研究生: |
葉文勇 Wen Yung Yeh |
---|---|
論文名稱: |
電漿特性對一元及二元單相材料合成的影響 Effects of plasma characteristics on the thin film synthesis in one-component and two-component single phase systems |
指導教授: |
黃振昌
Jennchang Hwang |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2001 |
畢業學年度: | 89 |
語文別: | 中文 |
論文頁數: | 143 |
中文關鍵詞: | 電漿 、鑽石 、類鑽 、氮化鋁 、電漿特性 、尖端結構 、化學氣相沈積法 |
外文關鍵詞: | plasma, diamond, DLC, AlN, plasma characteristics, tip structure, CVD |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本論文中,我們探討電漿特性對於材料合成的相關影響,主要有三大部分,一是探討電漿如何影響一元單相鑽石膜的成長,二是探討電漿如何影響二元單相氮化鋁薄膜的成長,三是以斜切矽基材表面成長類鑽石來探討電漿與斜切表面的互動關係。
首先,為了徹底瞭解在實驗所用的大面積平面型微波電漿及射頻電漿系統中電漿的各項特性,我們以Langmuir probe及光譜儀等量測設備,實際量測得到在大面積平面型微波電漿系統中,當氣壓為0.2Torr時可以得到最高的電子密度,其值為4.4 x 1011 cm-3,而在此條件下電子溫度則是達到最低值0.4 eV,同時,基於高電子密度對於沈積而言是比較有利的條件,我們選擇此一情況進行沈積鑽石的工作。另外,我們也以光譜儀量測得到在CH4/CO2/H2電漿中,電漿的主要活化粒子組成為H、CH、OH及C2。在實際的鑽石合成實驗中,我們發現在CH4 : CO2 : H2 = 6 : 12 : 100的條件下,鑽石的沈積速率可以達到0.2 μm/hr,比起在沒有CO2加入的條件下30 nm/hr的沈積速率要快了約7倍,同時也比在其它CO2濃度條件下約40 nm/hr的沈積速率要快了許多,我們認為這是因為在此情形下,H、CH、OH及C2粒子的相對組成最適合鑽石成長的緣故。在氮化鋁沉積實驗中,我們除了得知電漿可以藉著游離及活化作用提昇25 % 沉積速率外,也得到在直流偏壓為8V及-85V時沈積速率分別為15.3 及13.0 nm/min的結果。我們認為這是因為在直流偏壓小於電漿電位的情況下,愈正的直流偏壓會使得基材表面附近電子密度增大,進而活化更多粒子參與反應的結果。此外,我們也製備了不同斜切角度的矽(111)試片來沉積類鑽膜,藉以探討基材效應對於類鑽膜成長機制及結構型態的影響,發現在terrace width小於21.1A的試片上可以沉積出類鑽/碳化矽混合的尖端結構。此一尖端結構的密度和terrace width有關,在terrace width等於21.1A的試片上其密度約為25個/μm2,而在terrace width等於14.4A的試片上則約為38個/μm2。我們除了分析此一尖端結構外,也提出了一個SiC spikes和電場相互作用的想法來說明形成此一結構的可能原因。
In this study, we discussed the effects of plasma characteristics on the synthesis of materials. Three major topics were included : (1) how the plasmas affect the deposition of one-component single phase diamond films, (2) how the plasmas affect the growth of one-component single phase AlN films, and (3) discussed the relation between the plasma and the oblique-cut surface by depositing diamond-like carbon (DLC) films on oblique-cut silicon substrates.
