簡易檢索 / 詳目顯示

研究生: 王孟琪
Wang, Meng-Chi
論文名稱: 反應式射頻磁控濺鍍法製備 AlCrNbSiTi 高熵氮化物薄膜及其性質之研究
High-entropy Nitride Films of AlCrNbSiTi Alloy by RF Reactive Magnetron Sputtering
指導教授: 林樹均
Lin, Su-Jien
口試委員: 洪建龍
陳盈潔
李勝隆
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 238
中文關鍵詞: 反應式射頻磁控濺鍍法AlCrNbSiTi高熵氮化物薄膜
外文關鍵詞: High-entropy, Nitride Films, AlCrNbSiTi, RF Reactive Magnetron Sputtering, Reactive Magnetron Sputtering
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究將以往實驗室製備之最佳合金成分 AlCrSiTi 增添耐火元素 Nb,利用真空電弧熔煉製備非等莫耳AlCrSiTiNb 多元合金靶材,以反應式射頻磁控濺鍍法鍍製高熵氮化物薄膜。藉由硬度、楊氏模數及氧化層厚度計算出薄膜之綜合性質(H^3/(x^2×E^2 )) 值,以此綜合性質作為薄膜性質之評估。在氮氣流率、基板偏壓及基板溫度變量下,得到兩種最佳製程參數N40 及N50,前者硬度為21 GPa,在1000 ˚C 持溫2 小時爐冷的氧化層厚度為90 nm,空冷的氧化層厚度為 99 nm ; 後者硬度為20 GPa,在1000 ˚C 持溫2 小時爐冷的氧化層厚度僅82 nm,空冷的氧化層厚度也僅有97 nm。在附著性及磨耗測試中加入三種不同中間層,分別為自身合金中間層、純Cr 中間層及純Ti 中間層,皆對薄膜性質有不同程度的提升。在銑削試驗中以 N40 加入純Cr 中間層的最大刀腹磨耗表現最為出色,在低速切削試驗中,最大刀腹磨耗僅有100 μm,平均刀腹磨耗為74 μm;在高速切削試驗中,最大刀腹磨耗僅有99 μm,平均刀腹磨耗為76 μm;表現皆優於商用TiN、TiAlN 及TiAlCrN 薄膜,顯示本實驗之AlCrSiTiNb 高熵氮化膜極具工業發展潛力。


    A refractory element, Nb, was firstly added into the AlCrSiTi alloy,
    the best alloy designed by our lab and then the non-isomolar AlCrSiTiNb multi-element alloy targets were prepared by vacuum arc melting. The multi-element nitride films were deposited by reactive radio frequency (RF) magnetron sputtering. Evaluated by the integrate property (H3/(x2·E2)) with different nitrogen flow ratio, substrate bias and substrate temperature, we got two best parameters. One is the N40 film with a hardness of 21 GPa and an oxide thickness of 90 nm at 1000 C, 2 h oxidation by cooling in a furnace. The other is the N50 film with a hardness of 20 GPa and an oxide thickness of only 82 nm at 1000 C, 2 h oxidation by cooling in a furnace. Even by cooling in air, the oxide thickness of the N40 film was 99 nm and
    the oxide thickness of the N40 film was only 97 nm. In the adhesion test and the wear test, the properties of the nitride films could be improved in vary degrees due to the addition of different intermediate layer, such as the self-alloy intermediate layer, the pure Cr intermediate layer, and the pure Ti intermediate layer. In the cutting test, the N40 film with the pure Cr intermediate layer presented the lowest value of the maximum flank wear. In the condition of low revolutions per minute, the maximum flank wear of this film was only 100 μm, and the average flank wear of this film was 74 μm. In the condition of high revolutions per minute, the maximum flank wear was only 99 μm as well, and the average flank wear was 76 μm. The performance of the N40 film was much better than the cutting tools deposited with TiN, TiAlN and TiAlCrN. The AlCrSiTiNb high-entropy nitride shows a great potential to be an protective hard coating on the cutting tools.

