et al., A new amperometric nanostructured sensor for the analytical determination of hydrogen peroxide. Biosensors and Bioelectronics, 2008. 24(4): p. 1057-1063.
2. Giorgio, M., et al., Hydrogen peroxide: a metabolic by-product or a common mediator of ageing signals? Nature reviews. Molecular cell biology, 2007. 8(9): p. 722-728.
3. D'Autréaux, B. and M.B. Toledano, ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis. Nature reviews. Molecular cell biology, 2007. 8(10): p. 813-824.
4. Burns, J., et al., Methods for reactive oxygen species (ROS) detection in aqueous environments. Aquatic Sciences, 2012. 74(4): p. 683-734.
5. Cadenas, E. and K.J.A. Davies, Mitochondrial free radical generation, oxidative stress, and aging. Free Radical Biology and Medicine, 2000. 29(3–4): p. 222-230.
6. Albers, A.E., V.S. Okreglak, and C.J. Chang, A FRET-Based Approach to Ratiometric Fluorescence Detection of Hydrogen Peroxide. Journal of the American Chemical Society, 2006. 128(30): p. 9640-9641.
7. Yang, X., Y. Guo, and Z. Mei, Chemiluminescent determination of H2O2 using 4-(1,2,4-triazol-1-yl)phenol as an enhancer based on the immobilization of horseradish peroxidase onto magnetic beads. Analytical biochemistry, 2009. 393(1): p. 56-61.
8. Matsubara, C., N. Kawamoto, and K. Takamura, Oxo[5, 10, 15, 20-tetra(4-pyridyl)porphyrinato]titanium(IV): an ultra-high sensitivity spectrophotometric reagent for hydrogen peroxide. Analyst, 1992. 117(11): p. 1781-1784.
9. Steinberg, S., High-performance liquid chromatography method for determination of hydrogen peroxide in aqueous solution and application to simulated Martian soil and related materials. Environmental Monitoring and Assessment, 2013. 185(5): p. 3749-3757.
10. Chen, W., et al., Recent advances in electrochemical sensing for hydrogen peroxide: a review. Analyst, 2012. 137(1): p. 49-58.
11. Bartlett, P.N., et al., A study on the direct electrochemical communication between horseradish peroxidase and a poly(aniline) modified electrode. Journal of the Chemical Society, Faraday Transactions, 1996. 92(17): p. 3123-3130.
12. Gorton, L., et al., Amperometric biosensors based on an apparent direct electron transfer between electrodes and immobilized peroxidases. Plenary lecture. Analyst, 1992. 117(8): p. 1235-1241.
13. Bartlett, P.N., et al., An Enzyme Switch Employing Direct Electrochemical Communication between Horseradish Peroxidase and a Poly(aniline) Film. Analytical Chemistry, 1998. 70(17): p. 3685-3694.
14. Solanki, P.R., et al., Horse radish peroxidase immobilized polyaniline for hydrogen peroxide sensor. Polymers for Advanced Technologies, 2011. 22(6): p. 903-908.
15. Sheng, Q., M. Wang, and J. Zheng, A novel hydrogen peroxide biosensor based on enzymatically induced deposition of polyaniline on the functionalized graphene–carbon nanotube hybrid materials. Sensors and Actuators B: Chemical, 2011. 160(1): p. 1070-1077.
16. Royer, J.E., et al., Organic Thin-Film Transistors for Selective Hydrogen Peroxide and Organic Peroxide Vapor Detection. The Journal of Physical Chemistry C, 2012. 116(46): p. 24566-24572.
17. Raffa, D., K.T. Leung, and F. Battaglini, A Microelectrochemical Enzyme Transistor Based on an N-Alkylated Poly(Aniline) and Its Application to Determine Hydrogen Peroxide at Neutral pH. Analytical Chemistry, 2003. 75(19): p. 4983-4987.
18. Gaikwad, P.D., et al., Synthesis of H2SO4 doped polyaniline film by potentiometric method. Bulletin of Materials Science, 2006. 29(2): p. 169-172.
19. Chen, S.-A. and G.-W. Hwang, Water-Soluble Self-Acid-Doped Conducting Polyaniline: Structure and Properties. Journal of the American Chemical Society, 1995. 117(40): p. 10055-10062.
20. Chen, S., et al., Electrochemical sensing of hydrogen peroxide using metal nanoparticles: a review. Microchimica Acta, 2013. 180(1-2): p. 15-32.
21. Arnao, M.B., et al., A kinetic study on the suicide inactivation of peroxidase by hydrogen peroxide. Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology, 1990. 1041(1): p. 43-47.
22. Vlasits, J., et al., Mechanisms of catalase activity of heme peroxidases. Archives of Biochemistry and Biophysics, 2010. 500(1): p. 74-81.
23. Sanlı, A.E., A possible future fuel cell: the peroxide/peroxide fuel cell. International Journal of Energy Research, 2013. 37(12): p. 1488-1497.
24. Buettner, G.R., The Pecking Order of Free Radicals and Antioxidants: Lipid Peroxidation, α-Tocopherol, and Ascorbate. Archives of Biochemistry and Biophysics, 1993. 300(2): p. 535-543.