At first, we used Langmuir probe and optical emission spectroscope (OES) to get the plasmas characteristics in the planar large-area microwave plasma source and RF plasma system. The electron density reached a maximum value of 4.4 x 1011 cm-3 at a 0.2 Torr pressure, and the electron temperature reached a minimum value of 0.4 eV under this condition. Because the higher electron density was considered as a better condition for we to proceed the deposition process, we deposited diamond films at this condition. We also used OES to get the major radicals composition in the CH4/CO2/H2 plasma were H、CH、OH and C2. In the diamond synthesis, we find that a deposition rate of 0.2mm/hr could be reached when the CH4 : CO2 : H2 = 6 : 12 : 100. The rate was more faster than other conditions by a factor of 7 because that the optimum radicals composition could be got under this condition. In the deposition of AlN films, we not only got the result that the deposition rate could be enhanced 25% by adding a ICP zone. We also got the deposition rate changed from 15.3 nm/min to 13.0 nm/min when the DC bias was switched from 8 V to -85 V. This is because that more radicals near the substrate surface could be created to enhance the deposition of AlN because more electrons could be created at more the positive DC bias condition. Finally, we deposited DLC on oblique-cut Si(111) substrates to discuss the effects of substrates on the growth mechanism and the structure of DLC films. We find composted DLC/SiC tips could be deposited when the terrace width was less than 21.1 A. The tip density was 25 μm-2 and 38 μm-2 on the substrate with the terrace width of 21.1 A and 14.4 A respectively. A speculation based on the formation of SiC spikes and electric field was provided to explain these results.
第一章
[1] J. T. Huang, W. Y. Yeh, J. Hwang, and H. Chang, Thin Solid Films 315 (1998) 35-39.
[2] J. S. Chen, W. Y. Yeh, W. T. Lin, W. Y. Liu, M. F. Lu, J. Hwang, and H. Chang, Journal of Applied Physics, Vol. 85, No. 6, 1999 (3339-3344).
[3] R. K. Singh, D. Gilbert, R. Tellshow, P. H. Holloway, R. Ochoa, J. H. Simmons and R. Koba, Appl. Phys. Lett. 61, 2863 (1992).
[4] T. J. Wu and C. S. Kou, Rev. Sci. Instrum. 70, 2331 (1999).
[5] H. Maiwa and K. Okazaki, Ferroelectrics, 131, 83 (1992).
[6] CT. Huang and IG. Duh, Surface and Coatings Technology, 56(1), 51 (1992).
[7] F. Hasegawa, T. Takahashi, K. Kubo and Y. Nannichi, Japanese Iournal of Applied Physics, 26, 1555 (1987).
[8] S. Kaneko, M. Tanaka, K. Masu, K. Tsubouchi and N. Mikoshiba, Journal of Crystal Growth, 115, 643 (1991).
[9] Donaldl. Smith, Thin Film Deposition, (McGraw-Hill, 1995) p. 382-387.
[10] V. W. Ballarotto and M. E. Kordesch, Journal of Vacuum Science and Technology A, 16, 1676 (1998).
[11] LB. Rowland, RS. Kern, S. Tanaka and RF. Davis, Journal of Materials Research, 8(9), 2310 (1993).
[12] 蔡啟善主編,聲表面波與聲光材料及器件,第十一篇,大陸。
[13] M. A. Olmstead, Thin Films: Heteroepitaxial Systems, edited by W. K. Liu and M. B. Santos, (World Scientific, 1999) p. 260.
第二章
[1] Michael A. Lieberman and Allan J. Lichtenberg, Principles of Plasma Discharges and Materials Processing, (Wiley-Interscience, 1994) p. 7.
[2] Michael A. Lieberman and Allan J. Lichtenberg, Principles of Plasma Discharges and Materials Processing, (Wiley-Interscience, 1994) p. 8.
[3] Brain Chapman, Glow Discharge Processes, (Wiley-Interscience, 1980).
[4] F. F. Chen, in Plasma Diagnostics Techniques, edited by R. H. Huddle and S. L. Leonard, (Academic, New York, 1995), Chap. 4.
[5] Michael A. Lieberman and Allan J. Lichtenberg, Principles of Plasma Discharges and Materials Processing, (Wiley-Interscience, 1994) p. 16-21.
[6] Brain Chapman, Glow Discharge Processes, (Wiley-Interscience, 1980) p. 51.
[7] Michael A. Lieberman and Allan J. Lichtenberg, Principles of Plasma Discharges and Materials Processing, (Wiley-Interscience, 1994) p. 175-177.
[8] Brain Chapman, Glow Discharge Processes, (Wiley-Interscience, 1980) p. 53-60.
[9] Michael A. Lieberman and Allan J. Lichtenberg, Principles of Plasma Discharges and Materials Processing, (Wiley-Interscience, 1994) p. 164.