    致謝............................................................................................................. I 摘要...........................................................................................................III Abstract ......................................................................................................V 目錄.........................................................................................................VII 圖目錄....................................................................................................XIII 表目錄.................................................................................................XXVI 壹、前言.....................................................................................................1 貳、文獻回顧.............................................................................................4 2.1 薄膜鍍製技術..................................................................................4 2.1.1 物理氣相沉積............................................................................4 2.1.2 濺鍍原理....................................................................................6 2.1.3 反應式濺鍍................................................................................7 2.1.4 射頻濺鍍....................................................................................9 VIII 2.1.5 磁控濺鍍..................................................................................10 2.1.6 薄膜沉積與附著機制..............................................................13 2.1.7 薄膜微結構..............................................................................14 2.2 薄膜的發展與種類........................................................................19 2.2.1 薄膜發展概況..........................................................................19 2.2.2 薄膜分類與介紹......................................................................22 2.2.3 薄膜硬化機制..........................................................................29 2.3 高熵合金薄膜................................................................................30 2.3.1 高熵合金簡介..........................................................................31 2.3.2 高熵合金之性質與特色..........................................................33 參、實驗流程...........................................................................................38 3.1 實驗設計........................................................................................38 3.1.1 基底合金之優化設計..............................................................40 3.1.2 增添一元耐火元素Nb 之設計.............................................43 3.1.3 硬度及抗氧化性之綜合性質..................................................44 IX 3.2 薄膜準備........................................................................................47 3.2.1 靶材製備..................................................................................47 3.2.2 基板準備..................................................................................48 3.2.3 薄膜鍍製..................................................................................50 3.3 薄膜基本性質分析........................................................................57 3.3.1 成分分析..................................................................................57 3.3.2 晶體結構分析..........................................................................58 3.3.3 微結構分析..............................................................................59 3.3.4 表面粗糙度分析......................................................................59 3.4 薄膜機械性質分析........................................................................61 3.4.1 硬度和楊氏模數分析..............................................................61 3.4.2 薄膜附著性分析......................................................................63 3.4.3 薄膜抗磨耗性質分析..............................................................65 3.5 薄膜抗氧化性分析........................................................................67 3.6 銑刀切削測試................................................................................67 X 肆、結果與討論......................................................................................73 4.1 減Si 成分之結果與討論.............................................................73 4.1.1 T6.7 及T11.7 靶材成分分析.............................................74 4.1.2 T6.7 及T11.7 氮化膜之基本性質分析................................75 4.1.2 T6.7、T11.7 及W 氮化膜之表面形貌及微結構比較.....78 4.1.3 T6.7、T11.7 及W氮化膜之機械性質比較......................79 4.2 不同氮氣流率對Nb5 氮化膜的影響.........................................81 4.2.1 鍍率分析..................................................................................81 4.2.2 成分分析..................................................................................82 4.2.3 晶體結構分析..........................................................................84 4.2.4 表面形貌與微結構分析..........................................................89 4.2.5 表面粗糙度分析......................................................................93 4.2.6 機械性質分析..........................................................................96 4.3 不同基板偏壓對N40 及N50 氮化膜的影響..........................99 4.3.1 鍍率分析..................................................................................99 XI 4.3.2 成分分析................................................................................101 4.3.3 晶體結構分析........................................................................103 4.3.4 表面形貌與微結構分析........................................................108 4.3.5 表面粗糙度分析....................................................................113 4.3.6 機械性質分析........................................................................120 4.3.7 抗氧化性分析........................................................................124 4.3.8 綜合性質分析........................................................................130 4.4 不同基板溫度對N40 及N50 氮化膜的影響........................132 4.4.1 鍍率分析................................................................................132 4.4.2 成分分析................................................................................134 4.4.3 晶體結構分析........................................................................136 4.4.4 表面形貌與微結構分析........................................................140 4.4.5 表面粗糙度分析....................................................................143 4.4.6 機械性質分析........................................................................149 4.4.7 抗氧化性分析........................................................................153 XII 4.4.7.1 於1000 ºC 持溫兩小時大氣退火爐冷.............................153 4.4.7.2 於1000 ºC 持溫兩小時大氣退火空冷.............................158 4.4.8 綜合性質分析........................................................................159 4.5 最佳製程參數之N40 及N50 氮化膜附著力測試................161 4.5.1 HRC附著性測試.................................................................162 4.5.2 刮痕測試................................................................................169 4.6 最佳製程參數之N40 及N50 氮化膜磨耗試驗....................181 4.7 最佳製程參數之N40 及N50 氮化膜切削試驗....................194 4.7.1 低速切削試驗........................................................................195 4.7.2 高速切削試驗........................................................................207 伍、結論.................................................................................................224 陸、本研究之貢獻................................................................................226 柒、未來研究方向................................................................................227 參考文獻.................................................................................................228

    1. Stan Veprek and Maritza J. G. Veprek-Heijman, Industrial applications of superhard nanocomposite coatings. Surface and Coatings Technology, 2008. 202(21): p. 5063-5073.
