簡易檢索 / 詳目顯示

研究生: 蔡孟含
Tsai, Meng-Han
論文名稱: 有機金金屬催化末端炔磺醯胺與苯并異噁唑進行環化構築吲哚喹啉核心
Gold-Catalyzed Annulations of N-Aryl Ynamides with Benzisoxazoles to Construct 6H-Indolo[2,3-b]quinoline Cores
指導教授: 劉瑞雄
Liu, Rai-Shung
口試委員: 蔡易州
Tsai, Yi-Chou
吳明忠
Wu, Ming-Jung
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 135
中文關鍵詞: 金金屬催化環化吲哚喹啉苯并異噁唑末端炔磺醯胺
外文關鍵詞: Gold-Catalyzed, Annulation, 6H-Indolo[2,3-b]quinoline, Benzisoxazoles, Ynamides
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文報導一個新的末端炔磺醯胺與苯并異噁唑進行環化生成吲哚喹啉衍生物的反應。此反應可應用於合成自然界現有的生物鹼,包括norcryptotackeine, neocryptolepine和11-methylneocryptolepine。我們的實驗數據顯示,高溫會使氮-芳基親核性基團的構型可變性上升,並攻打金卡賓生成具活性的吲哚,而此中間態吲哚會再次攻打分子內的苯甲醛基團得到吲哚喹啉產物。


    This work reports new annulations of N-aryl ynamides with benzisoxazoles to form 6H-indolo[2,3-b]quinoline derivatives. The synthetic utility of this new method is manifested by its applicability to access naturally occurring alkaloids including norcryptotackeines, neocryptolepine and 11-methylneocryptolepine. Our experimental data indicate that high-temperature conditions allow N-aryl nucleophiles to become conformationally flexible, rendering the attack at gold carbenes effective to generate reactive indoles that attacks again the benzaldehyde to furnish the observed products.

    中文摘要 I 英文摘要 II 誌謝 III 目錄 IV 表目錄 V 圖目錄 VI 附件目錄 VII 英文縮寫對照表 X 第一節 緒論 11 第二節 文獻回顧 13 2-1藉由有機方法合成吲哚喹啉 13 2-2金金屬催化炔類和苯並異噁唑進行[3+2]環化反應 13 2-3金金屬催化丙炔酸酯與苯並異噁唑進行[5+2]環化反應 14 第三節 結果與討論 16 3-1 實驗動機與構思 16 3-2反應條件最佳化 17 3-3 金金屬催化多種末端炔磺醯胺與苯并異噁唑進行環化反應 19 3-4 金金屬催化末端炔磺醯胺與多種苯并異噁唑進行環化反應 20 3-5合成具生物活性之生物鹼 21 3-6反應機構探討 22 3-7 結構鑑定 23 第四節 結論 24 第五節 實驗部分 25 5-1 實驗之一般操作 25 5-2實驗基質之合成 27 1. 基質1a之合成方法: 27 2. 基質1b之合成方法: 29 3. 基質1g之合成方法: 31 4. 多種苯并異噁唑2a-2d之合成方法: 32 5-3 催化反應之操作 33 1. 3a合成實驗操作步驟: 33 5-4去保護反應 34 5-5實驗光譜數據資料 35 5-6 化合物3a的X-射線結晶結構和數據 49 第六節 參考文獻 57

