研究生: |
吳承翰 Wu, Cheng-Han |
---|---|
論文名稱: |
基於中國餘式定理的(4,6)門檻值之影像分享 (4,6)-Threshold Image Sharing Based on Chinese Remainder Theorem |
指導教授: |
陳朝欽
Chen, Chaur-Chin |
口試委員: |
張隆紋
Chang, Long-Wen 黃仲陵 Huang, Chung-Lin |
學位類別: |
碩士 Master |
系所名稱: |
|
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 英文 |
論文頁數: | 19 |
中文關鍵詞: | 中國餘式定理 、影像分享 |
外文關鍵詞: | Chinese Remainder Theorem, Image Sharing |
相關次數: | 點閱:53 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於當今大數據時代資訊量的快速成長,資訊安全扮演著重要的角色。為了避免秘密資訊被一個人所單獨持有,本文研究了基於(k,n)門檻值的秘密影像分享方法,將秘密影像分成n張子影像並由n個參與者所保存。需要至少收集其中的k個子影像,我們就可以還原這個秘密影像,但是如果只收集到少於k張的子影像,則無法還原出秘密影像。
本篇論文基於中國餘式定理擴展了Chuang [Chua2016]的方法。跟其他的影像分享方法相比,我們的方法更加的精簡高效。雖然我們的方法中還原影像與秘密影像的每個像素有著一個位元的差異,但由實驗結果來看人類很難區分PSNR值超過50db的兩張影像。此外如果我們想要完美還原秘密影像,我們可以在分享及還原步驟中額外處理每個像素的最低有效位元來達到。
For the reason that the rapid growth of information in the era of Big Data nowadays, information security plays an important role. To avoid secret information carried by single carrier, this thesis studied image sharing based on (k,n)-threshold scheme, which distributes a secret image to n shadow images preserved by n participants. Collect at least k of them, we can recover the secret image, but fewer than k of them could not.
We proposed a method for the extension of Chuang’s scheme [Chua2016] based on Chinese Remainder Theorem in this thesis. Compared to other image sharing methods, our method is much simpler and efficient. Although the recovered image in our method has the difference of the least significant bit with the secret image, the experimental result shows that human beings can hardly distinguish two pictures with PSNR value over 50db. Moreover, we can additionally process the least significant bit of each pixel during the sharing and recovering parts if we want to recover the image completely.
[Asmu1983] C. Asmuth and J. Bloom, “A Modular Approach to Key Safeguarding,” IEEE Trans. on Information Theory, Vol. 29, No. 2, 208-210, 1983.
[Blak1979] G.R. Blakley, “Safeguarding cryptographic keys,” Proceedings of the National Computer Conference, American Federation of Information Proceeding Societies, Vol. 48, 313-317, 1979.
[Chen2005] C.C. Chen, W.Y. Fu, and C.C. Chen, “A Geometry-Based Secret Image Sharing Approach,” Proceedings of Image and Vision Computing, 428-431, Dunedin, Otago, New Zealand, 2005.
[Chua2016] T.W. Chuang, C.C. Chen, and B. Chien, “Image Sharing and Recovering Based on Chinese Remainder Theorem,” IEEE International Symposium on Computer, Consumer, and Control, 817-820, Xi'an, China, July 4-6, 2016.
[Mign1983] M. Mignotte, “How to share a secret,” in T. Beth, editor, Lecture Notes in Computer Science, Vol. 149, 371-375, 1983.
[Sham1979] A. Shamir, "How to share a secret," Communications of the ACM, Vol. 22, No. 11, 612-613, 1979.
[Shyu2008] S.J. Shyu and Y.R. Chen, "Threshold secret image sharing by Chinese Remainder Theorem," IEEE Asia-Pacific Services Computing Conference, 1332-1337, 2008.
[Thie2002] C.C. Thien and J.C. Lin, “Secret image sharing,” Computer & Graphics, Vol. 26, No. 1, 765-771, 2002.
[Ulut2009] M. Ulutas, V.V. Nabiyev, and G. Ulutas, “A New Secret Image Sharing Technique Based on Asmuth Bloom's Scheme,” Application of Information and Communication Technologies, 1-5, 2009.
[Web01] https://en.wikipedia.org/wiki/Chinese_remainder_theorem, last access on May 24, 2018.
[Web02] https://en.wikipedia.org/wiki/Secret_sharing_using_the_Chinese_remainder_theorem, last access on May 24, 2018.