    2. 莊允中, 陳仲宜, 前瞻奈米鍍膜技術與潛力市場探索: 經濟部技術處產業技術知識服務 (ITTS) 計畫. 2005.
    3. Stan Vepřek, The search for novel, superhard materials. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1999. 17(5): p. 2401-2420.
    4. O. Knotek, M. Böhmer, T. Leyendecker, and F. Jungblut, The Structure and Composition of Ti-Zr-N, Ti-AI-Zr-N and Ti-AI-V-N Coatings. Materials Science and Engineering: A, 1988: p. 481-488.
    5. S. PalDey and S. C. Deevi, Single layer and multilayer wear resistant coatings of (Ti,Al)N: a review. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2003. 342(1-2): p. 58-79.
    6. H. D. Mannling, D. S. Patil, K. Moto, M. Jilek, and S. Veprek, Thermal stability of superhard nanocomposite coatings consisting of immiscible nitrides. Surface & Coatings Technology, 2001. 146: p. 263-267.
    7. 沈宛叡, AlCrNbSiTi高熵合金與其氮化物薄膜微結構、機械性質與高溫氧化行為之研究, 國立清華大學材料科學工程學系碩士論文, 2013, p. 208.
    8. 翁稚惠, AlCrTaTiZr氮化物薄膜附著力與抗磨耗能力之研究, 國立清華大學材料科學工程學系碩士論文, 2006, p. 89.
    9. 張境芳, Al-Cr-Nb-Si-Ta高熵氮化膜之開發研究, , 國立清華大學材料科學工程學系碩士論文, 2012, p. 164.
    10. 張慧紋, 以反應式直流濺鍍法製備Al-Cr-Mo-Si-Ti高熵氮化物薄膜及其性質探討, 國立清華大學材料科學工程學系碩士論文, 2004, p. 93.
    11. 黃炳剛, AlCrNbSiTiV高熵合金及其氮化物濺鍍薄膜之研究, 國立清華大學材料科學工程學系碩士論文, 2008, p. 161.
    12. 蔡佳凌, 反應式直流磁控濺鍍法製備 (Al,Cr,Nb,Si,B,C)100-xNx 高熵薄膜之研究, 國立清華大學材料科學工程學系碩士論文, 2013, p. 208.
    13. 鄭耿豪, (AlCrTaTiZr)-Six-N多元氮化物鍍膜微結構、機械性質與高溫氧化行為之研究, 國立清華大學材料科學工程學系碩士論文, 2010, p. 211.
    14. 賴加瀚, Al-Cr-Ta-Ti-Zr-N 多元氮化物薄膜之製備與性質研究, 國立清華大學材料科學工程學系碩士論文, 2006, p. 194.
    15. 謝明曉, (AlCrNbSiTi)N薄膜田口法最佳化之研究, 國立清華大學材料科學工程學系碩士論文, 2010, p. 150.
    16. D. Mattox, Handbook of Physical Vapor Deposition (PVD) Processing. 2014: Cambridge University Press.
    17. Lina Liljeholm, Reactive sputter deposition of functional thin films. 2012: Acta Universitatis Upsaliensis.
    18. 개날연, 다양한 변형 스퍼터링 장치들. 2014. p. http://marriott.tistory.com/97.
    19. Peter M. Martin, Handbook of Deposition Technologies for Films and Coatings. Science, Applications and Technology. 2009: William Andrew.
    20. P. J. Kelly and R. D. Arnell, Magnetron sputtering: a review of recent developments and applications. Vacuum, 2000. 56(3): p. 159-172.
    21. B.A. Movchan, Demchishin, A.V., Structure and Properties of Thick Condensates of Nickel, Titanium, Tungsten, Alimium Oxides, and Zirconium Dioxide in Vacuum. Fiz. Metal. Metalloved. 28: 653-60 (Oct 1969).
    22. J. A. Thornton, High-Rate Thick-Film Growth. Annual Review of Materials Science, 1977. 7: p. 239-260.
    23. R. Messier, A. P. Giri, and R. A. Roy, Revised Structure Zone Model for Thin-Film Physical Structure. Journal of Vacuum Science & Technology a-Vacuum Surfaces and Films, 1984. 2(2): p. 500-503.