[10] Michael A. Lieberman and Allan J. Lichtenberg, Principles of Plasma Discharges and Materials Processing, (Wiley-Interscience, 1994) p. 176.
[11] M. Druyvesteyn and F. M. Penning, Rev. Mod. Phys. 12, 87 (1940).
[12] Yu. M. Kagan, V. I. Perel, Probe Methods in Plasma Research, Soviet Physics Uspekhi, Russian, 81(3-4) (1964).
[13] Brain Chapman, Glow Discharge Processes, (Wiley-Interscience, 1980) p. 31-34.
[14] T. J. Wu and C. S. Kou, Rev. Sci. Instrum. 70, 2331 (1999).
[15] Michael A. Lieberman and Allan J. Lichtenberg, Principles of Plasma Discharges and Materials Processing, (Wiley-Interscience, 1994) p. 94-96.
[16] Yuri P. Raizer, Gas Discharge Physics ( Springer-Verlag, Berlin Heidelberg, 1991).
[17] Michael A. Lieberman and Allan J. Lichtenberg, Principles of Plasma Discharges and Materials Processing, (Wiley-Interscience, 1994) p. 38.
[18] M. C. Desjonqueres and D. Spanjaard 1996 Concepts in Surface Physics, 2nd Edition (Springer) p 93-99.
[19] M. A. Paesler, D. Sayers, R. Tsu, and J. Gonzalez-Hernandez 1983 Phys. Rev. B 28 4550.
[20] C. E. Bouldin, R. A. Forman, M. I. Bell, and E. P. Donovan 1991 Phys. Rev. B 44 5492.
[21] C. J. Glover, M. C. Ridgway, K. M. Yu, G. J. Foran, D. Desnica-Frankovic, and C. Clerc 2001 Phys. Rev. B 63 3204.
[22] Michael A. Liberman and Allan J. Lichtenberg 1994 Principles of Plasma Discharge and Materials Processing (Wiley) p 552-553.
[23] M. C. Desjonqueres and D. Spanjaard 1996 Concepts in Surface Physics, 2nd Edition (Springer) p 98
[24] J. D. Jackson 1990 Classical Electrodynamics, 2nd Edition (Wiley) Chapter 15.
[25] I. C. E. Turcu and J. B. Dance 1999 X-rays from Laser Plasma: generation and applications (Wiley).
[26] J. A. Mucha, D. L. Flamm, and D. E. Ibboston, J. Appl. Phys. 65 (1989) 3448.
[27] O. Matsumoto, H. Toshima, and Y. Kanzaki, Thin Solid Films, 128 (1985) 341.
[28] Y. Mitsuda, Y. Kojima, T. Yoshida, K. Akashi, J. Mater. Sci. 22 (1987) 1557.
[29] 美國NIST(National Institute of Standards and Technology)原子光譜資料庫.
第三章
[1] M. W. Geis, D. D. Rathman, D. J. Eerlich, R. A. Murphy, and W. T. Lindley, IEEE Electron Device Lett. 8, 341 (1987).
[2] G. Sh. Gildenblat, S. A. Grot, C. W. Hatfield, A. R. Badzian, and T. Badzian, IEEE Electron Device Lett. 11, 371 (1990).
[3] D. Pickrell, W. Zhu, A. R. Badzian, R. Messier, and R. E. Newnham, Appl. Phys. Lett. 56, 2010 (1990).
[4] E. Yasu. N, Ohahi, T. Ando, J. Tanaka, M. Kamo, Y. Sato, and H. Kiyota, Diam. Relat. Mater. 4, 59 (1994).
[5] B. A. Fox, M, L. Hartsell, D. M. Malta, H. A. Wynands, C. T. Kao, L. S. Plano, G. J. Tessmer, R. B. Henard, J. S. Holmes, A. J. Tessmer, and D. L. Dreifus, Diam. Relt. Mater. 4, 622 (1995).
[6] Karl E. Spear and John P. Dismukes, Synthetic Diamond: Emerging CVD Science and Technology, (Wiley, 1994), p. 114-115.
[7] 吳倉聚,微波激發之大面積高密度表面波電漿源之研究,國立清華大學博士學位論文。
[8] R. K. Singh, D. Gilbert, R. Tellshow, P. H. Holloway, R. Ochoa, J. H. Simmons and R. Koba, Appl. Phys. Lett. 61, 2863 (1992).
