簡易檢索 / 詳目顯示

研究生: 陳建承
Chen, Chien-Cheng
論文名稱: 以機器學習法分析大學生之校園數位足跡
Analysis of Undergraduates’ Campus Digital Footprint by Machine Learning
指導教授: 區國良
Ou, Kuo-Liang
口試委員: 唐文華
Tarng, Wern-Huar
曾秋蓉
Tseng, Chiu-Jung
學位類別: 碩士
Master
系所名稱: 南大校區系所調整院務中心 - 人力資源與數位學習科技研究所
Graduate Institute of Human Resource and eLearning Technology
論文出版年: 2019
畢業學年度: 108
語文別: 中文
論文頁數: 122
中文關鍵詞: 機器學習數位足跡五大人格特質
外文關鍵詞: Machine Learning, Digital Footprint, Big Five Personality Traits
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文利用Google Maps TimeLine服務,直接使用個人智慧型手機中GPS定位功能,蒐集國立清華大學學士班共168位學生於校園中的數位足跡,運用R語言Shiny工具建構數位足跡視覺化系統以互動式網頁呈現足跡分布,結合五大人格特質以及校園空間,讓研究者可以分析數位足跡、人格特質以及校園空間之間的關連。本論文使用機器學習之分群演算法、社交網路分析進行運算,採用高低分組針對五大人格特質中五種類別進行個別分析,結果發現外向性偏高,其足跡較容易聚集於校園中的社團空間;而外向性偏低、神經質偏高或友善性偏低的學生,其足跡較容易聚集於校園外租屋處或校園外飲食區;開放性偏高的男學生較喜歡在校外用餐、開放性偏低的女學生較喜歡在校內用餐;而嚴謹性偏低的學生卻比嚴謹性偏高的學生更容易在圖書館停留。本論文除了與相關文獻的結果一致外,還可發現過去未知的關連,對於未來研究者可提供在有限的設備以及人力成本的情況下,運用受試者隨身攜帶設備來蒐集資料,進行數位足跡相關研究之參考。


    This paper revealed the relationships between GPS-based digital footprints and personality by unsupervised machine learning methods and Social Network Analysis tools. All the data was collected by Google Maps TimeLine service of personal smartphones for two semesters. Participants were 168 undergraduate students of National Tsing Hua University. Meanwhile, a user-friendly interface of data visualization was developed in this paper for exploring the potential patterns of row data.
    The participants’ big-five personality was discovered by questionaries before data collection. The results showed that if students’ extraversion was high, their footprints were likely to be gathered near the club offices in campus; if the students with low extraversion, high neuroticism or low agreeableness, their footprints were likely to be gathered in the rental housing or foodcourt outside the campus; male students with high openness to experience prefer eating outside the campus, female students with low openness to experience prefer eating inside the campus; while students with low conscientiousness are more likely to stay in the library than those with high conscientiousness.
    This paper discussed the usability of using personal GPS devices of cell phones in digital footprint collection and applying machine learning methods for analyzing the relationships between the footprint and personality, which can be used as a reference for future researchers.

    摘要 I Abstract II 目錄 1 表目錄 3 圖目錄 6 第一章 緒論 12 1.1 研究背景與動機 12 1.2 研究目的與問題 14 1.3 研究範圍與限制 15 第二章 文獻探討 16 2.1 視覺化分析 16 2.2 校園意象 20 2.3 數位足跡 22 2.4 人格特質 27 2.5 機器學習 30 2.6 小結 35 第三章 研究方法 36 3.1 資料流程架構 36 3.2 研究架構 38 3.3 研究對象 39 3.4 研究工具 40 第四章 數位足跡視覺化系統 43 4.1 數據來源與數位足跡收集系統 43 4.2 資料轉換與資料清理 48 4.3 GPS準確度 54 4.4 數位足跡視覺化系統 55 第五章 研究結果與分析 64 5.1 基本資料分布 64 5.2 數位足跡資料內容 67 5.3 統計分析 70 5.4 結果分析 72 5.3.1 DBScan分析 76 5.3.2 Social Network Analysis 92 5.5 小結 113 第六章 結論與建議 115 6.1 結論 115 6.2 未來建議 117 參考文獻 118 附錄 121