    24. Wolf‐Dieter Münz, Titanium aluminum nitride films: A new alternative to TiN coatings. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1986. 4(6): p. 2717-2725.
    25. Shihong Zhang, Weiwei Wu, Wanglin Chen, and Shubao Yang, Structural optimisation and synthesis of multilayers and nanocomposite AlCrTiSiN coatings for excellent machinability. Surface and Coatings Technology, 2015. 277: p. 23-29.
    26. J. Lin, B. Mishra, J. J. Moore, and W. D. Sproul, A study of the oxidation behavior of CrN and CrAlN thin films in air using DSC and TGA analyses. Surface and Coatings Technology, 2008. 202(14): p. 3272-3283.
    27. In-Wook Park, Sung Ryong Choi, Mi-Hye Lee, and Kwang Ho Kim, Effects of Si addition on the microstructural evolution and hardness of Ti–Al–Si–N films prepared by the hybrid system of arc ion plating and sputtering techniques. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2003. 21(4): p. 895-899.
    28. Y Tanaka, N Ichimiya, Y Onishi, and Y Yamada, Structure and properties of Al–Ti–Si–N coatings prepared by the cathodic arc ion plating method for high speed cutting applications. Surface and Coatings Technology, 2001. 146: p. 215-221.
    29. Yin-Yu Chang, Chi-Pang Chang, Da-Yung Wang, Sheng-Min Yang, and Weite Wu, High temperature oxidation resistance of CrAlSiN coatings synthesized by a cathodic arc deposition process. Journal of Alloys and Compounds, 2008. 461(1-2): p. 336-341.
    30. Weiwei Wu, Wanglin Chen, Shubao Yang, Yue Lin, Shihong Zhang, Tong-Yul Cho, G. H. Lee, and Sik-Chol Kwon, Design of AlCrSiN multilayers and nanocomposite coating for HSS cutting tools. Applied Surface Science, 2015. 351: p. 803-810.
    31. Bruno Trindade, Albano Cavaleiro, and Maria Teresa Vieira, The Influence of the Addition of a Third Element on the Structure and Mechanical Properties of Transition-Metal-Based Nanostructured Hard Films: Part II—Carbides, in Nanostructured Coatings. 2006, Springer. p. 315-346.
    32. Stan Veprek and Maritza JG Veprek-Heijman, Industrial applications of superhard nanocomposite coatings. Surface and Coatings Technology, 2008. 202(21): p. 5063-5073.
    33. J Musil, Hard nanocomposite coatings: thermal stability, oxidation resistance and toughness. Surface and Coatings Technology, 2012. 207: p. 50-65.
    34. Stan Veprek, RF Zhang, MGJ Veprek-Heijman, SH Sheng, and AS Argon, Superhard nanocomposites: Origin of hardness enhancement, properties and applications. Surface and Coatings Technology, 2010. 204(12-13): p. 1898-1906.
    35. Peter M Martin, Handbook of deposition technologies for films and coatings: science, applications and technology. 2009: William Andrew.
    36. Jianliang Lin, John J Moore, Brajendra Mishra, Malki Pinkas, and William D Sproul, The structure and mechanical and tribological properties of TiBCN nanocomposite coatings. Acta Materialia, 2010. 58(5): p. 1554-1564.
    37. Philip C Yashar and William D Sproul, Nanometer scale multilayered hard coatings. Vacuum, 1999. 55(3-4): p. 179-190.
    38. H Holleck and Schier, Multilayer PVD coatings for wear protection. Surface and Coatings Technology, 1995. 76: p. 328-336.
    39. G Abadias, A Michel, C Tromas, C Jaouen, and SN Dub, Stress, interfacial effects and mechanical properties of nanoscale multilayered coatings. Surface and Coatings Technology, 2007. 202(4-7): p. 844-853.
    40. C Engström, J Birch, L Hultman, C Lavoie, C Cabral, JL Jordan-Sweet, and JRA Carlsson, Interdiffusion studies of single crystal TiN/NbN superlattice thin films. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1999. 17(5): p. 2920-2927.
    41. Niels Hansen, Hall–Petch relation and boundary strengthening. Scripta Materialia, 2004. 51(8): p. 801-806.
    42. Ke Lu, Nanocrystalline metals crystallized from amorphous solids: nanocrystallization, structure, and properties. Materials Science and Engineering: R: Reports, 1996. 16(4): p. 161-221.