[9] G. F. Zhang, V. Buck, Diam. Relat. Mater. 8, 2148 (1999).
[10] P. Joeris., C. Benndorf, and S. Bohr, J. Appl. Phys. 71, 4638 (1992).
[11] Kungen Teii and Toyonobu Yosshida, J. Appl. Phys. 85, 1864 (1999).
[12] Katsuyuki Okada, Shojiro Komatsu, and Seiichiro Matsumoto, J. Mater. Res. 14, 578 (1999).
[13] T. J. Wu and C. S. Kou, Rev. Sci. Instrum. 70, 2331 (1999).
[14] Robert F. Davis, Diamond Films and Coatings, (Noyes Publications, 1993), p. 109.
[15] D. M. Gruen, S. Liu, A. R. Krauss, J. Luo, and X. Pan, Appl. Phys. Lett. 64(12), 21 (1994).
[16] T. Lin, G. Y. Yu, A. T. S. Wee, and Z. X. Shen, Appl. Phys. Lett. 77(17), 2692 (2000).
[17] M. Ikeda, H. Ito, M. Hiramatsu, M. Hori, and T. Goto, J. Appl. Phys. 82(8), 4055 (1997).
[18] H. Ndda, H. Nagai, M. Shimakura, and M. Hiramatsu, J. Vac. Sci. Technol. A 16(6), 3170 (1998).
[19] Y. Muranaka, H. Yamashita, K. Sato, and H. Miyadera, J. Appl. Phys. 67(10), 6247 (1990).
[20] G. Balestrino, M. Marinelli, E. Milani, A. Paoletti, I. Pinter, and A. Tebano, Appl. Phys. Lett. 62(8), 879 (1993).
[21] C. A. Wolden, K. K. Gleason, Diamond Relat. Mater. 5 (1996) 1503.
[22] D. G. Goodwin, J. Appl. Phys. 74 (1993) 6888.
[23] T. Kim and T. Kobayashi, Jan. J. Appl. Phys. 33 (1994) L459.
[24] C. Z. Gu and X. Jiang, J. Appl. Phys. 88 (2000) 1788.
[25] N. Jiang, S. Kujime, I. Ota, T. Inaoka, Y. Shintani, H. Makita, A. Hatta, J. Crystal Growth 218 (2000) 265.
[26] T. Sharda, T. Soga, T. Jimbo, M. Umeno, Diamond Relat. Mater. 9 (2000) 1331.
[27] L. Chow, D. Zhou, A. Hussain, S. Kleckley, K. Zollinger, A. Schulte, H. Wang, Thin Solid Films 368 (2000) 193.
[28] J. Schwan, S. Ulrich, V. Batori, H. Ehrhardt, and S. R. P. Silva, J. Appl. Phys. 80, 440 (1996).
[29] X. Y. Zhang, L. D. Zhang, M. J. Zheng, G. H. Li, and L. X. Zhao, J. Crystal Growth 223 (2001) 306.
[30] J. R. Wood, Q. Zhao, M. D. Frogley, E. R. Meurs, A. D. Prins, T. Peijs, D. J. Dunstan, and H. D. Wagner, Phys. Review B, 62, 7571 (2000).
[31] C. A. Cooper, R. J. Young, and M. Halsall, Composites: Part A 32 (2001) 401.
[32] W. A. Y. and R. Messier, Science. 247 (1990) 688.
[33] M. Nishitani-Gamo, T. Tachibana, K. Kobashi, I. Sakaguchi, K. P. Loh, K. Yamamoto, T. Ando, Diamond Relat. Mater. 7 (1998) 783.
[34] J. A. Mucha, D. L. Flamm, and D. E. Ibboston, J. Appl. Phys. 65 (1989) 3448.
[35] O. Matsumoto, H. Toshima, and Y. Kanzaki, Thin Solid Films, 128 (1985) 341.
[36] Y. Mitsuda, Y. Kojima, T. Yoshida, K. Akashi, J. Mater. Sci. 22 (1987) 1557.
[37] Karl E. Spear and John P. Dismukes, Synthetic Diamond: Emerging CVD Science and Technology, (Wiley, 1994), p. 93.