    [1] (a) Thomé, I.; Nijsa, A.; Bolm, C. Chem. Soc. Rev. 2012, 41, 979. (b) Crabtree, R. H. Chem. Rev. 2015, 115, 127. (c) Franke, R.; Selent, D.; Bo¨rner, A. Chem. Rev. 2012, 112, 5675. (d) Cornils, B.; Herrmann, W. A. Applied Homogeneous Catalysis with Organometallic Compounds, Wiley-VCH, Weinheim, Germany, 2nd edn, 2002. (e) Sheldon, R. A.; Arends, I.; Hanefeld, U.Green Chemistry and Catalysis, Wiley-VCH, Weinheim, Germany, 2007. (f) Rothenberg, G. Catalysis, Wiley-VCH, Weinheim, Germany, 2008.
    [2] (a) Hashmi, A. S. K. Chem. Rev. 2007, 107, 3180. (b) Lopez, F.; Mascarenas, J. L. Chem. Soc. Rev. 2014, 43, 2904. (c) Muratore, M. E.; Homs, A.; Obradors, C.; Echavarren, A. M. Chem. – Asian J. 2014, 9, 3066. (d) Wagh, S. B.; Hsu, Y.-C.; Liu, R.-S. ACS Catal. 2016, 6 ,7160. (e) Sharma, P.; Liu, R.-S. Org. Lett. 2016, 18 , 412. (f) Giri, S. S.; Lin, L. -H.; Jadhav, P. D.; Liu, R.-S. Adv. Synth. Catal. 2017, 359, 590. (g) Giri, S. S.; Liu, R.-S. Adv.Synth. Catal. 2017, 359, 3311. (h) Teng, T.-M.; Liu, R.-S. J. Am. Chem. Soc. 2010, 132 ,9298. (i) Dateer, R. B.; Patia, K.; Liu, R.-S. Chem. Commun. 2012, 48, 7200. (j) Singh, R. R.; Liu, R.-S. Chem. Commun. 2017, 53, 4593. (k) Singh, R. R.; Pawar, S. K.; Huang, M.-J.; Liu, R.-S. Chem. Commun. 2016, 52, 11434. (l) Sahani, R. L.; Liu, R.-S. Chem. Commun. 2016, 52, 7482. (m) Chen, Y.-L.; Sharma, P.; Liu, R.-S. Chem. Commun. 2016, 52, 3187.
    [3] (a) O’Hagan, D. Nat. Prod. Rep. 2000, 17, 435. (b) Bodnar, B. S.; Miller, M. J. Angew. Chem. Int. Ed. 2011, 50, 5630. (c) Zhang, D.; Song, H.; Qin, Y. Acc. Chem. Res. 2011, 44, 447. (d) Michael, J. P. Nat. Prod. Rep. 2005, 22, 627. (e) Undheim, K.; Benneche,T. in Comprehensive Heterocyclic Chemistry II (Eds.: Katritzky, A. R.; Rees, C. W.; Scriven, E. F. V.; McKillop, A.), Pergamon, Oxford, 1996; Vol. 6; p. 93-231. (f) Joule, J. A.; Mills, K. in Heterocyclic Chemistry, 4th ed. Blackwell, Cambridge, 2000, p. 194-232. (g) Erain, A. W. Chem. Rev. 1993, 93 1991.
    [4] (a) Kissane, M.; Maguire, A. R. Chem. Soc. Rev. 2010, 39, 845. (b) Martin, J. N.; Jones, R. C. F. in Synthetic Applications of 1,3-Dipolar Cycloaddition, Chemistry toward Heterocycles and Natural Products, (Eds.: Padwa, A.; Pearson, W. H.), Wiley, Hoboken, NJ, 2003, Chapter 1. (c) Gothelf, K. V. in Cycloaddition Reactions in Organic Synthesis (Eds.: Kobayashi, S.; Jørgensen, K. A.), Wiley-VCH: Weinheim, 2002, Chapter 6. (d) Kanemasa, S. in Cycloaddition Reactions in Organic Synthesis, (Eds.: Kobayashi, S.; Jørgensen, K. A.), Wiley-VCH: Weinheim, Germany, 2002, Chapter 7.
    [5] (a) Huple, D. B.; Ghorpade, S.; Liu, R.-S. Adv. Synth. Catal. 2016, 358, 1348. (b) Li, L.; Tan, T.-D.; Zhang, Y.-Q.; Liu, X.; Ye, L.-W. Org. Biomol. Chem. 2017, 15, 8483.