    43. P. K. Huang, J. W. Yeh, T. T. Shun, and S. K. Chen, Multi-Principal-Element Alloys with Improved Oxidation and Wear Resistance for Thermal Spray Coating. Advanced Engineering Materials, 2004. 6(12): p. 74-78.
    44. J. W. Yeh, S. K. Chen, S. J. Lin, J. Y. Gan, T. S. Chin, T. T. Shun, C. H. Tsau, and S. Y. Chang, Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes. Advanced Engineering Materials, 2004. 6(5): p. 299-303.
    45. Jien-Wei Yeh, Alloy Design Strategies and Future Trends in High-Entropy Alloys. Jom, 2013. 65(12): p. 1759-1771.
    46. Jien-Wei Yeh, Recent progress in high-entropy alloys. Annales de Chimie Science des Matériaux, 2006. 31(6): p. 633-648.
    47. O. N. Senkov, G. B. Wilks, D. B. Miracle, C. P. Chuang, and P. K. Liaw, Refractory high-entropy alloys. Intermetallics, 2010. 18(9): p. 1758-1765.
    48. J.W. Yeh and S. Ranganathan B.S. Murty, High Entropy Alloys. 2014.
    49. K. Y. Tsai, M. H. Tsai, and J. W. Yeh, Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys. Acta Materialia, 2013. 61(13): p. 4887-4897.
    50. Jun Bo Choi, Kurn Cho, Yangdo Kim, Kwang Ho Kim, and Pung Keun Song, Microstructure effect on the high-temperature oxidation resistance of Ti–Si–N coating layers. Japanese journal of applied physics, 2003. 42(10R): p. 6556.
    51. 呂佩瑜, 反應式射頻磁控濺鍍法製備 AlCrSiTi 多元氮化物薄膜, 國立清華大學材料科學工程學系碩士論文, 2017, p. 270.
    52. SCDS PalDey and SC Deevi, Single layer and multilayer wear resistant coatings of (Ti, Al) N: a review. Materials Science and Engineering: A, 2003. 342(1-2): p. 58-79.
    53. JC Sánchez-López, D Martínez-Martínez, C López-Cartes, A Fernández, Marta Brizuela, A García-Luis, and JI Oñate, Mechanical behavior and oxidation resistance of Cr (Al) N coatings. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2005. 23(4): p. 681-686.
    54. Li Chen, Yong Du, Ai J Wang, She Q Wang, and Shu Z Zhou, Effect of Al content on microstructure and mechanical properties of Ti–Al–Si–N nanocomposite coatings. International Journal of Refractory Metals and Hard Materials, 2009. 27(4): p. 718-721.
    55. Min Zhou, Y Makino, M Nose, and K Nogi, Phase transition and properties of Ti–Al–N thin films prepared by rf-plasma assisted magnetron sputtering. Thin Solid Films, 1999. 339(1-2): p. 203-208.
    56. Y. C. Chim, X. Z. Ding, X. T. Zeng, and S. Zhang, Oxidation resistance of TiN, CrN, TiAlN and CrAlN coatings deposited by lateral rotating cathode arc. Thin Solid Films, 2009. 517(17): p. 4845-4849.
    57. 劉又嵻, AlCrNbSiTi 多層膜之開發, 國立清華大學材料科學工程學系碩士論文, 2017, p. 267.
    58. Hugh O Pierson, Handbook of refractory carbides and nitrides: properties, characteristics, processing and applications. 1996: William Andrew.
    59. James F Shackelford, Young-Hwan Han, Sukyoung Kim, and Se-Hun Kwon, CRC materials science and engineering handbook. 2016: CRC press.
    60. 陳思寰, (CrNbTaTiZr)Cx薄膜的機械性質與微結構之研究, 國立清華大學材料科學工程學系碩士論文, 2012, 新竹市. p. 135面.
    61. GM Pharr and WC Oliver, Measurement of thin film mechanical properties using nanoindentation. Mrs Bulletin, 1992. 17(7): p. 28-33.
    62. C Ducros and F Sanchette, Multilayered and nanolayered hard nitride thin films deposited by cathodic arc evaporation. Part 2: Mechanical properties and cutting performances. Surface and Coatings Technology, 2006. 201(3-4): p. 1045-1052.