[38] A. Grill, Diamond Relat. Mater. 8 (1999) 428.
[39] J. C. Angus, and F. Jansen, J. Vac. Sci. Technol. A 6, 1778 (1988).
[40] A. llie, A. C. Ferrari, T. Yagi, and J. Robertson, Appl. Phys. Lett. 76, 2627 (2000).
[41] R. D. Forrest, A. P. Burden, and S. R. P. Silva, L. K. Cheah, and X. Shi, Appl. Phys. Lett. 73, 3784 (1998).
[42] Kwang-Ryeol Lee, Kwang Yong Eun, Sunup Lee, and Ding-Ryul Jeon, Thin Solid Films 290-291, 171 (1996).
[43] R. Wachter, A. Cordery, S. Proffitt, and J. S. Foord, Diamond and Related Materials 7, 687 (1998).
[44] J. H Jung, B. K. Ju, H. Kim, S. J. Chung, J. Jang, J. Vac. Sci. Technol. B 16, 705 (1998)
[45] M. A. Olmstead, Thin Films: Heteroepitaxial Systems, edited by W. K. Liu and M. B. Santos, (World Scientific, 1999) p. 244-254.
[46] M. A. Olmstead, Thin Films: Heteroepitaxial Systems, edited by W. K. Liu and M. B. Santos, (World Scientific, 1999) p. 260.
[47] Donaldl. Smith, Thin Film Deposition, (McGraw-Hill, 1995) p. 382-293-296.
[48] D. B. Dimitrov, D, Papadimitriou, and G. Beshkov, Diamond and Related Materials 8, 1148 (1999).
[49] David N. Belton, Stephen J. Harris, Steven J. Schmieg, Anita M. Weiner, and Thomas A. Perry, Appl. Phys. Lett. 54, 416 (1989).
[50] Karl E. Spear and John P. Dismukes, in Synthetic Diamond: Emerging CVD Science and Technology (Wiley, 1994), p. 114-115.
第四章
[1] H. C. Lee and J. Y. Lee, Journal of Materials Science : Materials in Electronics 8, 385 (1997).
[2] M. Ishihara, H. Yumoto, T. Tsuchiya, and K. Akashi, Thin Solid Films, 281-282, 321 (1996).
[3] B. Wang, Y. N. Zhao, and Z He, Vacuum, 48(5), 427 (1997).
[4] H. C. Lee, J. Y. Lee, and H. J. Ahn, Thin Solid Films, 251, 136 (1994).
[5] A. K. Chu, C. H Chao, F. Z. Lee, and H. L. Huang, Journal of Electronic Materials, 30(1), 1 (2001).
[6] 蔡啟善主編,聲表面波與聲光材料及器件,第十一篇,大陸。
[7] F. Hasegawa, T. Takahashi, K. Kubo and Y. Nannichi, Japanese Iournal of Applied Physics, 26, 1555 (1987).
[8] S. Kaneko, M. Tanaka, K. Masu, K. Tsubouchi and N. Mikoshiba, Journal of Crystal Growth, 115, 643 (1991).
[9] H. Maiwa and K. Okazaki, Ferroelectrics, 131, 83 (1992).
[10] CT. Huang and IG. Duh, Surface and Coatings Technology, 56(1), 51 (1992).
[11] Y. Someno, M. Sasaki, and T. Hirai, Japanese Journal of Applied Physics part 2- letters, 29(2), L358 (1990).
[12] B. Aspar, R. Rodriguezclemente, A. Figueras, B. Armas, and C. Combescure, Journal of Crystal Growth, 129(1-2), 56 (1993).
[13] V. W. Ballarotto and M. E. Kordesch, Journal of Vacuum Science and Technology A, 16, 1676 (1998).
[14] LB. Rowland, RS. Kern, S. Tanaka and RF. Davis, Journal of Materials Research, 8(9), 2310 (1993).
[15] Michael A. Lieberman and Allan J. Lichtenberg, Principles of Plasma Discharges and Materials Processing, (Wiley-Interscience, 1994) p. 160-161.
[16] Michael A. Lieberman and Allan J. Lichtenberg, Principles of Plasma Discharges and Materials Processing, (Wiley-Interscience, 1994) p. 157.