    [6] (a) Zhou, A.-H.; He, Q.; Shu, C.; Yu, Y.-F.; Liu, S.; Zhao, T.; Zhang, W.; Lu, X.; Ye, L.-W. Chem. Sci. 2015, 6, 1265. (b) Xiao, X.-Y.; Zhou, A.-H.; Shu, C.; Pan, F.; Li, T.; Ye, L.-W. Chem. Asian J. 2015, 10, 1854. (c) Shen, W.-B.; Xiao, X.-Y.; Sun, Q.; Zhou, B.; Zhu, X.-Q.; Yan, J.-Z.; Lu, X.; Ye, L.-W. Angew. Chem. Int. Ed. 2017, 56, 605. (d) Giri, S. S.; Liu, R.-S.. Chem. Sci. 2018, 9, 2991. (e) Mokar, B. D.; Jadhav, P. D.; Pandit, Y. B.; Liu, R.-S. Chem. Sci., 2018, DOI: 10.1039/C8SC00986D.
    [7] (a) Jin, H.; Huang, L.; Xie, J.; Rudolph, M.; Rominger, F.; Hashmi, A. S. K. Angew. Chem. Int. Ed. 2016, 55, 794. (b) Jin, H.; Tian, B.; Song, X.; Xie, J.; Rudolph, M.; Rominger, F.; Hashmi, A. S. K. Angew. Chem. Int. Ed. 2016, 55, 12688.
    [8] (a) Sahani, R. L.; Liu, R.-S. Angew. Chem. Int. Ed. 2017, 56, 1026. (b) Sahani, R. L.; Liu, R.-S. Angew. Chem. Int. Ed. 2017, 56, 12736.
    [9] (a) Kadam, H. K.; Tilve, S. G. J. Heterocyclic Chem. 2016, 53, 2066. (b) Parvatkar, P. T.; Parameswaran P. S.; Tilve, S. G. Curr. Org. Chem. 2011, 15, 1036.(c)Subbaraju, G. V.; Kavitha, J.; Rajasekhar, D.; Jimenez, I. J. J. Nat. Prod. 2004, 67, 461. (d) Cimanga, K.; Bruyne, T. D.; Pieters, L.; Vlietinck, A. J. J. Nat. Prod. 1997, 60, 688. (e) Miert, S. V.; Hostyn, S.; Maes, B. U. W.; Cimanga, K.; Brun, R.; Kaiser, M.; Ma´tyus, P.; Dommisse, R.; Lemie`re, G.; Vlietinck, A.; Pieters, L. J. Nat. Prod. 2005, 68, 674. (f) Wanda, P.-C.; Pognan, F.; Kaczmarek, E.; Boratyliski, J. J. Med. Chem. 1994, 37, 3503.
    [10] (a)Ali, S.; Li, Y.-X.; Anwar, S.; Yang, F.; Chen, Z. S.; Liang, Y.-M. J. Org. Chem. 2012, 77, 424
    [11] Molina, P.; Molina, P. M.; Delgado, S. Synthesis 1999, 326.
    [12] Sundaram, G. S. M.; Venkatesh, C.; Syamkumar, U. K.; Ila, H.; Junjappa, H. J. Org. Chem. 2004, 69, 5760.
    [13] X-ray crystallographic data of compound 3a were deposited at Cambridge Crystallographic Data Center (CCDC 1840927).
    [14] Recent reviews for ynamides, see: (a) X. N. Wang, H. S. Yeom, L. C. Fang, S. He, Z. X. Ma, B. L. Kedrowski, R. P. Hsung, Acc. Chem. Res. 2014, 47, 560; (b) K. A. DeKorver, H. Li, A. G. Lohse, R. Hayashi, Z. Lu, Y. Zhang, R. P. Hsung, Chem. Rev. 2010, 110, 5064; (c) G. Evano, A. Coste, K. Jouvin, Angew. Chem. 2010, 122, 2902; Angew. Chem. Int. Ed. 2010, 49, 2840; (d) G. Evano, C. Theunissen, M. Lecomte, Aldrichimica Acta, 2015, 48, 59; (e) T. Lu, Z. Lu, Z.-X. Ma, Y. Zhang, R. P. Hsung, Chem. Rev. 2013, 113, 4862.
    [15] For ynamides bearing a reactive N-aryl group, see: (a) Shu, C.; Wang, Y.-H.; Zhou, B.; Li, X.-L.; Ping, Y.-F.; Lu, X.; Ye, L.-W. J. Am. Chem. Soc. 2015, 137, 9567; (b) Li, L.; Chen, X.-M.; Wang, Z.-S.; Zhou, B.; Liu, X.; Lu, X.; Ye, L.-W. ACS Catal. 2017, 7, 4004.
    [16] Beale, T. M.; Allwood, D. M.; Bender, A.; Bond, P. J.; Brenton, J. D.; Charnock-Jones, D. S.; Ley, S. V.; Myers, R. M.; Shearman, J. W.; Temple, J.; Unger, J.; Watts, C. A.; Xian, J. ACS Med. Chem. Lett. 2012, 3, 177.
    [17] Deng, W.; Liu, L.; Zhang, C.; Liu, M.; Guo, Q.-X. Tetrahedron Lett. 2005, 46, 7295

    QR CODE