    63. Sclerometry, Nanoscratching and Nanoindentation – Surface Characterisation with the NTEGRA from NT-MDT. 2015; Available from: https://www.azom.com/article.aspx?ArticleID=4076.
    64. 林季薇, 多元碳化物(CrNbSiTiZr)Cx鍍膜之結構與性質研究, 國立清華大學材料科學工程學系碩士論文, 2010, p. 127面.
    65. Rod S Mason and Melanie Pichilingi, Sputtering in a glow discharge ion source-pressure dependence: theory and experiment. Journal of Physics D: Applied Physics, 1994. 27(11): p. 2363.
    66. GL Huffman, DE Fahnline, R Messier, and LJ Pilione, Stress dependence of reactively sputtered aluminum nitride thin films on sputtering parameters. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1989. 7(3): p. 2252-2255.
    67. K Kusaka, D Taniguchi, T Hanabusa, and K Tominaga, Effect of sputtering gas pressure and nitrogen concentration on crystal orientation and residual stress in sputtered AlN films. Vacuum, 2002. 66(3-4): p. 441-446.
    68. Sydney Chapman, Thomas George Cowling, and David Burnett, The mathematical theory of non-uniform gases: an account of the kinetic theory of viscosity, thermal conduction and diffusion in gases. 1970: Cambridge university press.
    69. Y. Zhang, Y.  J Zhou, J.  P Lin, G.  L Chen, and P.  K Liaw, Solid-Solution Phase Formation Rules for Multi-component Alloys. Advanced Engineering Materials, 2008. 10(6): p. 534-538.
    70. <Inoue-mater. trans.-Classification from atomic size, mixing heat.pdf>.
    71. DM Mattox, Particle bombardment effects on thin‐film deposition: A review. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1989. 7(3): p. 1105-1114.
    72. JE Greene, J‐E Sundgren, L Hultman, I Petrov, and DB Bergstrom, Development of preferred orientation in polycrystalline TiN layers grown by ultrahigh vacuum reactive magnetron sputtering. Applied physics letters, 1995. 67(20): p. 2928-2930.
    73. Joshua Pelleg, LZ Zevin, Sh Lungo, and N Croitoru, Reactive-sputter-deposited TiN films on glass substrates. Thin Solid Films, 1991. 197(1-2): p. 117-128.
    74. W Ensinger, Growth of thin films with preferential crystallographic orientation by ion bombardment during deposition. Surface and Coatings Technology, 1994. 65(1-3): p. 90-105.
    75. L Hultman, J‐E Sundgren, JE Greene, DB Bergstrom, and I Petrov, High‐flux low‐energy (≂ 20 eV) N+ 2 ion irradiation during TiN deposition by reactive magnetron sputtering: Effects on microstructure and preferred orientation. Journal of applied physics, 1995. 78(9): p. 5395-5403.
    76. F Vaz, L Rebouta, S Ramos, A Cavaleiro, MF Da Silva, and JC Soares, Physical and mechanical properties of Ti1− xSixN films. Surface and Coatings Technology, 1998. 100: p. 110-115.
    77. I Petrov, L Hultman, U Helmersson, J-E Sundgren, and JE Greene, Microstructure modification of TiN by ion bombardment during reactive sputter deposition. Thin Solid Films, 1989. 169(2): p. 299-314.
    78. G Håkansson, J-E Sundgren, D McIntyre, JE Greene, and W-D Münz, Microstructure and physical properties of polycrystalline metastable Ti0. 5Al0. 5N alloys grown by dc magnetron sputter deposition. Thin Solid Films, 1987. 153(1-3): p. 55-65.
    79. Heung-Sik Park, DH Jung, Hyeong-Don Na, JH Joo, and JJ Lee, The properties of (Ti, Al) N coatings deposited by inductively coupled plasma assisted dc magnetron sputtering. Surface and Coatings Technology, 2001. 142: p. 999-1004.
    80. AG Dirks and HJ Leamy, Columnar microstructure in vapor-deposited thin films. Thin Solid Films, 1977. 47(3): p. 219-233.
    81. Chia-Han Lai, Su-Jien Lin, Jien-Wei Yeh, and Shou-Yi Chang, Preparation and characterization of AlCrTaTiZr multi-element nitride coatings. Surface and Coatings Technology, 2006. 201(6): p. 3275-3280.