    Adriana, R., & Marian, D. (2011). Techniques for Statistical Data Visualization in GIS. Informatica Economica, 15(3), 72-79.
    Ai, P., Liu, Y., & Zhao, X. (2019). Big Five personality traits predict daily spatial behavior: Evidence from smartphone data. Personality and Individual Differences, 147, 285-291.
    Azucar, D., Marengo, D., & Settanni, M. (2018). Predicting the Big 5 personality traits from digital footprints on social media: A meta-analysis. Personality and Individual Differences, 124, 150-159.
    Bachrach, Y., Kosinski, M., Graepel, T., Kohli, P., & Stillwell, D. (2012). Personality and patterns of Facebook usage. Paper presented at the Proceedings of the 4th Annual ACM Web Science Conference, Evanston, Illinois.
    Baer, L. D., & Butler, D. R. (2000). SPACE-TIME MODELING OF GRIZZLY BEARS*. Geographical Review, 90(2), 206-221.
    Baer, L. D., Gesler, W. M., & Konrad, T. R. (2000). The wineglass model: tracking the locational histories of health professionals. Social Science & Medicine, 50(3), 317-329.
    Barnes, J. A. (1954). Class and Committees in a Norwegian Island Parish. Human Relations, 7(1), 39-58.
    Buccafurri, F., Lax, G., Nicolazzo, S., & Nocera, A. (2015). Comparing Twitter and Facebook user behavior: Privacy and other aspects. Computers in Human Behavior, 52, 87-95.
    Cantis, S. D., Ferrante, M., Kahani, A., & Shoval, N. (2016). Cruise passengers' behavior at the destination: Investigation using GPS technology. Tourism Management, 52, 133-150.
    Edwards, D., & Griffin, T. (2013). Understanding tourists’ spatial behaviour: GPS tracking as an aid to sustainable destination management. Journal of Sustainable Tourism, 21(4), 580-595.
    Friedman, V. (2008). Data Visualization and Infographics. Monday Inspiration.
    Jungherr, A. (2017). Normalizing digital trace data (N. J. Stroud & S. McGregor Eds.). NY: Routledge.
    Kelley, T. L. (1939). The selection of upper and lower groups for the validation of test items. Journal of Educational Psychology, 30(1), 17-24.
    Li, F., Long, X., Du, S., Zhang, J., Liu, Z., Li, M., . . . Yu, H. (2015). Analyzing Campus Mobility Patterns of College Students by Using GPS Trajectory Data and Graph-Based Approach. International Conference on Geoinformatics.
    Lynch, K. (1960). The image of the city. Cambridge: Mass: MIT Press.
    Saldarriaga, J. F., Kurgan, L., & Brawley, D. (2017). Visualizing Conflict: Possibilities for Urban Research. Urban Planning, 2(1), 8.
    Samuel, A. L. (1959). Some Studies in Machine Learning Using the Game of Checkers. IBM Journal of Research and Development, 3(3), 210-229.
    Searle, J. R. (1980). Minds, Brains and Programs. Behavioral and Brain Sciences(3), 417-457.
    Seong Hoon Kim, J. W. C. G. T. H. (2016). Air Pollution Data Visualization Method based on Google Earth and KML for Seoul Air Quality Monitoring in Real-time. International Journal of Software Engineering and Its Applications, 10(10), 117-128.
    Uyan Dur, B. I. (2014). Data Visualization and Infographics In Visual Communication Design Education at The Age of Information. Journal of Arts and Humanities, 3(5), 12.
    Weaver, S. D., & Gahegan, M. (2007). Constructing, Visualizing, and Analyzing a Digital Footprint. Geographical Review, 97(3), 324-350.
    Whuber. (2011, 2017). Measuring accuracy of latitude and longitude? Retrieved from https://gis.stackexchange.com/questions/8650/measuring-accuracy-of-latitude-and-longitude
    Ying Wang, C. H., Jie Shan. (2015). An initial study on college students' daily activities using GPS trajectories. International Conference on Geoinformatics, pp.1-6.
    Zhi-fang, W., Peng, L., & Ling, L. (2015). Analysis And Research of Student’s Behavior Trajectories Based on Big Data Positioned by Intelligent Terminal. International Conference on Modelling, Identification and Control (ICMIC).
    王秀美, & 李長燦. (2011). 五大人格特質量表中文版之信效度研究. 社會服務與休閒產業研討會.
    付春梅, 梁敬芝, & 劉向兵. (2011). 大學校園景觀的教育功效探析. 中國高教研究(3), 62-63.
    危芷芬譯. (2017). 人格心理學(第十一版): 台北:雙葉書廊.
    李早, 陳薇薇, & 李瑾. (2016). 學校周邊空間與小學生放學行為特徵的關聯性研究. 建築學報(2), pp.113-117.
    李誠. (2012). 人力資源管理的12堂課: 台北:天下文化.
    李艷齡. (2011). 學童校園環境空間行為特性之研究. (碩士), 國立臺北教育大學, 台北市.
    周惠莉. (2003). 五大人格特質、性別角色與轉換型領導關聯性之研究. (碩士), 中原大學, 桃園縣.
    姜怡君. (2015). 校園經驗、學校認同與續讀意願相關性之探究:以臺灣雙北地區私立大學大一學生為例. [A Correlational Study of Freshmen’s Campus Experiences, School Identity and Student Retention in Private Universities in the Greater Taipei Area]. 學生事務與輔導, 54(3), 35-54.
    曹音鵬. (2005). 校園空間意象之研究. (碩士), 國立臺東大學, 台東縣.
    陳會昌譯. (2014). 人格心理学(第八版): 北京:中國輕工業出版社.
    蔡佩純. (2010). 微積分試題分析之實徵性研究-以交通大學九十六學年度第二學期會考為例. (碩士), 國立交通大學, 新竹市.
    蔡昀伶. (2016). 人格特質、實作滿意度及從農意願之研究-以大專生洄游農村計畫為例. (碩士), 國立中興大學, 台中市.
    鄧景宜, 曾旭民, 李怡禎, & 游朝舜. (2011). "International English Big-Five Mini-Markers"之繁體中文版量表發展. [International English Big-Five Mini-Markers: Development of the Traditional Chinese Version]. 管理學報, 28(6), 579-615.
    饒雅琳. (2004). 大學校園意象之研究. (碩士), 國立高雄大學, 高雄市.

    QR CODE