    82. Laurette Combadiere and Jean Machet, Reactive magnetron sputtering deposition of TiN films. I. Influence of the substrate temperature on structure, composition and morphology of the films. Surface and Coatings Technology, 1997. 88(1-3): p. 17-27.
    83. J. Musil and R. Daniel, Structure and mechanical properties of magnetron sputtered Zr–Ti–Cu–N films. Surface and Coatings Technology, 2003. 166(2-3): p. 243-253.
    84. J-E Sundgren, Structure and properties of TiN coatings. Thin solid films, 1985. 128(1-2): p. 21-44.
    85. Y.H. Cheng, B.K. Tay, and S.P. Lau, Influence of deposition temperature on the structure and internal stress of TiN films deposited by filtered cathodic vacuum arc. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2002. 20(4): p. 1270-1274.
    86. D.V. Shtansky, A.N. Sheveiko, M.I. Petrzhik, F.V. Kiryukhantsev-Korneev, EA Levashov, A Leyland, AL Yerokhin, and A Matthews, Hard tribological TiBN, TiCrBN, TiSiBN and TiAlSiBN coatings. Surface and Coatings Technology, 2005. 200(1-4): p. 208-212.
    87. N. Chawla, B. V. Patel, M. Koopman, K. K. Chawla, R. Saha, B. R. Patterson, E. R. Fuller, and S. A. Langer, Microstructure-based simulation of thermomechanical behavior of composite materials by object-oriented finite element analysis. Materials Characterization, 2002. 49(5): p. 395-407.
    88. S.J. Bull, Failure modes in scratch adhesion testing. Surface and Coatings Technology, 1991. 50(1): p. 25-32.
    89. K. Singh, P.K. Limaye, N.L. Soni, A.K. Grover, R.G. Agrawal, and A.K. Suri, Wear studies of (TiAl) N coatings deposited by reactive magnetron sputtering. Wear, 2005. 258(11-12): p. 1813-1824.
    90. S. Wilson and A.T. Alpas, Wear mechanism maps for TiN-coated high speed steel. Surface and Coatings Technology, 1999. 120: p. 519-527.
    91. Shengli Ma, J. Prochazka, P. Karvankova, Qingsong Ma, Xinping Niu, Xin Wang, Dayan Ma, Kewei Xu, and S. Vepřek, Comparative study of the tribological behaviour of superhard nanocomposite coatings nc-TiN/a-Si3N4 with TiN. Surface and Coatings Technology, 2005. 194(1): p. 143-148.
    92. Seog-Young Yoon, Jong-Kuk Kim, and Kwang Ho Kim, A comparative study on tribological behavior of TiN and TiAlN coatings prepared by arc ion plating technique. Surface and Coatings Technology, 2002. 161(2-3): p. 237-242.
    93. K. Chu, P.W. Shum, and Y.G. Shen, Substrate bias effects on mechanical and tribological properties of substitutional solid solution (Ti, Al) N films prepared by reactive magnetron sputtering. Materials Science and Engineering: B, 2006. 131(1-3): p. 62-71.
    94. K. Aslantas, I. Ucun, and A. Cicek, Tool life and wear mechanism of coated and uncoated Al2O3/TiCN mixed ceramic tools in turning hardened alloy steel. Wear, 2012. 274: p. 442-451.
    95. E.O. Ezugwu and C.I. Okeke, Tool life and wear mechanisms of TiN coated tools in an intermittent cutting operation. Journal of Materials Processing Technology, 2001. 116(1): p. 10-15.
    96. C. Subramanian, Strafford, and K.N., Review of multicomponent and multilayer coatings for tribological applications. Wear, 1993. 165(1): p. 85-95.
    97. S. Veprek, H-D Männling, M. Jilek, and P. Holubar, Avoiding the high-temperature decomposition and softening of (Al1− xTix) N coatings by the formation of stable superhard nc-(Al1− xTix) N/a-Si3N4 nanocomposite. Materials Science and Engineering: A, 2004. 366(1): p. 202-205.
    98. Fritz Klocke, Manufacturing Processes 1. RWTHedition. 2011.
    99. Ali Davoudinejad, Guido Tosello, Massimiliano %J International Journal of Precision Engineering Annoni, and Manufacturing, Influence of the worn tool affected by built-up edge (BUE) on micro end-milling process performance: A 3D finite element modeling investigation. 2017. 18(10): p. 1321-1332.
    100. 机械制造工程概论. 1997: 航空工业出版社.

    QR CODE